Experiment KATRIN limited the neutrino mass to less than 1 eV

Otokar Dragoun
Nuclear Physics Institute, Czech Acad. Sci.
dragoun@ujf.cas.cz

International experiment:
• 150 researchers
• 20 institutes from 6 countries: D, USA, RU, Czech Rep, ESP, FR

Research institutes at Řež

Karlsruhe Institute of Technology (KIT)

20th Conference of Czech and Slovak Physicists, Prague, 7.9.2020
1. Mysterious shape of β-ray spectra

2. Neutrinos – the most abundant massive particles

3. The KATRIN experiment

4. The first scientific run of KATRIN

5. KATRIN perspectives
1. Mysterious shape of β-ray spectra

The laws of energy and momentum conservation:

Decay in two parts \rightarrow discrete energy spectra

$^{226}\text{Ra} \rightarrow ^{222}\text{Rn} + \alpha$ (4.777 MeV)

$^{99m}\text{Tc} \rightarrow ^{99}\text{Tc} + \gamma$ (140 keV)

James Chadwick
1914:

- Electron spectrum of RaB+C ($^{214}\text{Pb}+^{214}\text{Bi}$)
 E_β up to 3.3 MeV
- Magnetic spectrometer
- Two different detectors

β-spectrum is continuous! WHY?

Wolfgang Pauli and Niels Bohr
The neutrino hypothesis

Wolfgang Pauli

(then 30 years old theoretical physicist and future Nobel prize winner)

Proposed on 4th December 1930:

a new particle
a NEUTRINO is also emitted in the β-decay:

\[{^{35}\text{S}} \rightarrow {^{35}\text{Cl}} + e^- + \bar{\nu}_e \quad {^{3}\text{H}} \rightarrow {^{3}\text{He}} + e^- + \bar{\nu}_e \]

Decay in three parts → continuous energy spectra

Assumed neutrino properties: light, neutral, penetrating

Only protons and electrons were known at that time
Enrico Fermi
(33 years old experimental and theoretical physicist, also future Nobel prize winner)

Developed the β-decay theory incorporating the Pauli’s neutrino already in 1934:

\[^{35}\text{S} \rightarrow ^{35}\text{Cl} + e^- + \bar{\nu}_e \quad ^{3}\text{H} \rightarrow ^{3}\text{He} + e^- + \bar{\nu}_e \]

Calculated β-spectrum shape agreed with the experiment:

"the neutrino mass is smaller than the electron mass, most probably zero"
β-decay of 6He \rightarrow 6Li + e$^-$ + $\bar{\nu}_e$ in Wilson cloud chamber

- β-decay energy = 3.5 MeV
- Maximum energy of recoiled atom = 1.4 keV
- $T_{1/2}$ = 0.8 s

Csikai and Szalay, 1957

It cannot be: 6He \rightarrow 6Li + e$^-$
This is not a two-particle decay

Electron trajectory in magnetic field
2. Neutrinos – the most abundant massive articles

- relic ν from Big Bang: $\sim 300 \, \text{cm}^{-3}$ of the Universe
- ν flux from the Sun: $6 \times 10^{10} \, \text{cm}^{-2} \, \text{s}^{-1}$ on the Earth surface
- supernova explosion: 10^{58} neutrinos in a few seconds
- atmospheric ν created by cosmic rays
- nuclear reactors ($1000 \, \text{MW}_{\text{el}} \sim 5 \times 10^{20} \, \overline{\nu}_e \, \text{s}^{-1}$) and accelerators
- terrestrial ν from natural radioactivity
- each of you: $4000 \, \text{s}^{-1}$ into 4π due to ^{40}K decay in your body
 (140 g of K, 0.01 % of ^{40}K, $T_{1/2} = 1.2 \times 10^9 \, \text{y}$)
Three kinds of neutrinos: ν_e, ν_μ, ν_τ

Neutrinos are electrically neutral particles

Penetrability ($\sigma_v \approx 10^{-20} \sigma_{\text{nucl. phys.}}$)

Neutrino kinetic energy: $10^{-4} - 10^{20}$ eV

Neutrinos are not dangerous to a man
But the neutrino mass is still unknown!

- **Standard model of particle physics** assumed $m_\nu = 0$

- **Neutrino oscillation experiments** proved $m_\nu \neq 0$

\[|m_{\nu\alpha} > = \Sigma U_{\alpha i} \cdot |m_i > \]

\(\alpha = e, \mu, \tau \) weak interaction eigenstates

\(i = 1, 2, 3 \) mass eigenstates

\[|m_i > \]

\[\Sigma \]

\[U_{\alpha i} \]

\[\alpha = e, \mu, \tau \]

\[i = 1, 2, 3 \]

At least one $m_i > 0.05$ eV, at least two $m_i > 0.01$ eV

- All experiments and cosmological observations up to now:
 Only upper limits on m_i
 \(\beta \)-ray spectroscopy – the only model independent method
70 years of searching for massive neutrinos in β-ray spectra

dN/dE = K \times F(E,Z) \times p \times E_{\text{tot}} \times (E_0-E_e) \times \left[(E_0-E_e)^2 - m_\nu^2 \right]^{1/2}

$^3\text{H} \rightarrow ^3\text{He} + e^- + \bar{\nu}_e$

$E_0 = 18.6$ keV
$T_{1/2} = 12.3$ y

Simultaneously:
- high resolution
- high luminosity
- low background

$m_\nu < 5$ keV (1948)
$m_\nu < 2.3$ eV (2005)
$m_\nu < 1.1$ eV (2019) KATRIN

For interesting history and perspectives see e.g. Open Phys. J. 3 (2016) 73-113

PMFA 52(2007)100-121, in Czech
The effective mass of the electron neutrino

a) one \(\nu \) mass-state, daughter in ground state \((\text{Fermi, 1934}) \)

\[
\frac{dN}{dE} = A \cdot F \cdot p \cdot (E + m_e) \cdot \varepsilon \cdot \sqrt{\varepsilon^2 - m_{\nu_e}^2} \quad \varepsilon = E_0 - E
\]

b) one \(\nu \) mass-state, daughter also in excited states \((\text{Bergkvist, 1972}) \)

\[
\frac{dN}{dE} = A \cdot F(E, Z + 1) \cdot p \cdot (E + m_e) \cdot \sum_j P_j(\varepsilon - V_j) \cdot \sqrt{(\varepsilon - V_j)^2 - m_{\nu_e}^2} \cdot \Theta(\varepsilon - V_j - m_{\nu_e})
\]

Observed spectrum:

Sum of many with various endpoints
c) three \(\nu \) mass-states, daughter also in excited states \((\nu \text{ oscillations, 1998-2001})\)

\[
\frac{dN}{dE} = A \cdot F \cdot p \cdot (E + m_e) \cdot \sum_j P_j (\varepsilon - V_j - m_i) \cdot \sum_i |U_{ei}|^2 \sqrt{(\varepsilon - V_j)^2 - m_i^2} \cdot \theta(\varepsilon - V_j - m_i)
\]

- Future \(\beta \)-spectroscopy might provide all \(|U_{ei}|^2 \) and \(m_i \)

- Present \(\Delta E \) does not allow to distinguish individual \(m_i \)

The effective mass of the electron neutrino

\[
m_{\nu e}^{\text{eff}} = \sqrt{\sum_i |U_{ei}|^2 \cdot m_i^2}
\]

Analysis of present \(\beta \)-spectra: one effective \(\nu \) mass-state daughter also in excited states
3. The Karlsruhe Tritium Neutrino Experiment

Aim: improvement of the ν-mass sensitivity from 2 eV to 0.2 eV

Founded in 2001 by physicists from Germany, Russia, USA and Czech Republic

Gaseous T_2 Source at Los Alamos, USA

New β-spectrometer type: MAC-E-Filter

at Troitsk, Russia

at Mainz, Germany
Electron spectroscopy of radioactive nuclei at NPI

1955 –1990: internal conversion electrons
1990 – now: neutrino mass determination

First Czechoslovak β-ray spectrometer (1956)

Magnetic β-ray spectrometer. One of the first Czech instruments operated by a computer (1971)

Elektrostatic spectrometer of keV electrons (1983)

Monoenergetic

\[E_{ce} = E_v - E_{bin} \]

best resolution \(\Delta E \leq 1 \text{ eV} \) at low transmission
Tritium Laboratory Karlsruhe

The only one in Europe:
• large amount of tritium
• high chemical and isotopic purity.
KATRIN main components:

source and transport section
- source parameters
- stable tritium column density
- electron transport tritium retention

spectrometer section
- reflection of low energy electrons
- high precision energy analysis of electrons
- position sensitive electron counter

Source and Transport Section

Rear
- **Tritium Source**
 - \(\beta\)-decay: \(e^-\) production
 - \(10^{10} e^-/s\)

Diffuser and Cryo Pump
- \(10^{10} e^-/s\)

Pre-Spectrometer
- \(10^3 e^-/s\)

Main Spectrometer
- \(10^{-11} \text{ mbar} \), -18.574 kV

Detector
- \(1-0.01 e^-/s\)

Source Parameters
- \(3 \times 10^{-3} \text{ mbar} \pm 1 \text{ kV}\)

Energy Levels
- \(10^{-11} \text{ mbar} \), -18.4 kV

Distance
- \(~70 \text{ m}\)
Windowless gaseous tritium source

- Stainless steel tube of 10 m length and 9 cm diameter
- Cooled to 30 K ± 0.1 %
- In magnetic field of 3.6 T ± 2 %
- Continuously filled in the middle with molecular tritium at 3·10⁻³ mbar
- Continuously pumped at both ends

- Activity of 114 GBq
- Tritium flow of 170 GBq/s
- Isotopic purity 95 %

- Column density of 5×10¹⁷ tritium molecules per cm²
- 5.7×10¹⁰ ± 0.1 % of β-particles for energy analysis

One of the most complex cryostats ever built
Source and transport system of KATRIN inside TLK
KATRIN electron pre-spectrometer

Vacuum chamber: 1.7 m in diameter
3.7 m in length

Superconducting magnets
KATRIN main electron spectrometer

- Magnetic adiabatic collimation with electrostatic retardation
- Large Ω_{input} and narrow line width ΔE_{instr} simultaneously
- No electron scattering on slits
- Danger of magnetic traps (UHV of 10^{-11} helps)
Vacuum test of the spectrometer chamber at a factory

- Helium test O.K.
- $p < 6 \cdot 10^{-8}$ mbar without baking
Challenging transport of the spectrometer chamber

23 m length, 10 m diam, 200 ton

8800 km around Europe

Last 7 km

Placing at KIT
Focal plane detector

Si PIN diode, 9 cm diam.
148 independent pixels
Tasks of the NPI at Řež for KATRIN

Ultra-stable and high-purity radioactive sources of monoenergetic electrons

$^{83}\text{Rb} \ (86\text{d}) \rightarrow ^{83}\text{mKr} \ (1.8\text{h}) \rightarrow ^{83}\text{Kr}$

$p \ (24\text{ MeV}, 45\mu\text{A}) \rightarrow ^{\text{nat}}\text{Kr}$

Installation of krypton target at the TR-24

New radiochemical laboratories

New cyclotron TR-24
The first NPI task for KATRIN: **monitor high voltage stability**

In collaboration with the Mass-separator group at Bonn University

Precision HV divider

unrecognized shift by 50 mV ⇒ 0.04 eV error in fitted mν!!

KATRIN monitor spectrometer

Standard of stable electron energy at 17.8 keV: $^{83}\text{Rb}/^{83}\text{mKr} \text{ source}$

\[
E_{ce} = E_\gamma - E_{bin}
\]

drift 0.6 ppm /2 months

3 times better than requested
The second NPI task for KATRIN: gaseous source of monoenergetic electrons for WGTS

\(^{83m}Kr \) \((E_{ce} = 9 - 32 \text{ keV}) \)

- Based on deposition of \(^{83}\text{Rb}\) into zeolit
- Activity of 1.5 GBq

Now also for energy calibration in dark matter searches

Gaseous \(^{83m}\text{Kr}\) source at Tritium Laboratory Karlsruhe

Transport container
Temporal stability of the KATRIN setup during first tests with tritium

- Temperature of the source tube
- Pressure in the tritium buffer tank
- DT concentration in front of the beam tube
4. The first scientific run of KATRIN

- 22% of nominal T₂ column density
 radiochem. reactions of T₂ with previously unexposed steel
- T₂ (95.3%) HT (3.5%) DT (1.1%)
 laser Raman spectroscopy

One of 274 single scans measured within 2 hours

Time and energy distribution of measurement points around E_0
Temporal stability during the first scientific run

β-scan Fit Parameters Stability over 780 hours (Data)

274 single β-scan fits

Stable Background

Stable Endpoint

\[\sigma(E_0^{\text{fit}}) = 0.25 \text{ eV} \]
Analysis of measured β-spectra

Inspection of slow-control parameters:
- 274 two-hours scans in stable conditions
- 117 perfect detector pixels
- Stable high-voltage: $\sigma = 34\text{mV}$ at 18.6 kV

32 058 correct partial β-spectra merged into one single spectrum

1.5×106 events below E_0

Four fitted parameters: A, E_0, m^2, R_{bcg}

Excellent goodness-of-fit:
$X^2 = 21.4$ for 23 d.o.f.
p-value = 0.56

Statistical uncertainties dominate
The best fit values

\[m^2_\nu = \left(-1.0^{+0.9}_{-1.1}\right) \text{eV}^2 \quad (90\% \text{ CL}) \]

\[m_\nu < 1.1 \text{ eV} \quad (90\% \text{ CL}) \]

\[E_0 = 18\,573.7 \pm 0.1 \text{ eV} \quad \rightarrow \quad Q_\beta = 18\,575.2 \pm 0.5 \text{ eV} \]

\[Q_\beta[\Delta(3\text{H},3\text{He})] = 18\,575.72 \pm 0.07 \text{ eV} \]

4 week KATRIN data:

\[\sigma(m^2_\nu)_{\text{stat}} = 0.94 \text{ eV}^2 \]

\[\sigma(m^2_\nu)_{\text{syst}} = 0.32 \text{ eV}^2 \]

\[2 \times \left(\text{improvement on Mainz and Troitsk}\right) \]
5. The KATRIN perspectives

a) 0.2eV neutrino-mass sensitivity after 1000 measuring days

b) Search for **sterile** neutrinos in the **eV** mass region

c) Search for **sterile** neutrinos in the **keV** mass region

KATRIN setup with TRISTAN multi-pixel detector for high electron rates

Upper limits of a sterile neutrino admixture to active neutrinos

From β-spectroscopy