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The difficulty with monopoles

@ Monopoles are strongly coupled: magnetic coupling

2mn
qm =

, NEZ (Dirac 1931)
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@ Perturbative cross-sections e.g. Drell-Yan are not valid

@ In order to do reliable calculations need a nonperturbative production
mechanism
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Schwinger pair production

@ EM field unstable to decay into charged particle-antiparticle pairs
(Sauter 1931, Schwinger 1951)

@ Critical field strength E ~ " 10 Vm~!. Currently unobserved

e
but lasers are getting close!

@ If monopoles exist, will be produced in a strong enough magnetic

. 2
field; B ~ Im
qm
@ Lack of observation of monopoles — lower bound on monopole
masses
- [ J—— "
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Calculating Schwinger production rate

@ Investigate Schwinger production rate at high temperature via a
sphaleron

@ Static, unstable solution to the equations of motion
@ Represents the highest point along a path (in field configuration
space) between the two vacua

o If fields can be excited to the sphaleron configuration, pair production
can occur: rate o< exp(—Egpn)

Sphaleros — Ancient Greek: “likely to make one stumble”
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Sphaleron for production of point monopoles

@ Consider a monopole-antimonopole pair in a constant, homogenous
magnetic field

@ Unstable equilibrium where the attractive force between the poles
balances the external force

o0
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Sphaleron for production of point monopoles

la3
fsph = %, Esph:2M—2 qu
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The need to move beyond pointlike monopoles

@ Pointlike approximation valid if ry,, > ny

@ Strongest magnetic fields in the universe occur in heavy-ion collisions

@ Our previous work shows that pointlike approximation breaks down if
we consider fields relevant to heavy ions (Gould, Ho & Rajantie 2019).

@ Must take internal structure into account
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SU(2) Georgi-Glashow theory

e SU(2) Gauge theory with adjoint scalar.

e Spontaneous symmetry breaking gives scalar mass ms = 2y/Av and
charged vector boson masses m, = v/2gv.

@ Remaining vector boson is a massless photon; magnetic field defined
by projection onto this.

1
£ = =5 Tx(Fu F™) + Tr(D,®D"®) — V(9),
D, := 0,9° + ige?* AL,

F2, = 0u4AL — 0,A% + ige®™ AL A,
V() ==\ (Tr(92) — v2)%.
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SU(2) Georgi-Glashow theory

@ SU(2) Gauge theory with adjoint scalar.

@ Spontaneous symmetry breaking gives scalar mass mg = 2v/Av and
charged vector boson masses m, = v/2gv.

@ Remaining vector boson is a massless photon; magnetic field defined
by projection onto this.

@ Admits 't Hooft-Polyakov
monopole solutions ('t Hooft
1981, Polyakov 1981) with
‘hedgehog’ scalar field
configuration

qm:4—7r’ M:47vaf<rns>; f(Z)N].
g g my
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Important aside — Ambjgrn-Olesen Instability

o In sufficiently strong magnetic fields, if a theory contains charged
vector bosons, the vacuum is no longer stable (Ambjgrn & Olesen
1988).

@ Critical field strength
m2
Bcrit =
@ Ambjgrn and Olesen considered Georgi-Glashow theory without
backreaction from scalar field and found a ‘vortex lattice’ solution.

30
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Overview of our calculations

@ Numerical calculations in discretised Georgi-Glashow model

Searching for saddle points of energy density

e Modified gradient descent algorithm (Chigusa et al., 2019). Lifts
negative mode so saddle point can be found.

@ Periodic boundary conditions quantise flux — allows us to impose
external field.

@ Using appropriate initial conditions we have been able to find the
analogue of the pointlike sphaleron with solitonic monopoles.
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Results: weak magnetic fields

Energy Density Higgs/Magnetic Field

@ Clear separation of magnetic charges

@ Sphaleron energy well-approximated by pointlike energy
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Results: intermediate magnetic fields

Energy Density Higgs/Magnetic Field
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e Magnetic charges “annihilate”
@ Dipole moment still present due to ring of electric current density

@ Sphaleron energy is lower than pointlike case
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Results: strong magnetic fields

Energy Density Higgs/Magnetic Field
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@ Sphaleron energy approaches zero

o Field configuration approaches vacuum
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Sphaleron energy as a function of external field strength

0.2

@ Sphaleron energy vanishes above critical point coinciding with the
Ambjgrn-Olesen critical field

2

m

v

Bcrit = -
4

@ No energy barrier — monopole production via classical process!
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Implications

@ Below critical field, solitonic sphaleron energy is lower than pointlike:
mass bounds stronger for solitonic monopoles.

@ Lower bound on critical field strength for monopole production using
bounds on BSM charged boson masses: Bz > 10%4T.

@ O(107) times stronger than LHC fields, but possibility of generation
in the early universe.

@ Supercritical fields cannot have been present post-inflation, or
monopoles would still be around today.
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Watch monopoles forming!

Magnetic field
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Conclusions and further work

@ Numerically investigated the energy barrier to production of solitonic

monopoles
@ We have shown this barrier vanishes at Ambjgrn-Olesen critical field
strength
mg

Bcrit -

@ Above this field strength, if they exist, monopoles are produced
classically even at zero temperature
Unanswered questions:

o Effect of spacetime dependence on solitonic monopole production (cf.
Gould, Ho & Rajantie 2019)

@ Production of monopoles with mass not set by vector boson mass
scale, e.g. Cho-Maison monopole
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