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Why heavy-flavour jets?
Heavy flavor jets are an important observable for many physics studies

Experimentally they are distinguished from light/gluon jets by: 
• They are more collimated than their light counterparts
• Presence of the secondary vertex due to the decay of heavy flavor hadron 
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Why Machine Learning?
To solve jet classification task Machine Learning can be used
• It is an established way to solve mutli-dimensional problems
• Supervised machine learning
• Learn functional mapping  𝑓:𝒳 → 𝒴 from given dataset 
• Select functional prior - Linear Model, SVM, Neural Network…
• Look for best parametrization of chosen model
• Train (i.e. minimize) some criterion - loss function
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𝜃∗ = argmin
"∈𝒫

𝐿(𝑓(𝑥; 𝜃), 𝑦)

An example of the low-dimensional parameter 
landscape.



State of the Machine Learning based c/b-jet tagging
Previous research in ML-based jet tagging was mostly about jet images
• Tag jets initiated by t quark, W boson etc. using only (𝜂, 𝜑, 𝑝!)
• Heavy-flavor jet tagging requires more information
• No simple way to unequivocally assign it in the image

Hence once should use a different approach
• Jet as a sequence of particles
• Popular approach – sorting by 𝑝! or vertex distance
• But there is another way - a set of particles
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Rethinking jet tagging

What is a jet?
• Event – a set of particle state vectors

• Jet – a subset of event identified by the clustering algorithm
• Take a set of tracks as an input to the tagging algorithm
• Approach that can help us with that - NetVLAD:
• For each set it generates a fixed-sized vector that characterizes it
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ℰ = {𝐫!|𝑖 ∈ {1, … , 𝑛}, 𝐫! = (𝑝!
" , 𝑣# , 𝑣$ , 𝑣% , … )}
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Place Localisation
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Place of interest

Variable number of other objects



Rethinking jet tagging

Particle descriptors?
• In computer vision input is low level - we need a feature extractor before NetVLAD
• In jet physics – all measured variables are already high level
• Thus our state vectors can be treated as descriptors
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Dataset generation

8

Pythia 8.235 is used to generate data
• 2 datasets are generated:
• Weighted – ”HardQCD” that respects realistic jet flavor ratio
• Balanced/Uniform - 50% light, 25% c-jet and 25% b-jet
• Separate dataset into 2 classes - light vs HF jets - better suited for RHIC physics
• The fast-sim approach is used to simulate finite resolutions:
• Gaussian smearing of 𝑝! is used in order to account for finite TPC resolution
• Resolution of the STAR HFT is used to smear vertex information

The following input variables are used:
• Track 𝑝!, 𝜂, 𝜑
• DCA"# and DCA$ of the track (distance of the closest approach to primary vertex)
• 𝑧 = %!,#$%&'

%!,()#
, Δ𝑅(track, jet) and 𝑧 Δ𝑅 & - being track momentum fraction, distance to jet 

axis and jet mass fraction
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Input Feature Distributions for 20-25 GeV/c Jets



Tagger input variables
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The following tagger versions are constructed:
• Vertexing - (DCA%&, DCA')
• Tracking - (𝑝! , 𝜂, 𝜑)
• Tracking + Fragmentation - (𝑝!, 𝜂, 𝜑, 𝑧, Δ𝑅, 𝑧(Δ𝑅)")
• Tracking + Vertexing - (𝒑𝑻, 𝜼, 𝝋, DCA𝒙𝒚, DCA𝒛) – the optimal choice



Metrics
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Name in Physics Name in ML Definition

Efficiency True Positive 
Rate/Recall 𝑇𝑃𝑅 =

𝑇𝑃
𝑃 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Misid. Probability False Positive Rate 𝐹𝑃𝑅 =
𝐹𝑃
𝑁 =

𝐹𝑃
𝐹𝑃 + 𝑇𝑁

Rejection ----------------------------- 𝑅𝑒𝑗 =
1

𝐹𝑃𝑅

Purity Precision 𝑃𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Efficiency Purity Rejection
80% 99% 268

50% 99% 579
jets in 5-10 GeV/c 

jets in 25-40 GeV/c 

Unweighted/Balanced Weighted/HardQCD

Efficiency Purity Rejection
80% 99% 366

50% 99% 740

Efficiency Purity Rejection
80% 83% 223

50% 88% 540
Efficiency Purity Rejection

80% 81% 322

50% 85% 677

Jet 𝑝5 dependent rejection and purity op

The algorithm achieves good performance across different 𝒑𝑻 ranges
• Excellent performance for low-𝑝! as well as high-𝑝! jets



Jet 𝑝5 dependent rejection and purity graphs
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Conclusions
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• We propose a novel set-based tagging methods based on the NetVLAD layer
• The model allows to identify heavy-flavor jets up to the low-𝑝! regime
• Purity of 83%, Efficiency of 80% and rejection factor of ~220 is achievable
• Posibility to look for signatures of heavy-flavor jet radiation patterns at low 𝒑𝑻
• Performance is dependent on the resolution of the hardware
• Next generation trackers (sPHENIX mVTX) should provide even better 

performance
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Backup: Classical methods
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[“A monolithic active pixel sensor detector for the sPHENIX experiment.” ]



[Arandjelović et al. 16 ]

Backup: NetVLAD principle



[Arandjelović et al. 16 ]

Backup: NetVLAD principle



Backup: Training procedure and architecture
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Training procedure
• SGD with 𝜂 = 0.013 and cosine modulation with warm restart with 𝑇! = 1, 𝑇- = 3
• Training is done for 2000 epochs at maximum
• Early stopping criterion is set for 20 epochs, looking for changes in validation loss

Model architecture
• Input is taken with NetVLAD layer
• Further we use Residual Blocks - Linear -> ReLU -> BN -> Linear -> Identity + ReLU
• Dropout for p = 0.5 is used to regularize model
• Random grid search was used for optimal hyperparameters



Backup: Hyperparameter sensitivity test
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• We need to understand what are effects of DOF on performance
• This is done by varying depth and number of clusters (fixing one, varying another)
• We choose jets in 20-25 GeV/c bin because they are the middle ground



Backup: Cluster sensitivity test
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Backup: Depth sensitivity test
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