

Measurement of open-charm hadrons in Au+Au collisions at $\sqrt{s_{\rm NN}}\!=\!200$ GeV by the STAR experiment

Jan Vanek, for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences

Conference of Czech and Slovak Physicists 2020

PHYSICS MOTIVATION

- Quark-Gluon Plasma (QGP) is an extreme state of matter where quarks and gluons are no longer trapped inside colorless hadrons
- QGP can be studied using relativistic heavy-ion collisions
- At RHIC energies, charm quarks are produced predominantly through hard partonic scatterings at early stage of Au+Au collisions
 - They experience the whole evolution of the medium

RELATIVISTIC HEAVY-ION COLLIDER

- Relativistic Heavy-Ion Collider (RHIC) is located in Brookhaven National Laboratory (BNL), Long Island, New York
 - RHIC is 3.8 km long with total of 6 interaction regions (IR)
 - STAR is located at 6'o clock IR and is the only running experiment at RHIC today
- RHIC is very versatile collider:

RHIC energies, species combinations and luminosities (Run-1 to 19)

STAR DETECTOR

- Solenoidal Tracker At RHIC
- Heavy Flavor Tracker (HFT, 2014–2016) is a 4-layer silicon detector
 - MAPS 2 innermost layers (PXL1, PXL2), Strip detectors 2 outer layers (IST, SSD)
- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)

OPEN-CHARM MEASUREMENTS WITH THE HFT

- STAR took data with the HFT in 2014 and 2016 for Au+Au collisions at $\sqrt{s_{NN}}=200~\text{GeV}$
- The HFT allows direct topological reconstruction of opencharm hadrons through their hadronic decays

Mothers*	Decay channel*	<i>cτ</i> [μm]	<i>BR</i> [%]
$\mathrm{D}^{+}\left(car{u} ight)$	$D^+ \to K^- \pi^+ \pi^+$	311.8 ± 2.1	8.98 ± 0.28
${\sf D}^0\left(car{d} ight)$	$D^0 \to K^- \pi^+$	122.9 ± 0.4	3.93 ± 0.04
$\mathrm{D}^+_{s}\left(c\bar{s} ight)$	$D_s^+ \rightarrow \varphi \pi^+ \rightarrow K^- K^+ \pi^+$	149.9 ± 2.1	2.27 ± 0.08
Λ_c^+ (udc)	$\Lambda_c^+ \to \mathbb{K}^- \pi^+ p$	59.9 ± 1.8	6.35 ± 0.33

*Charge conjugate particles are also measured

D⁰ NUCLEAR MODIFICATION FACTOR

 $\begin{array}{l} D^0 \mbox{ (STAR): Phys. Rev. C 99, 034908, (2019).} \\ \pi^{\pm} \mbox{ (STAR): Phys. Lett. B 655, 104 (2007).} \\ D \mbox{ (ALICE): JHEP 03, 081 (2016).} \\ h^{\pm} \mbox{ (ALICE): Phys. Lett. B 720, 52 (2013).} \\ LBT: Phys. Rev. C 94, 014909, (2016). \\ Duke: Phys. Rev. C 97, 014907, (2018). \end{array}$

Nuclear modification factor:

 $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N^{\rm pp}/{\rm d}p_{\rm T}}$

- Reference: combined D⁰ and D* measurement in 200 GeV p+p collisions using 2009 STAR data
- D mesons suppressed in central Au+Au collisions
 - Suppression of D^0 mesons at high p_T comparable to light flavor hadrons at RHIC and D mesons at LHC
 - Reproduced by models incorporating both radiative and collisional energy losses
- Strong interactions between charm quarks and the medium

D⁰ NUCLEAR MODIFICATION FACTOR

- Centrality dependence of D^0 mesons R_{AA}
 - Suppression at high p_T increases towards more central collisions
 - Low-p_T D⁰ suppressed for all studied centrality classes of Au+Au collisions
- Integrated R_{AA} < 1 for D⁰ mesons from central to peripheral collisions

 $\begin{array}{l} D^0\ 2014\ (STAR):\ Phys.\ Rev.\ C\ 99,\ 034908,\ (2019).\\ D^0\ 2010/11\ (STAR):\ Phys.\ Rev.\ Lett.\ 113,\ 142301\ (2014),\\ erratum:\ Phys.\ Rev.\ Lett.\ 121,\ 229901\ (2018).\\ \end{array}$

Jan Vanek, CCSP 2020

D[±] NUCLEAR MODIFICATION FACTOR

p_T (GeV/c)

- Reference: combined D⁰ and D* measurement in 200 GeV p+p collisions using 2009 data
- Similar level of suppression and centrality dependence for D[±] and D⁰
- High-p_T D[±] and D⁰ suppressed in central Au+Au collisions
 - Strong interactions between charm quarks and the medium

p+p reference (STAR): Phys. Rev. D 86, 072013, (2012) D⁰ (STAR): Phys. Rev. C 99, 034908, (2019).

D[±]/D⁰ YIELD RATIO

- The D[±]/D⁰ yield ratio in Au+Au collisions is compared to that from MC simulation of p+p collisions (PYTHIA 8)
 - Good agreement in all Au+Au centrality classes
- No modification of the D[±]/D⁰ yield ratio compared to PYTHIA

09/09/202

HADRONIZATION OF QUARKS IN A+A COLLISIONS

Fragmentation

- As a quark propagates through medium (or vacuum) it radiates gluons which then fragment into quark-antiquark pairs
- Those pairs and the original quark then hadronize

Coalescence

- Quark propagating through medium hadronizes with surrounding (anti-)quarks
 - At intermediate hadron $p_{\rm T}$ (2 < $p_{\rm T}$ < 8 GeV/c)
 - Quarks need to be close in kinematic phase space
- More likely to produce light flavor baryon (3 quarks) than meson (2 quarks) for given hadron $p_{\rm T}$ compared to vacuum case
 - Due to larger abundance of low $p_{\rm T}$ quarks in medium

• How about heavy-flavor hadrons?

p/π (STAR): Phys. Rev. Lett. 97, 152301 (2006)

Λ_c/D^0 YIELD RATIO ENHANCEMENT

Open-charm baryon/meson yield ratio

CENTRALITY DEPENDENCE

- Enhancement of the ratio increases towards central collisions
- Data well described by Catania model with coalescence and fragmentation

 Λ_c (STAR): Phys. Rev. Lett. 124, 172301, (2020) p/π (STAR): Phys. Rev. Lett. 97, 152301 (2006) Λ /K (STAR): Phys. Rev. Lett. 108, 072301 (2012) Catania: Eur. Phys. J. C 78, 348, (2018)

Λ_c/D^0 YIELD RATIO ENHANCEMENT

• Open-charm baryon/meson yield ratio

CENTRALITY DEPENDENCE

- Enhancement of the ratio increases towards central collisions
- The data well described by Catania model with coalescence and fragmentation

$p_{\rm T}$ DEPENDENCE

- Significant enhancement with respect to PYTHIA prediction
- Coalescence models closer to data than PYTHIA
- Importance of coalescence and fragmentation hadronization of charm quarks

 $\label{eq:constraint} \begin{array}{l} & \wedge_{\rm c} \, ({\rm STAR}): {\rm Phys. \, Rev. \, Lett. \, 124, \, 172301, \, (2020)} \\ & p/\pi \, ({\rm STAR}): {\rm Phys. \, Rev. \, Lett. \, 97, \, 152301 \, (2006)} \\ & \wedge / {\rm K} \, ({\rm STAR}): {\rm Phys. \, Rev. \, Lett. \, 108, \, 072301 \, (2012)} \\ & {\rm Ko \, et \, al.: \, Phys. \, Rev. \, C \, 101, \, 024909, \, (2020)} \end{array}$

Cao *et al.*: arXiv:1911.00456, (2019)

STRANGENESS ENHANCEMENT

- Another very important phenomenon observed in heavy-ion collisions is strangeness enhancement
- Protons and neutrons do not contain any (valence) strange quarks
 - Need a mechanism of strangeness production
- Fragmentation of gluons
 - Present in both p+p and Au+Au
- Strange quark-antiquark pairs from QGP
 - Only in Au+Au
 - This additional mechanism leads to enhanced strangeness production per participant in Au+Au with respect to p+p for light hadrons

How about strange heavy-flavor hadrons?

Strangeness enhancement (STAR): Phys. Rev. Lett. 108, 072301 (2012)

D_s/D^0 yield ratio enhancement

- D_s/D^0 yield ratio as a function of p_T
- Enhancement of D_s/D⁰ ratio in Au+Au collisions with respect to PYTHIA baseline
- Comparison to models:
 - Catania model with only coalescence describes data for $p_{\rm T} > 4 {\rm ~GeV}/c$
 - Catania model with coalescence and fragmentation describes data for lower $p_{\rm T}$
 - Tsinghua model with sequential coalescence hadronization is closer to data for both low and high $p_{\rm T}$
- Importance of coalescence hadronization of charm quarks with enhanced strangeness production

Catania: Eur. Phys. J. C 78, 348, (2018). TAMU: Phys. Rev. Lett. 110, 112301 (2013) Tsinghua: arXiv1805.10858, (2018).

TOTAL CHARM PRODUCTION CROSS SECTION STAR

- Total charm production cross section per binary collision in Au+Au extracted from the measurements of open-charm hadrons
 - *The $\Lambda_{\rm c}$ cross-section is derived using the $\Lambda_{\rm c}/D^0$ yield ratio
- The Au+Au result is consistent with that measured in p+p collisions within the uncertainties
- Redistribution of charm quarks among open –charm hadron species

Coll. system	Hadron	${ m d}\sigma_{ m NN}/{ m d}y$ [µb]
	\mathbf{D}^0	$41\pm1\pm5$
	D±	$18 \pm 1 \pm 3$
Au+Au at 200 GeV Centrality: 10-40%	D _s	$15 \pm 1 \pm 5$
	\wedge_{c}	78 ± 13 ± 28 *
	Total:	152 ± 13 ± 29
p+p at 200 GeV	Total:	$130 \pm 30 \pm 26$

D⁰ 2014 (STAR): Phys. Rev. C 99, 034908, (2019). D⁰ 2010/11 (STAR): Phys. Rev. Lett. 113, 142301 (2014), erratum: Phys. Rev. Lett. 121, 229901 (2018). p+p (STAR): Phys. Rev. D 86 072013, (2012)

D⁰ DIRECTED FLOW

• Hydrodynamics Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)

- Difference between the tilt of the bulk and the longitudinal density profile of HF production
- Larger slope dv_1/dy of charm guarks than light flavor quarks

Initial EM field from passing spectators

• Predicted negative dv_1/dy slope for D⁰ and positive one for $\overline{D^0}$ Das et. al., Phys Lett B 768, 260 (2017)

Hydrodynamics + EM field

- Negative dv_1/dy slope for both D^0 and D^0
- Larger magnitude of slope for D⁰ than D⁰

Chatterjee, Bozek: Phys. Lett. B 798, 134955, (2019).

0.04

0.02

-0.02

-0.04

-2

-1.5

-1

0

v_{1 (y)}

D⁰ **DIRECTED FLOW**

- First evidence of non-zero directed flow (v₁) of D⁰ and D⁰ as a function of rapidity (y)
- Negative dv_1/dy slope for both D^0 and $\overline{D^0}$
 - Larger slope than for kaons
- No EM induced splitting observed within the uncertainties
- Measurement of D⁰ directed flow can be used to constrain the difference between the tilt of the QGP bulk and the longitudinal density profile of HF production

D⁰ (STAR): Phys. Rev. Lett. 123, 162301 (2019). Kaons (STAR): Phys. Rev. Lett. 120, 062301 (2018).

CONCLUSIONS

- STAR has extensively studied production of open-charm hadrons in heavy-ion collisions utilizing the Heavy-Flavor Tracker
- The charm quarks interact strongly with the QGP and are possibly in local thermal equilibrium with the medium
 - D^0 and D^{\pm} mesons are significantly suppressed at high- p_T in central Au+Au collisions
- Coalescence likely plays an important role in hadronization of the charm quarks in A+A collisions
 - Λ_c/D^0 and D_s/D^0 yield ratios are enhanced in Au+Au collisions with respect to the p+p collisions
- Total charm production cross-section per binary collision in Au+Au collisions is consistent with that measured in p+p collisions
 - Redistribution of charm quarks among open-charm hardon species
- Charm quarks can probe initial tilt of the QGP bulk with respect to the longitudinal density profile of HF production
 - D⁰ mesons have larger v_1 slope than light-flavor mesons

THANK YOU FOR ATTENTION

Jan Vanek, CCSP 2020

