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Outline

Scalar-tensor theories and attractors

Pole inflation

Within the poles and beyond

Initial conditions/vacuum states in attractor models
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The theory of inflation

Excellent generic explanation for the origin of anisotropies in the CMB
from primordial perturbations

“Generic” is a double-edged sword: finding well-motivated models is
tough...
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The theory framework of inflation

No definitive driving mechanism for inflation exists; many excluded

Phenomenology of inflation reflected in CMB spectrum of anisotropies

Observations impose increasingly tighter constraints on inflation
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The theory framework of inflation

No definitive driving mechanism for inflation exists; many now excluded

Phenomenology of inflation reflected in CMB spectrum of anisotropies

Observations impose increasingly tighter constraints on inflation
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α-attractors

Originally motivated from spontaneously broken conformally invariant
models [Kallosh, Linde, Roest (2013)]

Consider theory with SO(1, 1) symmetry

L =
√
−g
[
∂µχ∂

µχ

2
− ∂µψ∂

µψ

2
+
χ2 − ψ2

12
R− 1

36
F
(
ψ

χ

)
(ψ2 − χ2)2

]

Use “rapidity gauge” χ2 − ψ2 = 6α, and parametrise remaining degree of
freedom as tanh( φ√

6α
) = ψ

χ
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α-attractors

With some algebra, may be embedded in Poincaré disk (arising e.g. in
N = 1 SUGRA)

√
−gL = −R

2
+

1
2

(∂µr)(∂µr) + r2(∂µθ)(∂µθ)(
1− r2

6α

)2 − V(r)

Regardless of origin, phenomenological effects of such theories are
captured by the following Lagrangian

√
−gL = −R

2
+

1
2

(∂µφ)(∂µφ)(
1− φ2

6α

)2 − V(φ)
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α-attractors beyond the poles

Kinetic term has poles at ϕ = ±
√

6α

Significant majority of studies focus on hyperbolic plane, with |φ| <
√

6α
(r =∞)

What about φ2 > 6α?
(beyond the poles)
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Why go beyond the poles?

Within Poincaré disc, must necessarily have φ2 < 6α, so is there a point?

Wide class of inflationary models featuring poles in the kinetic term; not
all feature fundamentally hyperbolic geometry

[Gallante et al. 2014]

What does “going beyond the poles” mean in a geometrical context?
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The scalar-tensor theory space

Lagrangians linked via frame transformation L ∼ L̃ are physically equivalent

√
−gLJordan = − f (φ)

2
R +

k(φ)

2
(∂φ)2 − V(φ)

√
−g L̃non-canonical Einstein = −1

2
R +

1
2

[
k(φ)

f (φ)
+

3
2

f ′(φ)2

f (φ)2

]
(∂ϕ)2 − V(φ)

f (φ)2

√
−g L̃canonical Einstein = −1

2
R +

1
2

(∂σ)2 − U(σ) entire phenomenology
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Charts and atlases

Why not switch to the canonical Einstein frame and call it a day?

Charts preserve different properties: direction, shape, area, distance,
local flatness, bijectivity

Simultaneous preservation may require multiple charts – an atlas

Gnomonic
(nortern hemisphere)

Gnomonic
(southern hemisphere)
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Charts and atlases

Can’t have pie (single chart) and eat it too (canonical chart): cannot
canonicalise without specifying interval

σ(φ) =

∫ φ

φ0

dφ′∣∣∣1− φ2

6α

∣∣∣

Can always “untangle” a string into a single straight line...

...unless the string shoots off to infinity at a single point: then, we need
multiple strings

Any theory with poles is a union of multiple canonical theories.
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Master models

V(ϕ)

ϵ

ϕ
1

Can “glue” multiple canonical models together generating completely
phenomenologies depending on side of pole

For pole of order 2 at φ = 0, gluing potentials U−(φ) and U+(φ)

V(φ) =

U+

(
ln 1

φ

)
(φ > 0)

U−
(

ln
[
− 1
φ

])
(φ < 0)
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Pole inflation

Close to the pole, observational features are strongly dependent on
kinetic term features (order and residue) [Broy 2015 ,Terada 2016]

√
−gL = −R

2
+
αp

2
(∂µφ)(∂µφ)

|φ− φp|p
− V0(1 + vpφ),

Observables to lowest order are found (for p > 1)

nR = 1− p
(p− 1)N

, r =
8v2

p

αp

[
αp

(p− 1)vpN

]p/(p−1)

Observables mostly insensitive to details of well-behaved potential, but
side of pole might lead to different phenomenology
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Back to α-attractors

Two poles of order p = 2: Lagrangian is

√
−gL = −1

2
R +

1
2

(∂µφ)(∂µφ)(
1− φ2

6α

)2 − V(φ)

Usually, solve σ′(φ) = 1− φ2/6α to find

σ(φ) =
√

6α tanh−1
(

φ√
6α

)

In general, canonicalised field depends on arbitrary point φ0

σ =

√
3α
2

(
ln

∣∣∣∣φ+
√

6α
φ−
√

6α

∣∣∣∣− ln

∣∣∣∣φ0 +
√

6α
φ0 −

√
6α

∣∣∣∣)
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Domains of α-attractors

V(ϕ)

k(ϕ)

I II III1

2
3

4
5

6

- 6α 6α
ϕ

Arbitrary non-canonical potential V(φ) and associated canonical
potentials UWTP(σ) (domain II) and UBTP(σ) (I and III)
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Quintessential inflation

-4 -2 0 2 4
σ

0.2

0.4

0.6

0.8

1.0

U(σ)/(V0e
κ 6α )

Quintessential inflation
occurs with V = V0e−κφ

within the poles

Observables for α� 1:

nR ≈ 1− 2
N
−
√

3α
N2 −

3α(N − 1)

2N3

r ≈ 12α
N2 −

12
√

3α3/2

N3

Inflation ends at ϕend = − 1
2

√
3α
2 ln

(
2κ2); kination begins as ε� 1

Typical distance travelled is O(10), introducing tension with swampland
distance conjecture (traversing large field distances implies infinite array
of particles becoming exponentially light, invalidating EFT)

∆σ =
1
O(1)

1
H
≈ 10 (Planck 2018)
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The vanishing inflaton scenario

-3 -2 -1 0 1 2 3 4
σ

0.5

1.0

1.5

2.0
U(σ)/(V0e

±κ 6α )

Beyond the poles φ < 0
leads to eternal
acceleration

Beyond the poles φ > 0
leads to inflation

nR ≈ 1− 2
N

+

√
3α

N2 −
3α(N + 1)

2N3

r ≈ 12α
N2 −

12
√

3α3/2

N3

Potential allows φ to reach 0 in finite time; corresponds to φ =∞

Distance travelled in field space is O(1); fares better in SDC

Radiative corrections not expected to prevent vanishing (σ � MP)
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The “edge” of the field space?

Inflation on projective ray

Theory is incomplete: does not tell us what happens at the edge of the
manifold

Must impose boundary condition at “point at infinity”; choices:

if no further evolution, inflaton completely decouples (“vanishes”)

analytically continue potential

compactify field
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Reheating and quintessence beyond the poles

Beyond the poles, inflation ends at ϕend ≈ 1
2

√
3α
2 ln(2κ); gravitational

reheating is generically interrupted:

∆σ ≈

∣∣∣∣∣
√

3
2

ln

(
qgend
∗

1440π2

Uout

3

)∣∣∣∣∣� ϕend

Field “freezes” thanks to radiation
domination after traversing
∆σ = 3

2

(
1− 3

2 ln Ωend
γ

)

Possible quintessence without
introducing potential offset (red
area)

0 2 4 6 8 10

0

2

4

6

8

10

α

κ
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Initial conditions

In multifield theories, some singularities are “benign”; some delimit
different models, acting as model walls

Initial conditions/vacuum: which domain to pick?

Arguments for favourable field values (e.g. starting on plateau) apply only to
canonical models

Choosing a domain is equivalent selecting a canonical (pole-free) model

Therefore, need entirely new arguments for selecting a domain to initiate
evolution

Sotirios Karamitsos University of Manchester

Field-space geometry of cosmological attractors



Conclusions

Single-field models are a collection of canonical models with different
predictions

Require analytic extension to determine the late-time fate of the inflaton
beyond the poles depending on potential; not restricted to α-attractors

Example: quintessense model within poles transforms into “vanishing”
(incomplete) model outside the poles

Must choose a particular “fundamental” representation of theory in order
to impose initial conditions/vacuum states
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