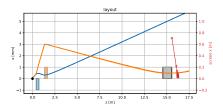
Run 2 spectrometer studies

D. A. Cooke

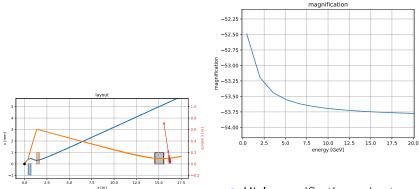

01/10/2019

Outline

Started looking at two aspects so far:

- General layout to accomodate possible run 2 beam parameters
 - Small initial spot size
 - Higher possible energy
- Background reduction strategies

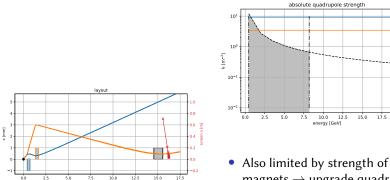
Layout



Aim for:

. . .

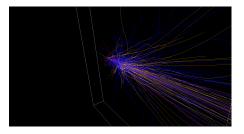
- Increased energy upper limit
- Increased energy range for imaging/focussing
- Higher magnification (assuming small input beamspots)
- Basically occupying the same space


Layout

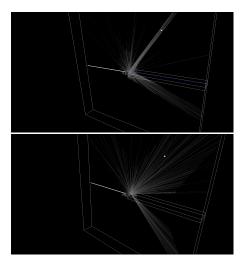
- High magnification owing to small object-lens distance, large lens-image plane distance.
- Limited by space constraints (overall length, proximity of first quadrupole to end of plasma cell)

Layout

20.0


z [m]

- Also limited by strength of magnets → upgrade quadrupoles (what is feasible?)
- Upper energy limit for detection set by dipole strength/screen position (vertical lines on the above plot)


Background

High background in spectrometer for run 2, since (much?) more material in the beam line.

- Need an idea of how bad it could be
- Reduce background by shifting spectrometer further downstream?
- Reduce background using different screen technology? Curved Cherenkov radiator could select by position and angle (instead of just position)

Background

• Screen changes angle as a function of position along length, so that different part of the Cherenkov light cone escape, constraining detection by input angle as well as position

Outlook

More work required on both aspects, but need some specifications to aim for. Generally,

- Stronger quadrupoles needed to increase the imaging range
- Quadrupoles should be near to plasma exit if large magnification is required
- Vacuum chamber for screen needs to be altered to accomodate high-energy end (or dipole upgrade)
- Background needs to be studied and (probably) mitigated.

Additionally, should study emittance measurement possibilities and improvements to optical line (or alternative screen readout technology).