Joint Universities Accelerator School JUAS 2020 Archamps, France, 2. – 4. March 2020

Normal-conducting accelerator magnets Lecture 4: Applied numerical design

Thomas Zickler CERN

Lecture 4: Numerical design

Which code shall I use? Introduction to 2D numerical design How to evaluate the results Field analysis Typical application examples

Archamps, 2.

JUAS 2020

Numerical design

Common computer codes: Opera (2D) or Tosca (3D), Poisson, ANSYS, Roxie, Magnus, Magnet, Mermaid, Radia, FEMM, COMSOL, etc...

Technique is iterative

- calculate field generated by a defined geometry
- adjust geometry until desired distribution is achieved

Computing time <u>increases</u> for high accuracy solutions, non-linear problems and time dependent analysis \rightarrow compromise between accuracy and computing time

FEM codes are powerful tools, but be cautious:

- Always check results if they are 'physical reasonable'
- Use FEM for quantifying, not to qualify

3

Numerical design process

Design process in 2D (similar in 3D):

Create the model (pre-processor or modeller)

Define boundary conditions, set material properties

Calculations (solver)

Visualize and asses the results (post-processor)

Optimization by adjusting the geometry (manually or optimization code)

Normal-conducting accelerator magnets © Thomas Zickler, CERN

ERN

Archamps, 2. - 4. March 2020

GUI vs. Script

2D-numerical simulation – Design evaluation – Field analysis – Examples – Summary

5

Model symmetries

Note: one eighth of quadrupole could be used with opposite symmetries defined on horizontal and y = x axis

Boundary conditions

Material properties

Permeability:

- either fixed for linear solution
- or permeability curve for nonlinear solution
- can be anisotropic
- apply correction for steel packing factor
- pre-defined curves available

Conductivity:

- for coil and yoke material
- required for transient eddy current calculations

Mechanical and thermal properties:

 in case of combined structural or thermal analysis

Current density in the coils

Mesh generation

Data processing

Solution	 linear: predefined constant permeability for a single calculation non-linear: permeability table for iterative calculations
Solver types	 static steady state (sine function) transient (ramp, step, arbitrary function,)
Solver settings	 number of iterations, convergence criteria precision to be achieved, etc

Analyzing the results

With the help of the post-processor, field distribution and field quality and be visualized in various forms on the pre-processor model:

- Field lines and colour contours plots of flux, field, and current density
- Graphs showing absolute or relative field distribution
- Homogeneity plots

Field homogeneity in a dipole

4 regions

14/Jun/2009 14:42:25 Page 288

Vector Fields

A simple judgment of the field quality can be done by plotting the field homogeneity

$$\frac{\Delta B}{B_0} = \frac{B_y(x, y)}{B_y(0, 0)} - 1$$

SH 0.6 mm, SL 12.5 mm, SP 105.0 mm, HH 65.0 mm, HR 8.0 mm, GL 84.0 mm, GH 19.6 mm

Field homogeneity in a dipole

Normal-conducting accelerator magnets

Thomas Zickler, CERN

0

Saturation and field quality

Field quality can vary with field strength due to saturation

Also very low fields can disturb the field quality significantly

Gradient homogeneity along circular GFR

15

ERN

2D-numerical simulation – Design evaluation – Field analysis – Examples – Summary

JUas

UNITS

Field strength : A m-1

Conductivity : S m-

Source density: A mm-2

: mm

: Wb m-

: T

W:

: N

: J

Length

Potential

Power

Force

Energy

Flux density

int Universities Accelerator School

Mass : kg **PROBLEM DATA** C:\OPERA\work1\CLIC DB_Quad.st Quadratic elements XY symmetry Vector potential Magnetic fields Static solution Case 1 of 10 Scale factor = 0.096 27356 elements 55047 nodes 39 regions 18/May/2007 15:51:04 Page 357 Vector Fields

ftware for electro

5.0E-04

Field quality varies with field strength due to saturation

0.0

-5.0E-04

ERI

Picking up from lecture 1

$$B_{y}(z) + iB_{x}(z) = \sum_{n=1}^{\infty} (B_n + iA_n) \left(\frac{z}{R_{ref}}\right)^{n-1}$$

and introducing dimensionless normalized multipole coefficients

$$b_n = \frac{B_n}{B_N} 10^4$$
 and $a_n = \frac{A_n}{B_N} 10^4$

with $B_{\rm N}$ being the fundamental field of a magnet: $B_{\rm N \ (dipole)} = B_1$; $B_{\rm N \ (quad)} = B_2$; ...

we can describe each magnet by its ideal fundamental field and higher order harmonic distortions: $\sqrt{n^{n-1}}$

$$B_{y}(z) + iB_{x}(z) = \frac{B_{N}}{10^{4}} \sum_{n=1}^{\infty} (b_{n} + ia_{n}) \left(\frac{z}{R_{ref}}\right)$$

Fundamental field Harmonic distortions

•

The field quality of a magnet can be also described by:

- Homogeneity plot:
 - difference between the actual field B and the ideal field $B_{\rm id}$, normalized by the ideal field $B_{\rm id}$

$$\frac{\Delta B}{B} = \frac{B(x, y) - B_{id}(x, y)}{B_{id}(x, y)}$$

- can be expressed by multipole coefficients: for a dipole with $B_{y,id}(x) = B_1$

$$B_{y}(x) = B_{1} + \frac{B_{1}}{10^{4}} \left[b_{2} \left(\frac{x}{R_{ref}} \right) + b_{3} \left(\frac{x}{R_{ref}} \right)^{2} + b_{4} \left(\frac{x}{R_{ref}} \right)^{3} + \cdots \right]$$
$$\frac{\Delta B}{B}(x) = \frac{1}{10^{4}} \left[b_{2} \left(\frac{x}{R_{ref}} \right) + b_{3} \left(\frac{x}{R_{ref}} \right)^{2} + b_{4} \left(\frac{x}{R_{ref}} \right)^{3} + \cdots \right]$$

Harmonic distortion factor $F_{\rm d}$:

$$F_d(R_{\text{Re}f}) = \sum_{n=1; n \neq N}^K \sqrt{b_n^2(R_{ref}) + a_n^2(R_{\text{Re}f})}$$

Note: For good field quality, $F_{\rm d}$ should be a few units in 10⁻⁴

19

•

Field analysis

Multipole errors can be divided into two families:

,Allowed' multipoles are design intrinsic and result from the finite size of the poles

$$n = N(2m+1)$$

- *n*: order of multipole component
- N: order of the fundamental field
- *m*: integer number (m \geq 1)

<u>fully symmetric quadrupole</u> allowed: b_6 , b_{10} , b_{14} , b_{18} , etc. non-allowed: all others

,Non-allowed' multipoles result from a violation of symmetry and indicate a fabrication or assembly error

<u>fully symmetric sextupole</u> allowed: b₉, b₁₅, b₂₁, etc. non-allowed: all others

Asymmetries

Asymmetries generating 'non-allowed' harmonics

 $n = 2, 4, 6, \dots$

 $n = 3, 6, 9, \dots$

Comprehensive studies about the influence of manufacturing errors on the field quality have been done by K. Halbach.

These errors can seriously affect machine behaviour and must be controlled!

Asymmetry in a C-magnet

- C-magnet: one-fold symmetry
- Since $NI = \oint \vec{H} \cdot \vec{dl} = const$. the contribution to the integral in the iron has different path lengths
- Finite (low) permeability will create lower *B* on the outside of the gap than on the inside
- Generates 'forbidden' harmonics with n = 2, 4, 6, ... changing with saturation
- Quadrupole term resulting in a gradient around 0.1% across the pole

Pole optimization

,Shimming' (often done by 'try-and-error') can improve the field homogeneity

- 1. Add material on the pole edges: field will rise and then fall
- 2. Remove some material: curve will flatten
- 3. Round off corners: takes away saturation peak on edges
- 4. Pole tapering: reduces pole root saturation -> Rogowsky profile

The 'Rogowsky' profile provides the maximum rate of increase in gap with a monotonic decrease in flux density at the surface, i.e. no saturation at the pole edges!

For an optimized pole:

 $x_{optimized} = 2\frac{a}{h} = -0.14 \ln \frac{\Delta B}{B_0} - 0.25$

- *x*: pole overhang normalized to the gap
- *a*: pole overhang: excess pole beyond the edge of the good field region to reach the required field uniformity
- h: magnet gap

Becomes necessary to study:

- the longitudinal field distribution
- end effects in the yoke
- end effects from coils
- magnets where the aperture is large compared to the length
- spacial field distribution
- particle motion in electro-magnetic fields

3D-field homogeneity

Interference study

JUAS Joint Universities Accelerator Schoo

Vector Fields

Vector Fields 2.5

CERN

2D-numerical simulation – Design evaluation – Field analysis – Examples – Summary

Case 1: A material problem

Welding seam on stainless-steel vacuum chamber:

- GFR radius: 30 mm
- Chamber radius: 35 mm
- Welding seam diameter: 1 mm
- Rel. permeability of 316 LN: < 1.001

A small distortion can significantly influence the field quality in the GFR!

26

Case 2: An interference problem

Significant attenuation of the corrector field due to the close presence of two quadrupole yokes

Archamps, 2. - 4. March 2020

JUAS 2020

CERN

2D-numerical simulation – Design evaluation – Field analysis – Examples – Summary

- Mechanical deformation due to magnetic pressure can influence the field homogeneity
- Multi-physics models can help to quantify the effect

Field homogeneity calculated for the center line of the magnet with ANSYS magnetic, ANSYS structural + magnetic, and Opera ST 2D

Limitations of numerial calculation

JUAS Joint Universities Accelerator School

Advantages

- predict behaviour without having the physical object
- for relatively simple cases they are fast and inexpensive

Limitations

- multi-physics model: including all couplings (thermal, mechanical) and phenomena (magnetostriction, magneto-resistivity ...) that may be relevant is very complex and expensive
- off-nominal geometry: random assembly errors can dominate field distribution and quality; often, a large number of degrees-of-freedom and the resulting combinatorial explosion makes Monte Carlo prediction costly
- material properties uncertainty : inhomogeneous properties cannot practically be measured throughout volume; even homogeneous materials can be measured only within 2-5% typical accuracy
- numerical errors: e.g. singularities in re-entrant corners, boundary location of open regions may spoil results; special techniques (special corner elements, BEM) require special skills and time
- high cost of detailed 3D models ($\propto \Delta x^{2^{\sim 3}}$); transient simulations increase computing time significantly

Computer simulation targeting <10⁻⁴ accuracy are difficult and expensive

Summary

- A large varity of FE-codes with different features exist the right choice depends of the complexity of the problem
- The FE-models shall be as simple as possible and adapted to the problem to reduce computing time
- Numeric computations should be used to quantify, <u>not</u> to qualify
- Benchmarking the results with measurements is a good practice
- Computer simulations have a lot of advantages, but also their limitations