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Factorisation

=

σ = PDF⋆PDF⋆σ̂

PDFs collect (universal) small-angle dynamics



Goal: increase the accuracy in the computations of e+e− cross sections

Framework: a factorisation formula

◮ aka structure-function approach: best to not use this terminology

By means of: more accurate PDFs

◮ PDFs aka structure functions: best to not use this terminology

◮ improve the LL+LO accuracy, (α log(E/m))k, by including NLL+NLO terms,

(α log(E/m))
k

+ α (α log(E/m))
k−1

, in the PDFs

◮ the corresponding increased accuracy of short-distance cross sections is widely

available, and is understood here



Current z-space LO+LL PDFs (α log(E/m))k:

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes



Current z-space LO+LL PDFs (α log(E/m))k:

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes

Sought z-space NLO+NLL PDFs (α log(E/m))k + α (α log(E/m))k−1:

◮ 0 ≤ k ≤ ∞ for z ≃ 1

◮ 0 ≤ k ≤ {3, 2} for z < 1 ⇐⇒ O(α3)

◮ matching between these two regimes

◮ for e+, e−, and γ

◮ both numerical and analytical

Main tool: the solution of PDFs evolution equations



Consider the production of a system X at an e+e− collider:

e+(Pe+) + e−(Pe−) −→ X

Its cross section is written as follows:

dΣe+e−(Pe+ , Pe−) =
∑

kl

∫

dy+dy− Bkl(y+, y−) dσkl(y+Pe+ , y−Pe−)

To be definite, let’s stipulate that:

k ∈ {e+, γ} , l ∈ {e−, γ}

which is immediate to generalise, if need be. Then:

� dΣe+e− : the collider-level cross section

� dσkl: the particle-level cross section

� Bkl(y+, y−): describes beam dynamics

� e+ , e− on the lhs: the beams

� e+ , e− , γ on the rhs: the particles



I’ll only talk about particles and particle-level cross sections

The parametrisation of beam dynamics is supposed to be given

I sum over polarisations

Write any particle cross section by means of a factorisation
formula, quite similar to its QCD counterpart −→



dσ̄kl(pk, pl) =
∑

ij=e+,e−,γ

∫

dz+dz− Γi/k(z+, µ
2,m2) Γj/l(z−, µ

2,m2)

× dσ̂ij(z+pk, z−pl, µ
2) + ∆

with:

dσ̄kl = dσkl +O

((

m2

s

)p)

, s = (pk + pl)
2 , p ≥ 1

� dσ̄kl: the particle-level cross section, with power-suppressed terms discarded

� dσ̂ij : the subtracted parton-level cross section. Independent of m

� e+ , e− , γ on the lhs: the particles

� e+ , e− , γ on the rhs: the partons

� Γi/k: the PDF of parton i inside particle k. It can be computed perturbatively

� µ: the hard scale, m2 ≪ µ2 ∼ s



Differences wrt QCD:

� PDFs and power-suppressed terms can be computed perturbatively

� An object (e.g. e−) may play the role of both particle and parton

As in QCD, a particle is a physical object, a parton is not



dσ̄kl(pk, pl) =
∑

ij=e+,e−,γ

∫

dz+dz− Γi/k(z+, µ
2,m2) Γj/l(z−, µ

2,m2)

× dσ̂ij(z+pk, z−pl, µ
2) + ∆

This formula can be used in several ways:

A: to solve for the PDFs, given the particle and parton cross sections

B: for the computation of the particle cross section, given the parton

cross section and the PDFs

C: for cross checks, given both cross sections and the PDFs



dσ̄kl(pk, pl) =
∑

ij=e+,e−,γ

∫

dz+dz− Γi/k(z+, µ
2,m2) Γj/l(z−, µ

2,m2)

× dσ̂ij(z+pk, z−pl, µ
2) + ∆

This formula can be used in several ways:

A: to solve for the PDFs, given the particle and parton cross sections

◮ Strategy used in 1909.03886 for the computation of NLO-accurate initial

conditions (strict perturbative expansion)

B: for the computation of the particle cross section, given the parton
cross section and the PDFs

◮ Being done, using the NLL-evolved PDFs obtained in 1911.12040

C: for cross checks, given both cross sections and the PDFs

◮ No phenomenological interest



Henceforth, I consider the dominant production mechanism at an e+e−

collider, namely that associated with partons inside an electron⋆

Simplified notation:

Γi(z, µ
2) ≡ Γi/e−(z, µ2)

⋆The case of the positron is identical, at least in QED, and will be understood



NLO initial conditions (1909.03886)

Conventions for the perturbative coefficients:

Γi = Γ
[0]
i +

α

2π
Γ

[1]
i +O(α2)

Results:

Γ
[0]
i (z, µ2

0) = δie−δ(1− z)

Γ
[1]
e−

(z, µ2
0) =

[

1 + z2

1− z

(

log
µ2

0

m2
− 2 log(1− z)− 1

)]

+

+Kee(z)

Γ[1]
γ (z, µ2

0) =
1 + (1− z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

+Kγe(z)

Γ
[1]
e+ (z, µ2

0) = 0

Note:

◮ Meaningful only if µ0 ∼ m

◮ In MS, Kij(z) = 0; in general, these functions define an IR scheme



NLL evolution (1911.12040)

General idea: solve the evolution equations starting from the initial
conditions computed previously

∂Γi(z, µ
2)

∂ logµ2
=
α(µ)

2π
[Pij ⊗ Γj ] (z, µ

2) ⇐⇒
∂Γ(z, µ2)

∂ logµ2
=
α(µ)

2π

[

P⊗ Γ
]

(z, µ2) ,

Done conveniently in terms of non-singlet, singlet, and photon

Two ways:

� Mellin space: suited to both numerical solution and all-order, large-z

analytical solution (called asymptotic solution)

� Directly in z space in an integrated form: suited to fixed-order, all-z

analytical solution (called recursive solution)



A technicality: owing to the running of α, it is best to evolve in t rather
than in µ, with: (∼ Furmanski, Petronzio)

t =
1

2πb0
log

α(µ)

α(µ0)

=
α(µ)

2π
L−

α2(µ)

4π

(

b0L
2 −

2b1
b0
L

)

+O(α3) , L = log
µ2

µ2
0

.

Note:

◮ t ←→ µ; notation-wise, the dependence on t is equivalent to the dependence on µ

◮ t = 0 ⇐⇒ µ = µ0

◮ L is my “large log”

◮ Tricky: fixed-α expressions are obtained with t = αL/(2π) (and not t = 0)



Mellin space

Introduce the evolution operator EN

ΓN (µ2) = EN (t) Γ0,N , EN (0) = I , Γ0,N ≡ ΓN (µ2
0)

The PDFs evolution equations are then re-expressed by means of an
evolution equation for the evolution operator:

∂EN (t)

∂t
=

b0α
2(µ)

β(α(µ))

∞
∑

k=0

(

α(µ)

2π

)k

P
[k]
N EN (t)

=

[

P
[0]
N +

α(µ)

2π

(

P
[1]
N −

2πb1
b0

P
[0]
N

)]

EN (t) +O(α2)

◮ Can be solved numerically

◮ Can be solved analytically in a closed form under simplifying assumptions.

Chiefly: large-z is equivalent to large-N

◮ I’ll show results for the non-singlet ≡ singlet. The photon is feasible as well

(see 1911.12040), but technically very involved



Show first that this formalism allows one to quickly re-obtain the known
LL result:

Γ
[0]
0,N = 1 =⇒ ΓLL(z, µ2) = M−1

[

exp
(

logEN

)]

From the explicit expression of the AP ff kernel:

logEN =
α

2π
P

[0]
N L

N→∞

−→ −η0
(

log N̄ − λ0

)

η0 =
α

π
L , N̄ = N eγE , λ0 =

3

4

The computation of the inverse Mellin transform is trivial:

ΓLL(z, µ2) =
e−γEη0eλ0η0

Γ(1 + η0)
η0(1− z)

−1+η0

The usual form, bar for the “−1” of soft origin (we’re resumming collinear logs here)



The NLL case is only slightly more complicated; we use:

ΓNLL(z, µ2) = M−1
[

exp
(

logEN

)]

⊗ ΓNLO(z, µ2
0)

which is convenient because the form of the evolution operator is
functionally the same as at the LL:

logEN
N→∞

−→ −ξ1 log N̄ + ξ̂1

with:

ξ1 = 2t−
α(µ)

4π2b0

(

1− e−2πb0t
)

(

20

9
nF +

4πb1
b0

)

= 2t+O(αt) = η0 + . . .

ξ̂1 =
3

2
t+

α(µ)

4π2b0

(

1− e−2πb0t
)

(

λ1 −
3πb1
b0

)

=
3

2
t+O(αt) = λ0η0 + . . .

λ1 =
3

8
−
π2

2
+ 6ζ3 −

nF

18
(3 + 4π2)



Thence:

ΓNLL(z, µ2) =
e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1− z)

−1+ξ1

×

{

1 +
α(µ0)

π

[

(

log
µ2

0

m2
− 1

)(

A(ξ1) +
3

4

)

− 2B(ξ1) +
7

4

+

(

log
µ2

0

m2
− 1− 2A(ξ1)

)

log(1− z)− log2(1− z)

]}

where:

A(κ) = −γE − ψ0(κ)

B(κ) =
1

2
γ2

E
+
π2

12
+ γE ψ0(κ) +

1

2
ψ0(κ)

2 −
1

2
ψ1(κ)



z space

Use integrated PDFs (so as to simplify the treatment of endpoints)

F(z, t) =

∫ 1

0

dyΘ(y − z) Γ(y, µ2) =⇒ Γ(z, µ2) = −
∂

∂z
F(z, t)

in terms of which the formal solution of the evolution equation is:

F(z, t) = F(z, 0) +

∫ t

0

du
b0α

2(u)

β(α(u))
[P⊗F ] (z, u)

By inserting the representation:

F(z, t) =
∞
∑

k=0

tk

k!

(

J LL

k (z) +
α(t)

2π
J NLL

k (z)

)

on both sides of the solution, one obtains recursive equations, whereby a
Jk is determined by all Jp with p < k. The recursion starts from J0,
which are the integrated initial conditions



For the record, the recursive equations are:

J LL

k = P
[0]⊗J LL

k−1

J NLL

k = (−)k(2πb0)
kF [1](µ2

0)

+

k−1
∑

p=0

(−)p(2πb0)
p

(

P
[0]⊗J NLL

k−1−p + P
[1]⊗J LL

k−1−p

−
2πb1
b0

P
[0]⊗J LL

k−1−p

)

We have computed these for k ≤ 3 (J LL) and k ≤ 2 (J NLL), ie to O(α3)

Results in 1911.12040 and its ancillary files



A remarkable fact

Our asymptotic solutions, expanded in α, feature all of the terms:

logq(1− z)

1− z
singlet, non− singlet

logq(1− z) photon

of our recursive solutions

Non-trivial; stems from keeping subleading terms (at z → 1) in the AP kernels



Illustrative results for PDFs

� Analytical results obtained by means of an additive matching

between the recursive and the asymptotic solutions

� All are in MS

� Bear in mind that PDFs are unphysical quantities



e− vs γ vs e+. Note that e− in the right-hand panel is strongly damped



Numerical vs analytical, non-singlet



NLL vs LL, non-singlet. The insets show the double ratio,
ie numerical vs analytical



In order to understand the large-z bit of the previous plots:

ΓLL(z, µ2) =
e−γEη0eλ0η0

Γ(1 + η0)
η0(1− z)

−1+η0

ΓNLL(z, µ2) =
e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1− z)

−1+ξ1

×

{

1 +
α(µ0)

π

[

(

log
µ2

0

m2
− 1

)(

A(ξ1) +
3

4

)

− 2B(ξ1) +
7

4

+

(

log
µ2

0

m2
− 1− 2A(ξ1)

)

log(1− z)− log2(1− z)

]}

with:

ξ1 ≃ η0 , ξ̂1 ≃ λ0η0

A(κ) =
1

κ
+O(κ) =⇒ log(1− z) dominates

B(κ) = −
π2

6
+ 2ζ3κ+O(κ2)



Conclusions

� We have computed all NLO initial conditions for PDFs and FFs

(1909.03886), unpolarised

� We have NLL-evolved those relevant to the electron PDFs

(1911.12040), both analytically and numerically

� These can be obtained at:

https://github.com/gstagnit/ePDF

Many results are based on establishing a “dictionary” QCD −→ QED,

which works at any order in αS and α



Being done/to be done

� Assess the impact of PDFs NLL effects on physical cross sections

� The inclusion of these results in MG5 aMC@NLO v3.X is the only

missing ingredient in the latter for the computation of NLO QED

corrections in e+e− collisions

NLO QCD+EW in hh collisions and NLO QCD in e+e− collisions already OK

� γ PDFs; soft effects; alternative IR schemes; FFs

� Polarisations?


