Stefano Frixione

NLO+NLL QED corrections to electron PDFs

Based on: 1909.03886 (SF), 1911.12040 (Bertone, Cacciari, SF, Stagnitto) CLIC Workshop 2020, CERN, 12/3/2020

 Goal : increase the accuracy in the computations of e^+e − cross sections

Goal : increase the accuracy in the computations of e^+e − cross sections

Framework: ^a factorisation formula

 \triangleright aka structure-function approach: best to *not* use this terminology

Factorisation

$\sigma = \text{PDF} \star \text{PDF} \star \hat{\sigma}$

PDFs collect (universal) small-angle dynamics

Goal : increase the accuracy in the computations of e^+e − cross sections

Framework: ^a factorisation formula

 \triangleright aka structure-function approach: best to **not** use this terminology

By means of: more accurate PDFs

- ▶ PDFs aka structure functions: best to *not* use this terminology
- improve the LL+LO accuracy, $(\alpha \log(E/m))^k$, by including NLL+NLO terms, $(\alpha \log(E/m))^k + \alpha (\alpha \log(E/m))^{k-1}$, in the PDFs
- ▶ the corresponding increased accuracy of short-distance cross sections is widely available, and is understood here

Current z -space LO $+$ LL PDFs $(\alpha \log(E/m))^k$:

- ▶ $0 \leq k \leq \infty$ for $z \simeq 1$ (Gribov, Lipatov)
- $\blacktriangleright\ 0\leq k\leq 3$ $for $z < 1$ (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)$
- ▶ matching between these two regimes

Current *z*-space LO+LL PDFs $(\alpha \log(E/m))^k$:

- ▶ $0 \leq k \leq \infty$ for $z \simeq 1$ (Gribov, Lipatov)
- ▶ $0 \leq k \leq 3$ for $\,z < 1\,$ (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)
- ▶ matching between these two regimes

Sought z-space NLO+NLL PDFs $(\alpha \log(E/m))^k + \alpha (\alpha \log(E/m))^{k-1}$:

- \blacktriangleright 0 $\leq k \leq \infty$ for $z \simeq 1$
- ▶ $0 \le k \le \{3, 2\}$ for $z < 1 \iff \mathcal{O}(\alpha^3)$
- ▶ matching between these two regimes
- ► for e^+ , e^- , and γ
- ▶ both numerical and analytical

Main tool: the solution of PDFs evolution equations

Consider the production of a system X at an e^+e^- collider:

$$
e^+(P_{e^+}) + e^-(P_{e^-}) \longrightarrow X
$$

Its cross section is written as follows:

$$
d\Sigma_{e^+e^-}(P_{e^+}, P_{e^-}) = \sum_{kl} \int dy_+ dy_- \, \mathcal{B}_{kl}(y_+, y_-) \, d\sigma_{kl}(y_+ P_{e^+}, y_- P_{e^-})
$$

To be definite, let's stipulate that:

$$
k \in \{e^+, \gamma\}, \qquad l \in \{e^-, \gamma\}
$$

which is immediate to generalise, if need be. Then:

- \blacklozenge $d\Sigma_{e^+e^-}$: the collider-level cross section
- $\blacklozenge \ d\sigma_{kl}$: the particle-level cross section
- ♦ $\mathcal{B}_{kl}(y_+, y_-)$: describes beam dynamics
- \bullet e^+ $, e$ − on the lhs: the beams
- \bullet e^+ $, e$ $^{-}$, γ on the rhs: the particles

I'll only talk about particles and particle-level cross sections

The parametrisation of beam dynamics is supposed to be given

I sum over polarisations

Write any particle cross section by means of ^a factorisation formula, quite similar to its QCD counterpart \longrightarrow

$$
d\bar{\sigma}_{kl}(p_k, p_l) = \sum_{ij=e^+, e^-, \gamma} \int dz_+ dz_- \Gamma_{i/k}(z_+, \mu^2, m^2) \Gamma_{j/l}(z_-, \mu^2, m^2)
$$

$$
\times d\hat{\sigma}_{ij}(z_+ p_k, z_- p_l, \mu^2) + \Delta
$$

with:

$$
d\bar{\sigma}_{kl} = d\sigma_{kl} + \mathcal{O}\left(\left(\frac{m^2}{s}\right)^p\right), \qquad s = (p_k + p_l)^2, \qquad p \ge 1
$$

 \blacklozenge $d\bar{\sigma}_{kl}$: the particle-level cross section, with power-suppressed terms discarded

- $d\hat{\sigma}_{ij}$: the subtracted parton-level cross section. Independent of m
- $\blacklozenge e^+, e^-, \gamma$ on the lhs: the particles
- \blacklozenge^{-} , e^{-} , γ on the rhs: the partons
- \blacklozenge $\Gamma_{i/k}$: the PDF of parton i inside particle k. It can be computed perturbatively
- $\blacklozenge \mu$: the hard scale, $m^2 \ll \mu^2 \sim s$

Differences wrt QCD:

- ◆ PDFs and power-suppressed terms can be computed perturbatively
- An object $(e.g. e^-)$ may play the role of both particle and parton

As in QCD, ^a particle is ^a physical object, ^a parton is not

$$
d\bar{\sigma}_{kl}(p_k, p_l) = \sum_{ij=e^+, e^-, \gamma} \int dz_+ dz_- \Gamma_{i/k}(z_+, \mu^2, m^2) \Gamma_{j/l}(z_-, \mu^2, m^2)
$$

$$
\times d\hat{\sigma}_{ij}(z_+ p_k, z_- p_l, \mu^2) + \Delta
$$

This formula can be used in several ways:

A: to solve for the PDFs, given the particle and parton cross sections

- B: for the computation of the particle cross section, given the parton cross section and the PDFs
- C: for cross checks, given both cross sections and the PDFs

$$
d\bar{\sigma}_{kl}(p_k, p_l) = \sum_{ij=e^+, e^-, \gamma} \int dz_+ dz_- \Gamma_{i/k}(z_+, \mu^2, m^2) \Gamma_{j/l}(z_-, \mu^2, m^2)
$$

$$
\times d\hat{\sigma}_{ij}(z_+ p_k, z_- p_l, \mu^2) + \Delta
$$

This formula can be used in several ways:

A: to solve for the PDFs, given the particle and parton cross sections

- ▶ Strategy used in 1909.03886 for the computation of NLO-accurate initial conditions (strict perturbative expansion)
- B: for the computation of the particle cross section, given the parton cross section and the PDFs
	- ▶ Being done, using the NLL-evolved PDFs obtained in 1911.12040
- C: for cross checks, given both cross sections and the PDFs
	- ▶ No phenomenological interest

Henceforth, I consider the dominant production mechanism at an e^+e − collider, namely that associated with partons inside an electron *

Simplified notation:

$$
\Gamma_i(z,\mu^2) \ \equiv \ \Gamma_{i/e^-}(z,\mu^2)
$$

*The case of the positron is identical, at least in QED, and will be understood

NLO initial conditions (1909.03886) Conventions for the perturbative coefficients:

$$
\Gamma_i = \Gamma_i^{[0]} + \frac{\alpha}{2\pi} \Gamma_i^{[1]} + \mathcal{O}(\alpha^2)
$$

Results:

$$
\Gamma_{i}^{[0]}(z, \mu_{0}^{2}) = \delta_{ie^{-}}\delta(1-z)
$$
\n
$$
\Gamma_{e^{-}}^{[1]}(z, \mu_{0}^{2}) = \left[\frac{1+z^{2}}{1-z}\left(\log\frac{\mu_{0}^{2}}{m^{2}} - 2\log(1-z) - 1\right)\right]_{+} + K_{ee}(z)
$$
\n
$$
\Gamma_{\gamma}^{[1]}(z, \mu_{0}^{2}) = \frac{1+(1-z)^{2}}{z}\left(\log\frac{\mu_{0}^{2}}{m^{2}} - 2\log z - 1\right) + K_{\gamma e}(z)
$$
\n
$$
\Gamma_{e^{+}}^{[1]}(z, \mu_{0}^{2}) = 0
$$

Note:

A Meaningful only if $\mu_0 \sim m$

In MS, $K_{ij}(z) = 0$; in general, these functions *define* an IR scheme

NLL evolution (1911.12040)

General idea: solve the evolution equations starting from the initial conditions computed previously

$$
\frac{\partial \Gamma_i(z,\mu^2)}{\partial \log \mu^2} = \frac{\alpha(\mu)}{2\pi} \left[P_{ij} \otimes \Gamma_j \right] (z,\mu^2) \iff \frac{\partial \Gamma(z,\mu^2)}{\partial \log \mu^2} = \frac{\alpha(\mu)}{2\pi} \left[\mathbb{P} \otimes \Gamma \right] (z,\mu^2),
$$

Done conveniently in terms of non-singlet, singlet, and photon

Two ways:

- \blacklozenge Mellin space: suited to both numerical solution and all-order, large- z analytical solution (called *asymptotic solution*)
- \blacklozenge Directly in z space in an integrated form: suited to fixed-order, all- z analytical solution (called *recursive solution*)

A technicality: owing to the running of α , it is best to evolve in t rather $\tt than in \mu$, with: (\sim Furmanski, Petronzio)

$$
t = \frac{1}{2\pi b_0} \log \frac{\alpha(\mu)}{\alpha(\mu_0)}
$$

=
$$
\frac{\alpha(\mu)}{2\pi} L - \frac{\alpha^2(\mu)}{4\pi} \left(b_0 L^2 - \frac{2b_1}{b_0} L \right) + \mathcal{O}(\alpha^3), \qquad L = \log \frac{\mu^2}{\mu_0^2}
$$

.

Note:

- \blacktriangleright t \longleftrightarrow μ ; notation-wise, the dependence on t is equivalent to the dependence on μ
- \blacktriangleright t = 0 \iff $\mu = \mu_0$
- \blacktriangleright L is my "large log"
- \blacktriangleright Tricky: fixed- α expressions are obtained with $t = \alpha L/(2\pi)$ (and not $t = 0$)

Mellin space

Introduce the evolution operator \mathbb{E}_N

 $\Gamma_N(\mu^2) = \mathbb{E}_N(t) \Gamma_{0,N}$, $\mathbb{E}_N(0) = I$, $\Gamma_{0,N} \equiv \Gamma_N(\mu_0^2)$

The PDFs evolution equations are then re-expressed by means of an evolution equation for the evolution operator:

$$
\frac{\partial \mathbb{E}_N(t)}{\partial t} = \frac{b_0 \alpha^2(\mu)}{\beta(\alpha(\mu))} \sum_{k=0}^{\infty} \left(\frac{\alpha(\mu)}{2\pi}\right)^k \mathbb{P}_N^{[k]} \mathbb{E}_N(t)
$$

$$
= \left[\mathbb{P}_N^{[0]} + \frac{\alpha(\mu)}{2\pi} \left(\mathbb{P}_N^{[1]} - \frac{2\pi b_1}{b_0} \mathbb{P}_N^{[0]} \right) \right] \mathbb{E}_N(t) + \mathcal{O}(\alpha^2)
$$

 \triangleright Can be solved numerically

- Can be solved analytically in a closed form under simplifying assumptions. Chiefly: large- z is equivalent to large- N
- I'll show results for the non-singlet \equiv singlet. The photon is feasible as well (see 1911.12040), but technically very involved

Show first that this formalism allows one to quickly re-obtain the known LL result:

$$
\Gamma_{0,N}^{[0]} = 1 \quad \Longrightarrow \quad \Gamma_{\text{LL}}(z,\mu^2) = M^{-1} \big[\exp \big(\log E_N \big) \big]
$$

From the explicit expression of the AP ff kernel:

$$
\log E_N = \frac{\alpha}{2\pi} P_N^{[0]} L \stackrel{N \to \infty}{\longrightarrow} -\eta_0 \left(\log \bar{N} - \lambda_0 \right)
$$

$$
\eta_0 = \frac{\alpha}{\pi} L\,,\qquad \bar{N} = N\,e^{\gamma_\mathrm{E}}\,,\qquad \lambda_0 = \frac{3}{4}
$$

The computation of the inverse Mellin transform is trivial:

$$
\Gamma_{\rm LL}(z,\mu^2) = \frac{e^{-\gamma_{\rm E}\eta_0}e^{\lambda_0\eta_0}}{\Gamma(1+\eta_0)}\,\eta_0(1-z)^{-1+\eta_0}
$$

The usual form, bar for the " -1 " of soft origin (we're resumming collinear logs here)

The NLL case is only slightly more complicated; we use:

$$
\Gamma_{\rm NLL}(z,\mu^2) = M^{-1} \big[\exp \big(\log E_N \big) \big] \otimes \Gamma_{\rm NLO}(z,\mu_0^2)
$$

which is convenient because the form of the evolution operator is functionally the same as at the LL:

$$
\log E_N \xrightarrow{N \to \infty} -\xi_1 \log \bar{N} + \hat{\xi}_1
$$

with:

$$
\xi_1 = 2t - \frac{\alpha(\mu)}{4\pi^2 b_0} \left(1 - e^{-2\pi b_0 t} \right) \left(\frac{20}{9} n_F + \frac{4\pi b_1}{b_0} \right)
$$

\n
$$
= 2t + \mathcal{O}(\alpha t) = \eta_0 + \dots
$$

\n
$$
\hat{\xi}_1 = \frac{3}{2} t + \frac{\alpha(\mu)}{4\pi^2 b_0} \left(1 - e^{-2\pi b_0 t} \right) \left(\lambda_1 - \frac{3\pi b_1}{b_0} \right)
$$

\n
$$
= \frac{3}{2} t + \mathcal{O}(\alpha t) = \lambda_0 \eta_0 + \dots
$$

\n
$$
\lambda_1 = \frac{3}{8} - \frac{\pi^2}{2} + 6\zeta_3 - \frac{n_F}{18} (3 + 4\pi^2)
$$

Thence:

$$
\Gamma_{\text{NLL}}(z, \mu^2) = \frac{e^{-\gamma_{\text{E}}\xi_1} e^{\hat{\xi}_1}}{\Gamma(1 + \xi_1)} \xi_1 (1 - z)^{-1 + \xi_1}
$$

\$\times \left\{ 1 + \frac{\alpha(\mu_0)}{\pi} \left[\left(\log \frac{\mu_0^2}{m^2} - 1 \right) \left(A(\xi_1) + \frac{3}{4} \right) - 2B(\xi_1) + \frac{7}{4} + \left(\log \frac{\mu_0^2}{m^2} - 1 - 2A(\xi_1) \right) \log(1 - z) - \log^2(1 - z) \right] \right\}\$

where:

$$
A(\kappa) = -\gamma_{\rm E} - \psi_0(\kappa)
$$

\n
$$
B(\kappa) = \frac{1}{2}\gamma_{\rm E}^2 + \frac{\pi^2}{12} + \gamma_{\rm E} \psi_0(\kappa) + \frac{1}{2}\psi_0(\kappa)^2 - \frac{1}{2}\psi_1(\kappa)
$$

^z space

Use integrated PDFs (so as to simplify the treatment of endpoints)

$$
\mathcal{F}(z,t) = \int_0^1 dy \, \Theta(y-z) \, \Gamma(y,\mu^2) \quad \Longrightarrow \quad \Gamma(z,\mu^2) = -\frac{\partial}{\partial z} \mathcal{F}(z,t)
$$

in terms of which the formal solution of the evolution equation is:

$$
\mathcal{F}(z,t) = \mathcal{F}(z,0) + \int_0^t du \, \frac{b_0 \alpha^2(u)}{\beta(\alpha(u))} \left[\mathbb{P} \,\overline{\otimes}\, \mathcal{F} \right](z,u)
$$

By inserting the representation:

$$
\mathcal{F}(z,t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left(\mathcal{J}_k^{\text{LL}}(z) + \frac{\alpha(t)}{2\pi} \mathcal{J}_k^{\text{NLL}}(z) \right)
$$

on both sides of the solution, one obtains recursive equations, whereby ^a \mathcal{J}_k is determined by all \mathcal{J}_p with $p < k$. The recursion starts from \mathcal{J}_0 , which are the integrated initial conditions

For the record, the recursive equations are:

$$
\mathcal{J}_k^{\text{LL}} = \mathbb{P}^{[0]} \overline{\otimes} \mathcal{J}_{k-1}^{\text{LL}}
$$
\n
$$
\mathcal{J}_k^{\text{NLL}} = (-)^k (2\pi b_0)^k \mathcal{F}^{[1]}(\mu_0^2)
$$
\n
$$
+ \sum_{p=0}^{k-1} (-)^p (2\pi b_0)^p \left(\mathbb{P}^{[0]} \overline{\otimes} \mathcal{J}_{k-1-p}^{\text{NLL}} + \mathbb{P}^{[1]} \overline{\otimes} \mathcal{J}_{k-1-p}^{\text{LL}}
$$
\n
$$
- \frac{2\pi b_1}{b_0} \mathbb{P}^{[0]} \overline{\otimes} \mathcal{J}_{k-1-p}^{\text{LL}}
$$

We have computed these for $k\leq 3$ $(\mathcal{J}^{\text{\tiny{LL}}})$ and $k\leq 2$ $(\mathcal{J}^{\text{\tiny{NLL}}})$, ie to $\mathcal{O}(\alpha^3)$ Results in 1911.12040 and its ancillary files

A remarkable fact

Our asymptotic solutions, expanded in α , feature all of the terms:

$$
\frac{\log^{q}(1-z)}{1-z}
$$
 singlet, non-singlet

$$
\log^{q}(1-z)
$$
 photon

of our recursive solutions

Non-trivial; stems from keeping subleading terms (at $z \rightarrow 1$) in the AP kernels

Illustrative results for PDFs

◆ Analytical results obtained by means of an additive matching between the recursive and the asymptotic solutions

 \blacklozenge All are in $\overline{\mathrm{MS}}$

◆ Bear in mind that PDFs are unphysical quantities

 e^- vs γ vs e^+ . Note that e^- in the right-hand panel is strongly damped

Numerical vs analytical, non-singlet

NLL vs LL, non-singlet. The insets show the double ratio, ie numerical vs analytical

In order to understand the large- z bit of the previous plots:

$$
\Gamma_{\text{LLL}}(z,\mu^2) = \frac{e^{-\gamma_{\text{EP}}}\varphi^{\lambda_0\eta_0}}{\Gamma(1+\eta_0)} \eta_0 (1-z)^{-1+\eta_0}
$$
\n
$$
\Gamma_{\text{NLL}}(z,\mu^2) = \frac{e^{-\gamma_{\text{EE}}\xi_1}e^{\hat{\xi}_1}}{\Gamma(1+\xi_1)} \xi_1 (1-z)^{-1+\xi_1}
$$
\n
$$
\times \left\{ 1 + \frac{\alpha(\mu_0)}{\pi} \left[\left(\log \frac{\mu_0^2}{m^2} - 1 \right) \left(A(\xi_1) + \frac{3}{4} \right) - 2B(\xi_1) + \frac{7}{4} \right. \right. \left. + \left(\log \frac{\mu_0^2}{m^2} - 1 - 2A(\xi_1) \right) \log(1-z) - \log^2(1-z) \right] \right\}
$$

with:

$$
\xi_1 \simeq \eta_0 \,, \qquad \hat{\xi}_1 \simeq \lambda_0 \eta_0
$$

$$
A(\kappa) = \frac{1}{\kappa} + \mathcal{O}(\kappa) \implies \log(1 - z) \text{ dominates}
$$

$$
B(\kappa) = -\frac{\pi^2}{6} + 2\zeta_3 \kappa + \mathcal{O}(\kappa^2)
$$

Conclusions

 We have computed all NLO initial conditions for PDFs and FFs (1909.03886), unpolarised

 We have NLL-evolved those relevant to the electron PDFs (1911.12040), both analytically and numerically

These can be obtained at:

https://github.com/gstagnit/ePDF

Many results are based on establishing a "dictionary" $QCD \longrightarrow QED$, which works at any order in α_s and α

Being done/to be done

Assess the impact of PDFs NLL effects on physical cross sections

The inclusion of these results in MG5_aMC@NLO v3.X is the only missing ingredient in the latter for the computation of NLO QED corrections in e^+e^- collisions

NLO QCD+EW in hh collisions and NLO QCD in e^+e^- collisions already OK

 \blacklozenge γ PDFs; soft effects; alternative IR schemes; FFs

Polarisations?