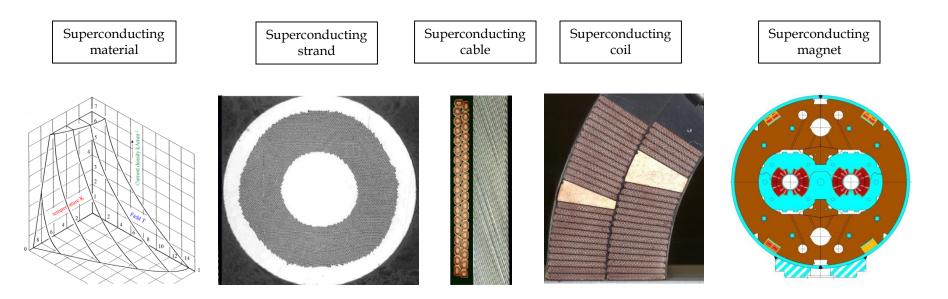
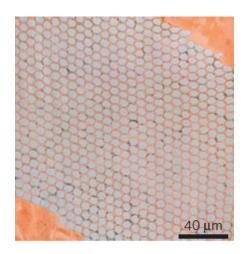


2020 Joint Universities Accelerator School

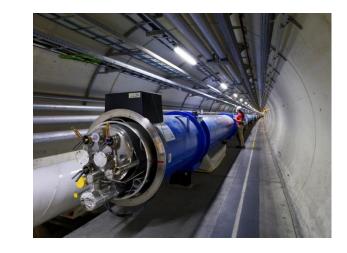
Superconducting Magnets Section I


Paolo Ferracin

(*pferracin@lbl.gov*) Lawrence Berkeley National Laboratory (LBNL)


Introduction Goal of the course

- Overview of **superconducting magnets** for particle accelerators (dipoles and quadrupoles)
 - Description of the components and their function
- From the superconducting material to the full magnet



Introduction Superconducting magnet technology

- Multidisciplinary field: mixture of
 - Chemistry and material science: **superconducting materials**
 - Quantum physics: the key mechanisms of **superconductivity**
 - Classical electrodynamics: magnet design
 - Mechanical engineering: support structures
 - Electrical engineering: powering of the magnets
 - Cryogenics: keep them **cold**...
- Very different order of magnitudes

BERKELEY

Outline

• Section I

- Particle accelerators and magnets
- Superconductivity and practical superconductors

• Section II

Magnetic design

• Section III

- Coil fabrication
- Forces, stress, pre-stress
- Support structures

• Section IV

• Quench, protection, training

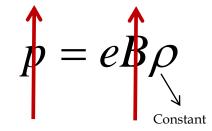
References

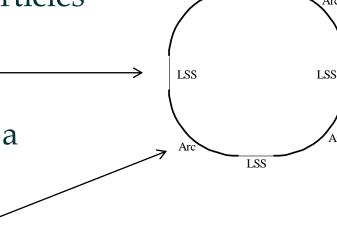
- Particle accelerators and magnets
- Superconductivity and practical superconductors
 - K.-H. Mess, P. Schmuser, S. Wolff, "Superconducting accelerator magnets", Singapore: World Scientific, 1996.
 - Martin N. Wilson, "Superconducting Magnets", 1983.
 - Fred M. Asner, "*High Field Superconducting Magnets*", 1999.
 - P. Ferracin, E. Todesco, S. Prestemon, "Superconducting accelerator magnets", US Particle Accelerator School, www.uspas.fnal.gov.
 <u>Units 2 by E. Todesco</u>
 - A. Devred, "Practical low-temperature superconductors for electromagnets", CERN-2004-006, 2006.
 - Presentations from Luca Bottura and Martin Wilson

Particle accelerators and magnets

- Principle of synchrotrons
 - Driving particles in the same accelerating structure several times
- Electro-magnetic field accelerates particles

$$\vec{F} = e\vec{E}$$

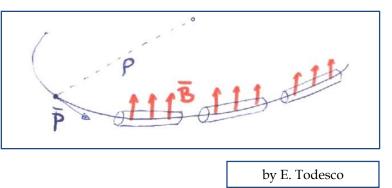

• Magnetic field steers the particles in a ~circular orbit


$$\vec{F} = e\vec{v} \times \vec{B}$$

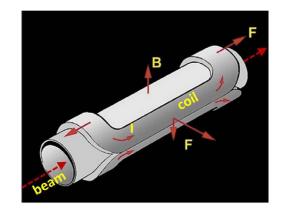
 Particle accelerated → energy increased → magnetic field increased ("synchro") to keep the particles on the same orbit of curvature *ρ* by E. Todesco

Arc

LSS

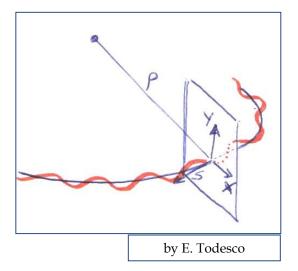

Arc

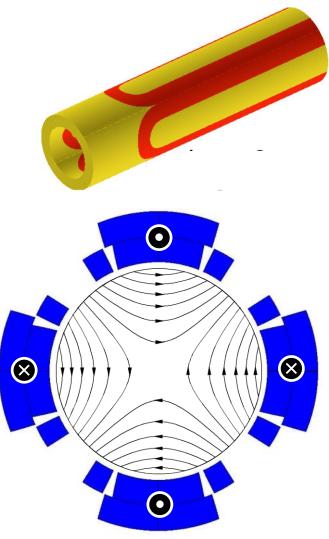
Particle accelerators and magnets Dipoles


- Main field components is B_{y}
 - Perpendicular to the axis of the magnet *z*
- Electro-magnets: field produced by a current (or current density)

$$B_{y} = -\frac{\mu_{0}J_{0}}{2}(r_{out} - r_{in})$$

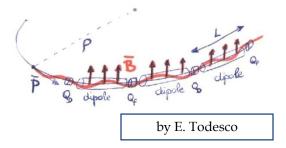
• Magnetic field steers (bends) the particles in a ~circular orbit

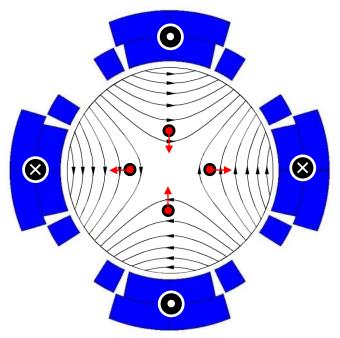

$$p = eB\rho$$

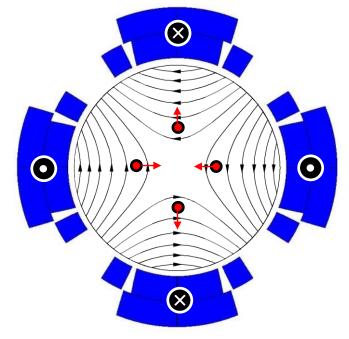


Particle accelerators and magnets Quadrupoles

- The force necessary to stabilize linear motion is provided by the quadrupoles
 - They provide a field
 - equal to zero in the center
 - increasing linearly with the radius
- They act as a spring: **focus the beam**
- Prevent protons from **falling** to the bottom of the aperture due to the **gravitational force**
 - it would happen in less than 60 ms

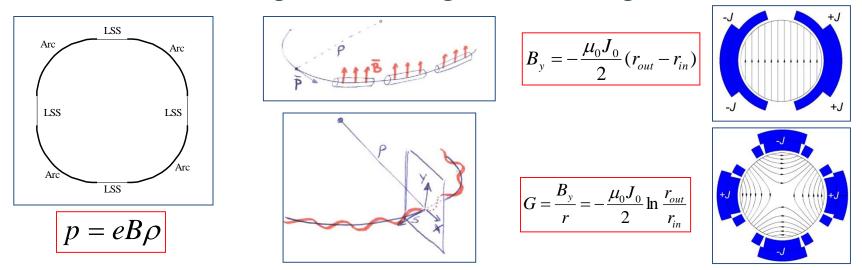



$$G = \frac{B_y}{r} = -\frac{\mu_0 J_0}{2} \ln \frac{r_{out}}{r_{in}}$$

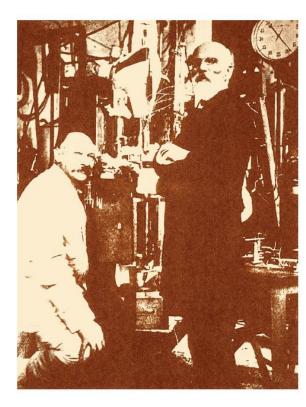


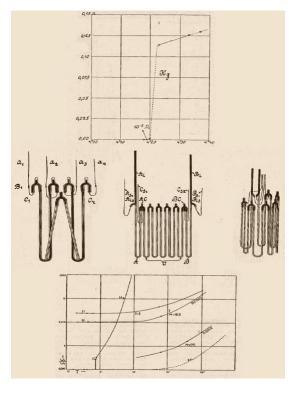
Particle accelerators and magnets Quadrupoles

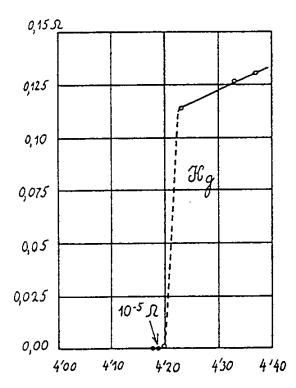
- A typical accelerator structure is the FODO cell
 - Alternating quadrupoles spaced by length *L* of similar gradient
- One can prove that this gives positive focusing in both transverse planes



Particle accelerators and magnets


- Dipoles: the larger **B**, the larger the **energy**
- Quadrupoles: the larger **B**, the larger the focusing strength
- For an electro-magnet, the larger **B**, the larger must be **J**




- In normal conducting magnets, J ~ 5 A/mm²
- In superconducting magnets, $J_e \sim 600-700 \text{ A/mm}^2$

Superconductivity The discovery

- Superconductivity was discovered in 1911 by Kammerling-Onnes who observed that the resistance of a mercury wire disappeared (immeasurably small value) at 4.2 K
 - Not just "little" resistance truly **ZERO resistance**

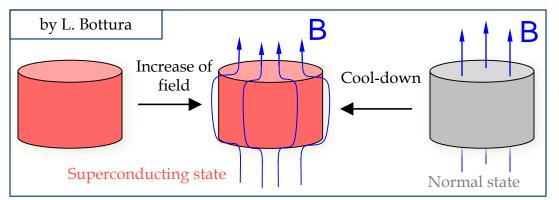
Superconductivity Critical temperature

- The temperature at which the transition takes place: **critical temperature** *T_c*
- Below $T_{c} \rightarrow$ no resistance

BERKELEY

- Observed in may materials
 - but not in the typical best normal conductors (copper, silver, gold...)
- At a temperature > T_c, a superconductor is a very poor conductor
- 2 kinds of superconductors
 - Type I and Type II
 - Different behaviour with magnetic field

Material	$T_{c}(\mathbf{K})$
Aluminum	1.2
Cadmium	0.52
Gallium	1.1
Indium	3.4
Iridium	0.11
Lanthanum α	4.8
β	4.9
Lead	7.2
Lutecium	0.1
Mercury α	4.2
β	4.0
Molybdenum	0.9
Osmium	0.7
Rhenium	1.7
Rhodium	0.0003
Ruthenium	0.5
Tantalum	4.5
Thalium	2.4
Thorium	1.4
Tin	3.7
Titanium	0.4
Tungsten	0.016
Uranium α	0.6
β	1.8
Zinc	0.9
Zirconium	0.8

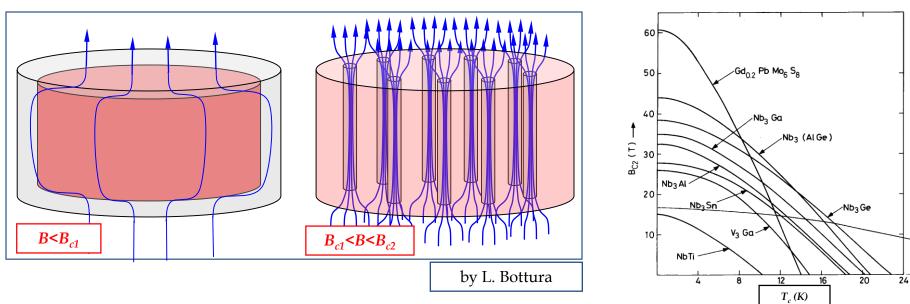

Superconductivity Type I superconductors

 $\hat{}$

LAB

BERKELEY

- Meissner-Ochsenfeld effect (1933)
- Perfect diamagnetism
 - With *T*<*T*_c magnetic field is expelled
- But, the *B* must be < critical field *B*_c
 - Otherwise superconductivity is lost



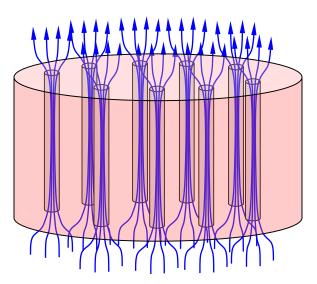
- Unfortunately, first discovered superconductors (**Type I**) with **very low** B_c (≤ 0.1 T)
 - not practical for electro-magnets

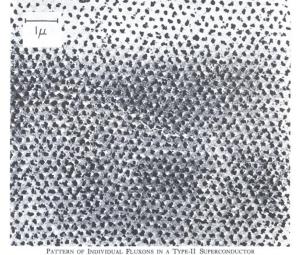
Material	$T_{c}(\mathbf{K})$	$\mu_0 H_0 (\mathrm{mT})$
Aluminum	1.2	9.9
Cadmium	0.52	3.0
Gallium	1.1	5.1
Indium	3.4	27.6
Iridium	0.11	1.6
Lanthanum α	4.8	
β	4.9	
Lead	7.2	80.3
Lutecium	0.1	35.0
Mercury α	4.2	41.3
β	4.0	34.0
Molybdenum	0.9	
Osmium	0.7	~ 6.3
Rhenium	1.7	20.1
Rhodium	0.0003	4.9
Ruthenium	0.5	6.6
Tantalum	4.5	83.0
Thalium	2.4	17.1
Thorium	1.4	16.2
Tin	3.7	30.6
Titanium	0.4	
Tungsten	0.016	0.12
Uranium α	0.6	
β	1.8	
Zinc	0.9	5.3
Zirconium	0.8	4.7

Superconductivity Type II superconductors

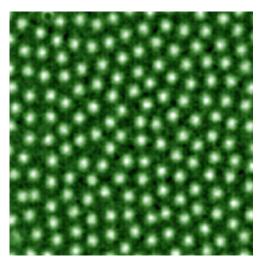
- So, for 40-50 years, superconductivity was a research activity
- Then, in the 50's, **type II superconductors**
 - Between B_{c1} and B_{c2} : mixed phase
 - *B* penetrates as flux tubes: *fluxoids*
 - with a flux of $\phi_0 = h/2e = 2 \cdot 10^{-15} Wb$
- Much higher fields and link between T_c and B_{c2}

Paolo Ferracin



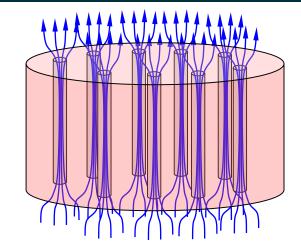

Superconductivity Type II superconductors

 Field penetrated in the form of flux tubes (*fluxoids*), each with a flux of


 $\phi_o = h/2e = 2 \cdot 10^{-15} Wb$

• Observed both in a photo by Essmann & Träuble (1967) and with magneto-optical imaging technique by Oslo University

This photograph shows the triangular pattern of fluxons in a type-II superconductor (see Chapter 12). The pattern is revealed by allowing very small (500 Å) ferromagnetic particles to settle on the surface of a magnetized specimen (lead-indium alloy). The particles locate themselves where the magnetic flux intersects the surface.

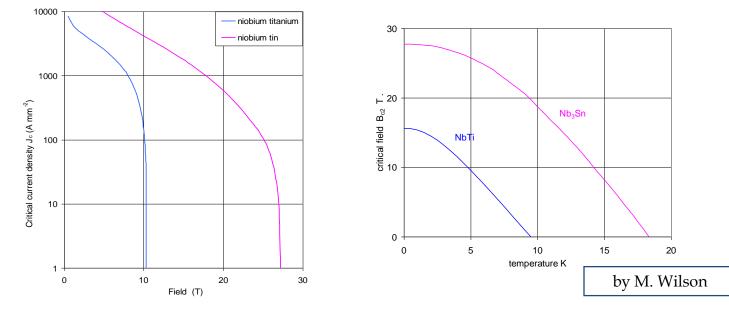

http://www.mn.uio.no/fysikk/english/research/gro ups/amks/superconductivity/

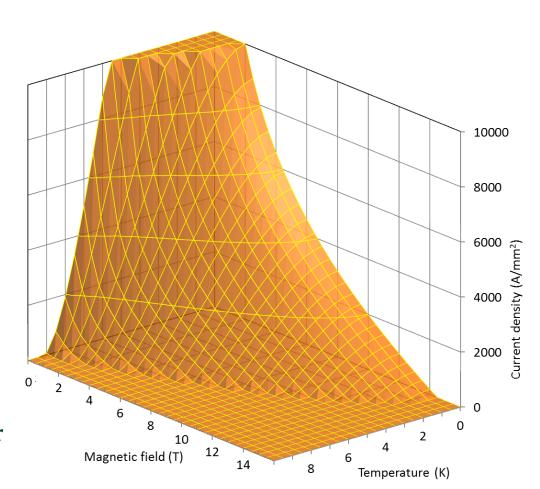
Superconductivity Hard superconductors

- ...but, if a current is passed through the type II superconductor under a field >B_{c1}
 - Lorentz force on the fluxoids
 - $F = J \times B$

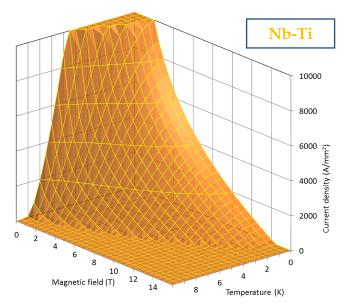
BERKELEY

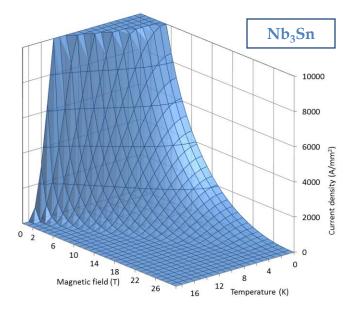
- The force causes a **motion** of tubes
 - Flux motion $(dB/dt) \rightarrow$ voltage $(V) \rightarrow$ dissipation $(V \cdot I)$
- The fluxoids are therefore locked in pinning centers
 - <u>Defects</u> or <u>impurities</u> in the structure: precipitates or grain boundaries
 - Produced during fabrication




Superconductivity Hard superconductors

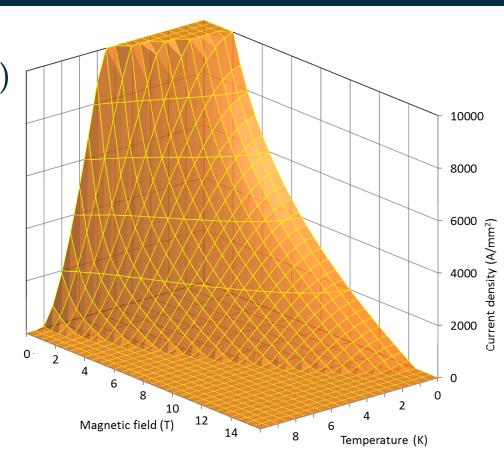
- The pinning centres exert a pinning force F_p
- As long as $F_p \ge J \ge B$
 - No flux motions (flux tubes pinned) \rightarrow no dissipation
- The critical current density of the superconductor *J_c* is the current density at which, for a given *B* and at a given *T* the pinning force is exceeded by the Lorentz force
- So, there is a **mutual link** between maximum **J**, **B**, and **T**


Superconductivity Critical surface


- A type II material is supercond. below the critical surface defined by
 - Critical temperature *Tc*Property of the material
 - Upper critical field B_{c2}
 Property of the material
 - Critical current density *J_c* Hard work by the producer

Superconductivity Materials

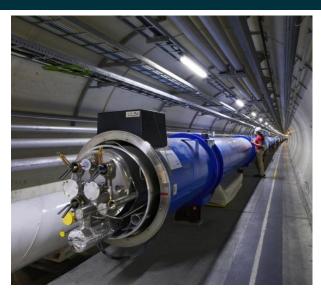
- Nb₃Sn and Nb-Ti, discovered in 1954 and 1961, are the most commonly used type II superconductors (80-90% of all devices).
- Since their critical temperature *T_c* is 9 K (for Nb-Ti) and 18 K (for Nb₃Sn), they are defined as low T superconductors.
 - High temperature superconductors (HTS) have a T_c up to 80-120 K.



Superconductivity Nb-Ti

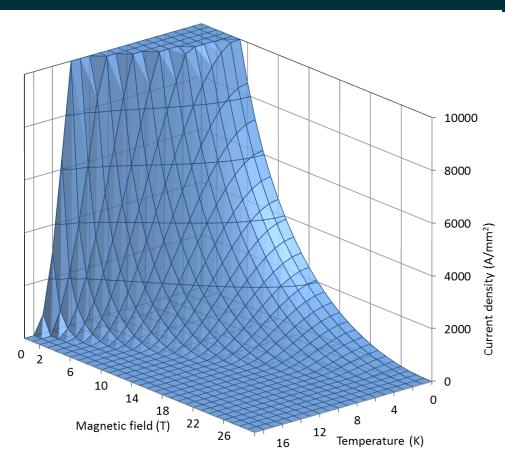
 Nb and Ti combine in a ductile alloy (called β phase)

BERKELEY


- Easy to process by extrusion and drawing techniques.
- *T_c* and *B_{C2}* depend on Ti content: the optimal is 46.5-47 in weight %.
 - T_c is ~9.2 K at 0 T.
 - **B**_{C2} is ~**14.5 T** at 0 K.

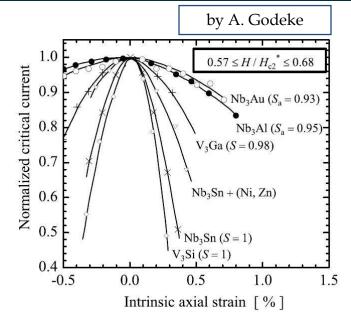
- The critical current J_c depends on microstructure
 - Cold works and heat treatments form α -Ti phase for flux pinning

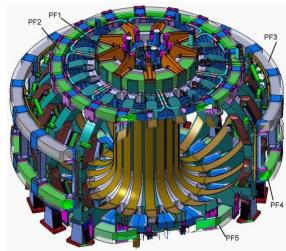
Superconductivity Nb-Ti


- Most widely used superconductor
- Implemented on large scale for the first time in the the Tevatron accelerator, built at Fermilab in the early 80s
- In **High Energy Physics**, used also for all the post-Tevatron accelerators
- Other important applications
 - MRI/NMR magnets
 - **Fusion magnets** (Tore Supra, France).
- The cost is ~ 200 US \$ per kg of wire (about 1 euro per m of strand)

Superconductivity Nb₃Sn

- Nb and Sn can form an intermetallic compound from the A15 family (like Nb₃Al).
- *T_C* and *B_{C2}* depend on Sn content: the optimal is 20-25 in weight%.
 - *T_C* is ~**18 K** at 0 T
 - *B*_{C2} is ∼28 T at 0 K

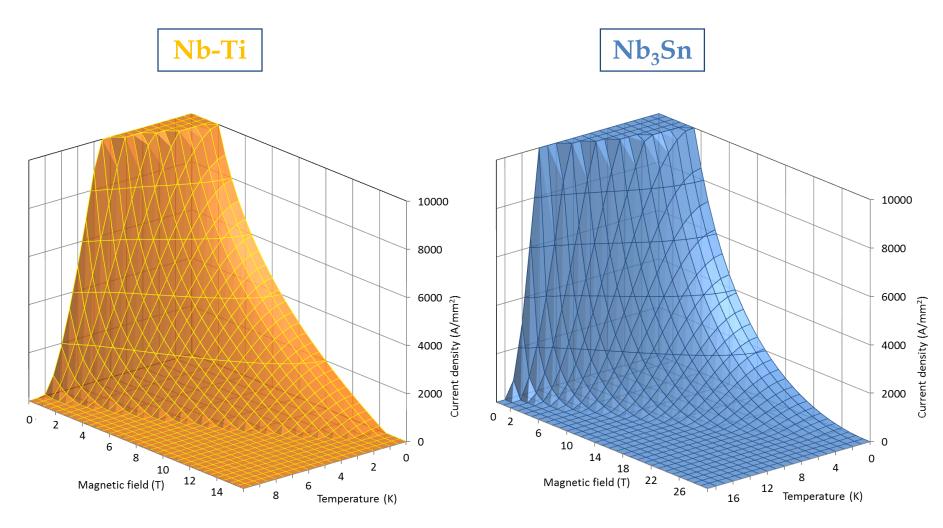

- The critical current J_c depends on the micro (grain) structure
 - High J_c obtained with grains from 30 to 300 nm

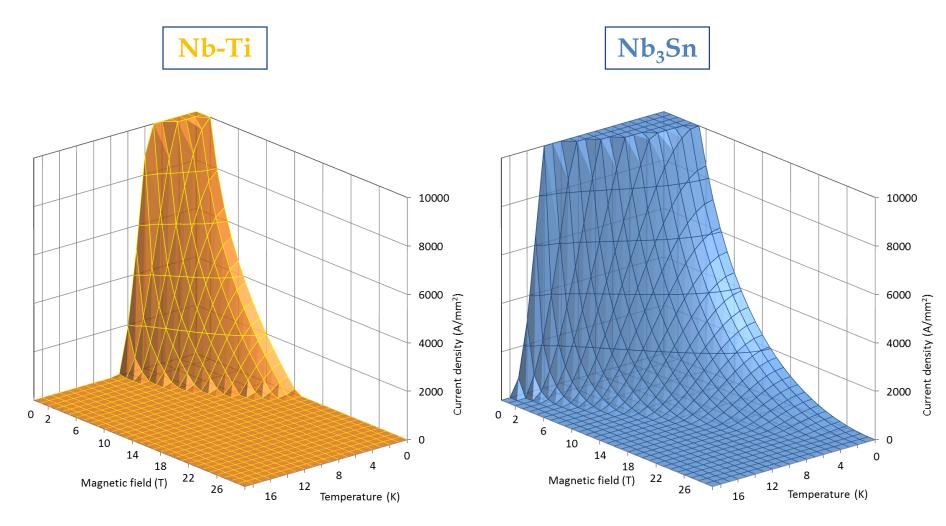

Superconductivity Nb₃Sn

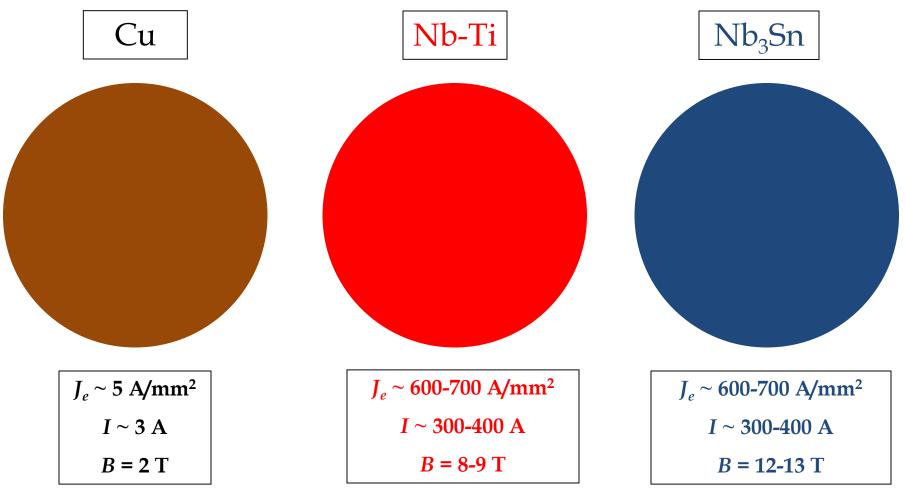
- Nb₃Sn is **brittle**
 - Cannot be extruded as Nb-Ti.
 - Its formation must occur only at the end of the cable and/or coil fabrication process.

• In addition, it is **strain sensitive**

- critical parameters $\leftarrow \rightarrow$ applied strain
- Used in
 - NMR, with field of about 20 T
 - Model coils for ITER
 - High energy physics (R&D)
- The cost is approximately ~1500 US \$ per kg of wire.
 - ~5 euro per m of strand



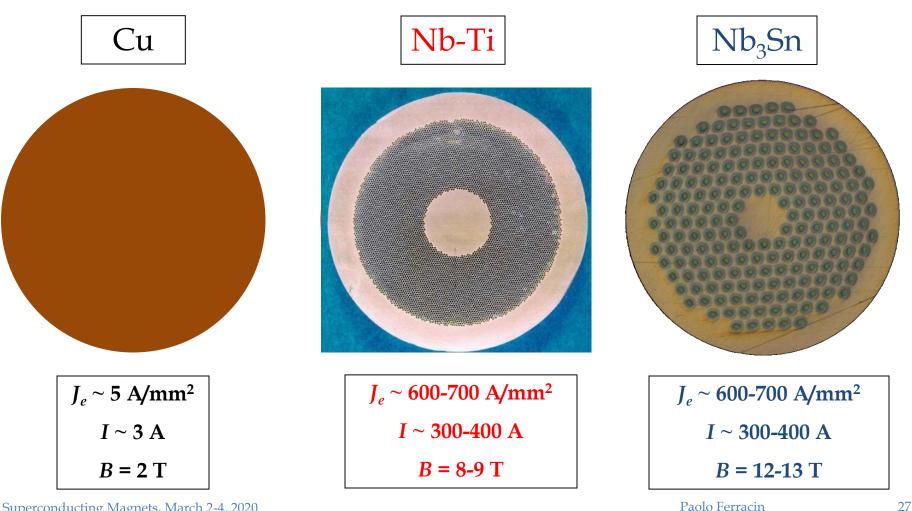

Superconductivity Nb-Ti vs. Nb₃Sn



Superconductivity <u>Nb</u>-Ti vs. Nb₃Sn

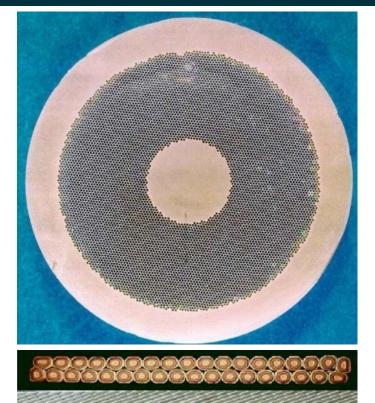
Superconductivity from Cu to Nb₃Sn

• Typical operational conditions (0.85 mm diameter strand)



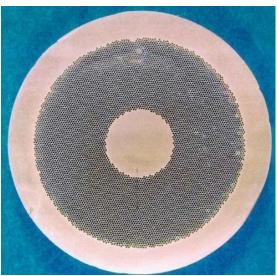
Superconducting Magnets, March 2-4, 2020

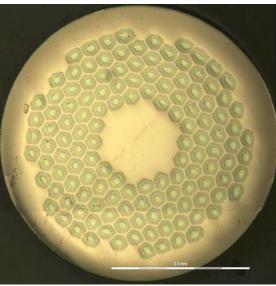
Practical superconductors


• Typical operational conditions (0.85 mm diameter strand)

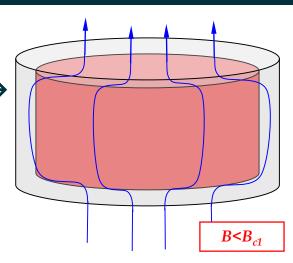
BERKELEY LAB

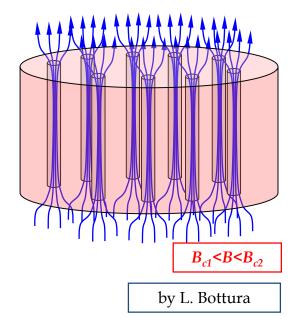
Practical superconductors Introduction


- Superconducting materials are produced in small filaments and surrounded by a stabilizer (typically copper) to form a *multi-filament wire* or *strand*.
- A superconducting cable is composed by several wires: *multi-strand cable*.



- The superconducting materials used in accelerator magnets are
 - subdivided in filaments of small diameters
 - to reduce magnetic instabilities called flux jumps
 - to minimize field distortions due to superconductor magnetization
 - twisted together
 - to reduce interfilament coupling and AC losses
 - embedded in a copper matrix
 - to **protect** the superconductor **after a quench**
 - to reduce magnetic instabilities called flux jumps

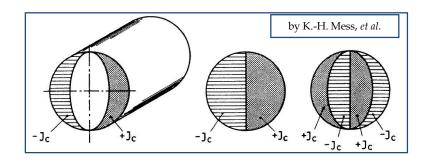


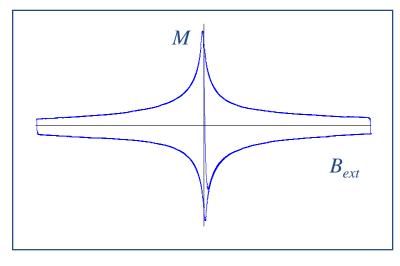


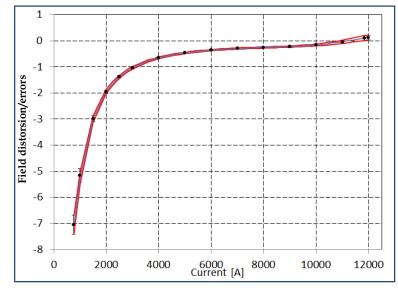
- Fluxoid distribution depends on the applied B and on J_c .
- Thermal disturbance → the local change in J_c → motion or "flux jump" → power dissipation
- Stability criteria for a slab (adiabatic condition)

$$a \le \sqrt{\frac{3\gamma C(\theta_c - \theta_0)}{\mu_0 j_c^2}}$$

- *a* is the half-thickness of the slab
- j_c is the critical current density [A m⁻²]
- γ is the density [kg m⁻³]
- C is the specific heat [J kg⁻¹]
- θ_c is the critical temperature.
- Nb-Ti filament diameters usually < 50 μm

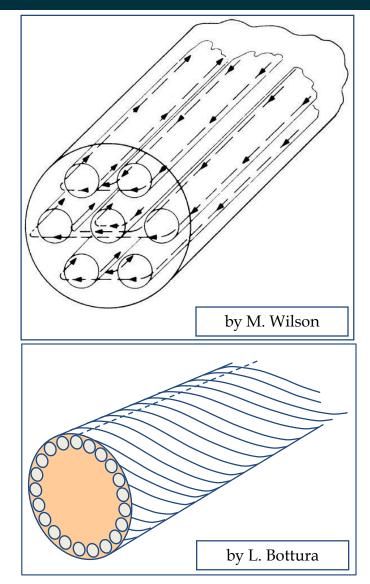




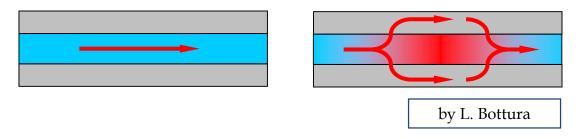

Superconductor magnetization

- When a filament is in a varying *B*_{ext}, its inner part is shielded by currents distribution in the filament periphery
 - They **do not decay** when B_{ex} is held constant → **persistent currents**

- These currents produce field errors and ac losses proportional to $J_c r_f$
 - LHC filament diameter 6-7 μm.
 - HERA filament diameter 14 μm.



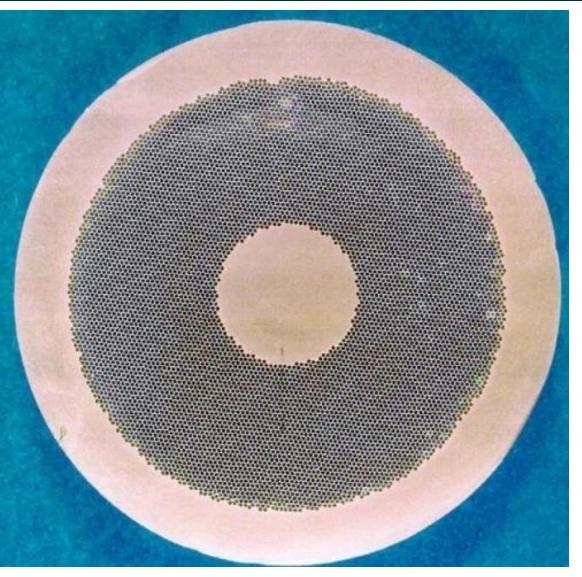
Inter-filament coupling


- When a multi-filamentary wire is subjected to a time varying magnetic field, current loops are generated between filaments.
- If filaments are straight, large loops with large currents → ac losses
- If the strands are magnetically coupled the effective filament size is larger → flux jumps
- To reduce these effects, filaments are **twisted**
 - twist pitch of the order of 20-30 times of the wire diameter.

Quench protection

- Superconductors have a very high normal state resistivity
 - If quenched, could reach very high temperatures in few ms.
- If embedded in a **copper matrix**, when a quench occurs, current redistributes in the low-resisitivity matrix → **lower peak temperature**

- The copper matrix provides **time to act** on the power circuit
- In the case of a small volume of superconductor heated beyond the critical temperature the current can flow in the copper for a short moment, allowing the filament to **cool-down and recover** supercond.
- The matrix also helps stabilizing the conductor against **flux jumps**



• Flux jumps

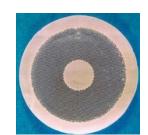
Persistent currents

• AC losses

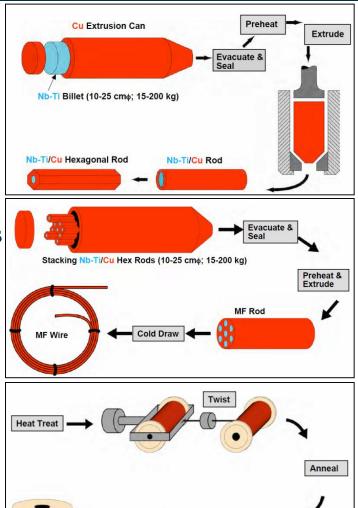
Quench protection

Practical superconductors Fabrication of Nb-Ti multifilament wires


• Nb-Ti **ingots**


BERKELEY

LAB


- 200 mm Ø, 750 mm long
- Monofilament rods are stacked to form a multifilament billet
 - then extruded and drawn down
 - can be re-stacked: double-stacking process

Spoo

Insulate

Practical superconductors Fabrication of Nb-Ti multifilament wires

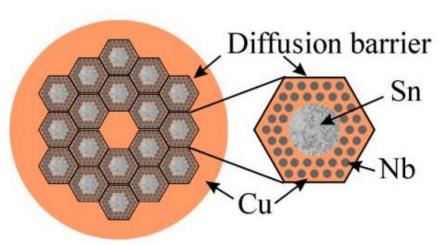
- Copper to superconductor ratio
 - ensure quench protection without compromising the overall critical current of wire.
- Filament diameter

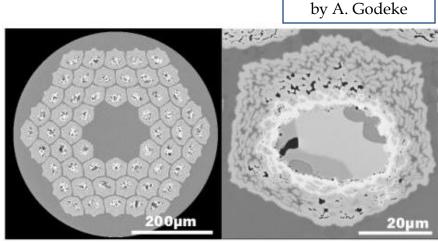
BERKELEY

- Minimize flux jumps and persistent currents
- Minimizing the wire processing cost

• The inter-filament spacing

- small so that the filaments, harder then Cu, support each other during drawing operation
- large enough to prevent filament couplings
- Cu **core** and **sheath** to reduce cable degradation
- Main manufacturing issue: **piece length**
 - It is preferable to wind coils with single-piece wire (to avoid welding)
 - LHC required piece length longer than 1 km

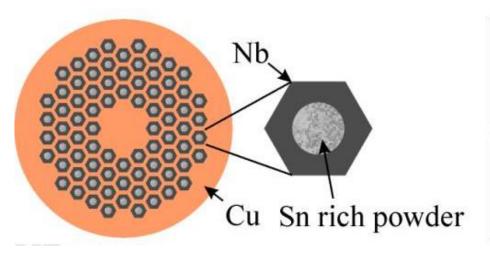


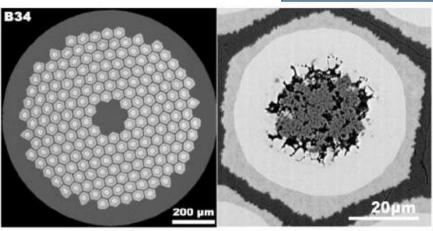


Practical superconductors Fabrication of Nb₃Sn multifilament wires

Internal tin process

- A tin core is surrounded by Nb rods embedded in Cu (Rod Restack Process, RRP) or by layers of Nb and Cu (Modify Jelly Roll, MJR).
- Each sub-element has a diffusion barrier.
- Advantage: no annealing steps and not limited amount of Sn
- Disadvantage: small filament spacing results in large effective filament size (100 µm) and large magnetization effect and instability.
- Non-Cu J_C up to 3000 A/mm² at 4.2 K and 12 T.

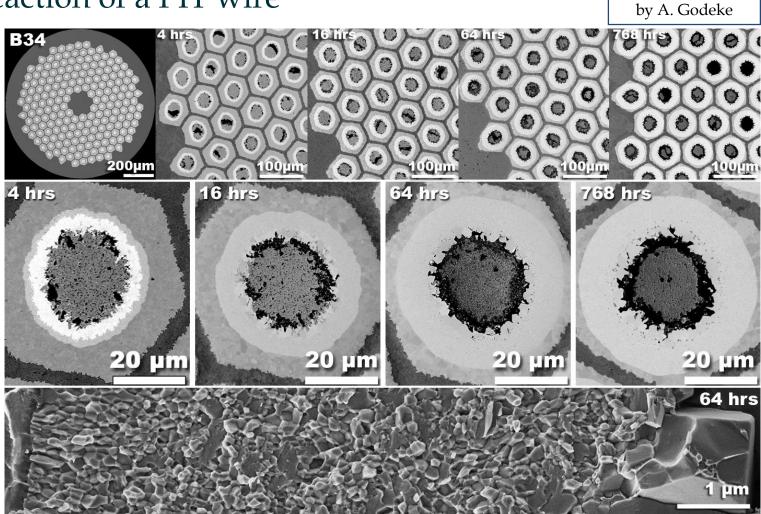

Superconducting Magnets, March 2-4, 2020



Practical superconductors Fabrication of Nb₃Sn multifilament wires

Powder in tube (PIT) process

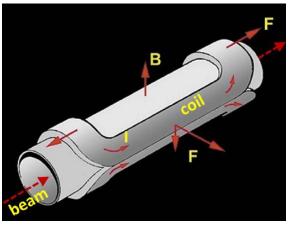
- NbSn₂ powder is inserted in a Nb tube, put into a copper tube.
- The un-reacted external part of the Nb tube is the barrier.
- Advantage: small filament size (30 μm) and short heat treatment (proximity of tin to Nb).
- Disadvantage: fabrication cost.
- Non-Cu J_C up to 2300 A/mm² at 4.2 K and 12 T.


by A. Godeke

Practical superconductors Fabrication of Nb₃Sn multifilament wires

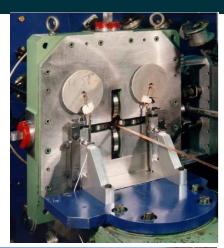
• Reaction of a PIT wire

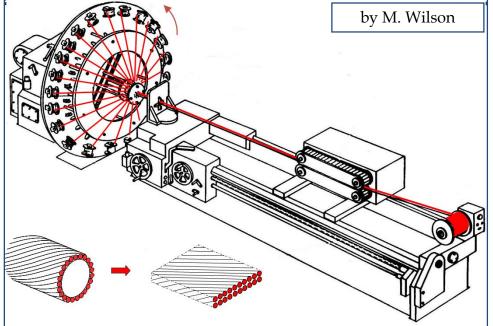
BERKELEY


LAB

Practical superconductors Multi-strand cables motivations

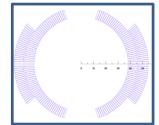
- Most of the superconducting coils for particle accelerators wound from a multi-strand cable (Rutherford cable)
 - Reduction of strand piece length
 - reduction of **number of turns**
 - easy winding
 - smaller coil inductance
 - less V for power supply during ramp-up;
 - after a quench, faster discharge and V
 - **current redistribution** in case of a defect or a quench in one strand
- The strands are **twisted** to
 - Reduce inter-strand coupling currents
 - Losses and field distortions
 - Provide more **mechanical stability**




by M. Wilson

Practical superconductors Multi-strand cables motivations

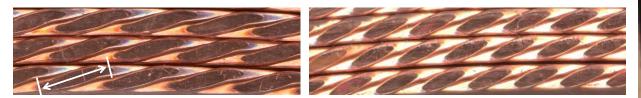
- Rutherford cables fabricated by **cabling machine**
 - Strands wound on spools mounted on a rotating drum
 - Strands twisted around a conical mandrel into rolls (Turk's head)
 - The rolls compact the cable and provide the final shape



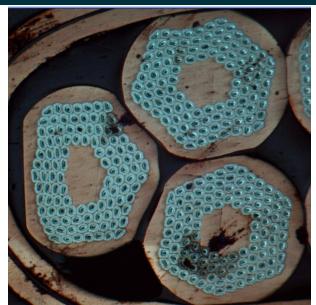
- A Rutherford cable can be rectangular or trapezoidal
 - To stacking cables in an arc-shaped coil around the beam pipe

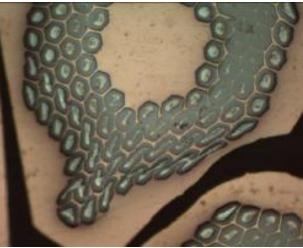
• Cable compaction

- Ratio of the sum of the cross-sectional area of the strands (direction parallel to the cable axis) to the cross-sectional area of the cable
 88% (Tevatron) to 92.3% (HERA).
- Chosen to provide good mechanical stability + high current capability + enough space for helium cooling or epoxy impregnation.


Cables degradation

• Critical current density of a virgin wire before cabling is higher then the one of a wire after cabling



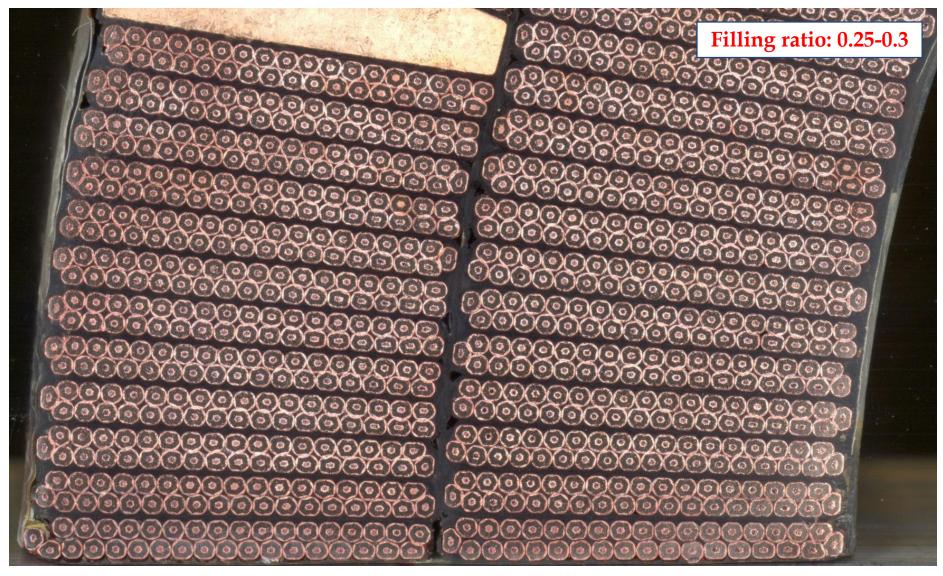

Practical superconductors Multi-strand cables

- Edge deformation may cause
 - reduction of the filament cross-sectional area (Nb-Ti)
 - breakage of reaction barrier with incomplete tin reaction (Nb₃Sn)
- In order to avoid degradation
 - strand cross-section investigated
 - Edge facets are measured
 - General rule: no overlapping of facets

• **Keystone angle** is usually of ~ 1° to 2°

Practical superconductors Cable insulation

- The cable insulation must feature
 - Good **electrical properties** to withstand turn-to-turn *V* after a quench
 - Good **mechanical properties** to withstand high pressure conditions
 - **Porosity** to allow penetration of helium (or epoxy)
 - Radiation hardness
- In Nb-Ti magnets overlapped layers of **polyimide**
- In Nb₃Sn magnets, **fiber-glass** braided or as tape/sleeve.
- Typically the insulation thickness: 100 and 200 μm.



BERKELEY LAB

Practical superconductors Superconducting cables

