Video analysis in STEM education

1. MOTIVATION task: Chooseany motion of a ball for following analysis,

The game provides many examples that can bring physics to life in the classroom. Especially the kinematic and dynamic characteristics of motions are worth a physics classroom discussion [1]:
> What is the velocity of the ball?
What is the rate of change of the velocity?
> Who of the students has given the ball the maximum velocity?
> What was the force with which they hit the ball?
The answers to these questions can provide an analysis of videos by means of the program Tracker [2] (Open Source Physics (OSP)).

For preparing the video files we used a camera Casio Exilim Ex-FH25 which allows to record videos with 30, $120,240,420$ and 1000 frames per second (fps).
2. ANALYSIS USING TRACKER

TASK: DETECT THE RELATIONSHIP BETWEEN PHYSICAL QUANTITIES AND DESCRIBE A MOTION USING TIME DEPENDENCIES.

What do we need?
$>$ a video in the format avi, mov, mpg , (and other formats)
to know the number of frames per second (fps) of the video ($=>\Delta t$)
a real displacement, for example 1 meter

What does the program offer? $>$ time dependencies of 22 physical quantities (+ we can define) data processing by means of graphs and tables

From the number of frames per second (30 fps in our case) the time is deduced ($\Delta t=0.033 \mathrm{~s}$), while the position can be measured in two dimensions (x, y) using a video image after calibration. The function autotracking in this program allows for accurate tracking without mouse. The motion can be divided into two parts: the horizontal component and the vertical component. These two components can be calculated independently of each other and afterwards the results can be combined to describe the total motion $\left(x(t), y(t), v_{x}(t), v_{y}(t), a_{x}(t), a_{y}(t)\right)$
area $=\int \quad \Sigma v_{y i} \Delta t_{t \rightarrow 0} \int v_{\mathrm{y}}(\mathrm{t}) \mathrm{dt}=\mathrm{y}(\mathrm{t})$
slope $=\mathrm{d} / \mathrm{dt} \quad \Delta \mathrm{y} / \Delta \mathrm{t} \underset{\Delta \mathrm{t} \rightarrow 0}{ } \mathrm{dy}(\mathrm{t}) / \mathrm{dt}=\mathrm{v}_{\mathrm{y}}(\mathrm{t})$

$$
\vec{v}=\frac{d \vec{r}}{d t} \quad \vec{a}=\frac{d \vec{v}}{d t}
$$

5. DESCRIPTION OF MOTIONS

TASK: COMPARE MATHEMATICALAND PHYSICALDESCRIPTION OF MOTION AND DETERMINE INTERESTING PHYSICAL CONSTANTS AND PARAMETERS.

$$
\begin{aligned}
& g=9.96(9.92) \mathrm{m} / \mathrm{s}^{2} \\
& v_{y}(0)=3.03(3.01) \mathrm{m} / \mathrm{s} \\
& y(0)=1.02 \mathrm{~m}
\end{aligned}
$$

4. PHYSICAL THEORY
 TASK: STUDY NEW TERMS FROM E-BOOKS OR TEXTBOOKS.

"Projectile motion" is a type of a two dimensional motion [3] in the xy plane with constant acceleration whose components are $a_{y}=-g$ and $a_{x}=0$. It is useful to think of this motion as a superposition of two one-dimensiona motions: (1) free-fall motion in the vertical direction subject to a constant downward acceleration of magnitude g and (2) motion in the horizontal direction at a constant velocity.
(1)
$a_{y}(t)=-g$
$v_{y}(t)=\int a_{y}(t) d t=-g t+v_{y}(0)$
$y(t)=\int v_{y}(t) d t=-1 / 2 g t^{2}+v_{y}(0) t+y(0)$
(2)
$a_{x}(t)=0$
$v_{x}(t)=\int a_{x}(t) d t=v_{x}(0)$
$x(t)=\int v_{x}(t) d t=v_{x}(0) t+x(0)$

6. THE RESULTS

	$2013 / 14$	$2014 / 15$	$2015 / 16$	$2016 / 17$
Faculty of Electrical Engineering	$134 / 412=$ 33%	$134 / 310=$ 43%	$110 / 235=$ 47%	$56 / 233=$ 24%
Faculty of Civil Engineering	$116 / 246=$ 47%	$62 / 126=$ 46%	$59 / 109=$ 54%	$141 / 196=$ 72%
Faculty of	$167 / 340=$	$118 / 256=$	$70 / 180=$	$68 / 235=$
46%				
Mechanical	28%			
Engineering				

The drop-out rate in University of Žilina. The first number in table stands for the freshmen who drop out during their 1st year, the second number indicates the number of enrolled students.
ssof all enolled fiestmen of FEE after fist year of study $2016 / 17$
$\mathrm{~N}=185 ; \mathrm{M}=82.60 ; \mathrm{SD}=26.5 ; \mathrm{Max}=100 ; \mathrm{Min}=0$;

Boxplot gai

CONCLUSION

Using the Summer Course of Physics, the Interactive Physics lectures using the video analysis and simulations (VAS) method of problem tasks and their integration into STEM (Science, Technology, Engineering and Mathematics) study programme and the implementation of intervention tools into our educational system (tutor, big brother/sister) the drop-out rate was reduced to 24% at FEE after three years from starting implementing the readySTEMgo project.
In future, we plan to continue organising the summer course of mathematics and physics, using interactive lectures and focusing on not only the cognitive skills but also the noncognitive skills of our students.

The evaluation confirmed the statistically significant difference between mean at the beginning and the end of the 1st semester ($\mathrm{P}<0.001$, $\mathrm{tstat}=9.68>$ tcritical $=1.98$) and between mean at the beginning and the end of the 2 nd semester
$(P<0.01$, tstat $=2.78>$ tcritical $=1.98)$.

References:

1] A. HACHNÉ, 2008. A Cool Sport Full of Physics, In: The Physics Teacher, Volume 46, Issue 7, 2008, 398-402. [2] program Tracker: http://www.cabrillo.edu/ ~dbrown/tracker
[3] hitp:///phet.colorado.edu/en/simulation/projectile-motion
4] P. HOCKICKO, 2010. Nontraditional Approach to Studying Science and Technology, In: Communications, Volume 12, No. 3, 2010, 66-71. 5] P. HOCKICKO, L'. KRIŠŤAKK, L., NĚMEC, "Development of students' conceptual thinking by means of video analysis and interactiv 6] G. LANGIE, M. PINXTEN. P. HOCKICKO, P. PACHER, "Key skills of incoming stem-students", Proceedings of the 0304-3797. 6] G. LANGIE, M. PINXTEN, P. HOCKICKO, P. PACHER, "Key skills of incoming stem-students", Proceedings of the 9th International
Conference PTEE 2017 Physics Teaching in Engineering Education "Challenges and Solutions for Effective Teaching", University of Żilina, Slovakia, pp. 14-22, May 18-19, 2017
[7] P. HOCKICKO, G. TARJȦNYIOVÁ, D. SRŠNÍKOVÁ, "The Influence of Interactive Lectures on Students' Conceptual Understanding in STEM Education", Proceedings of 9th International Conference on Education and New Learning Technologies EDULEARN17, 3rd-5th July 2017, Barcelona, Spain, pp. 1866-1873. ISBN: 978-84-697-3777-4
Acknowledgement
This work was supported by the Slovak Grant Agency KEGA through the projects No. 029žU-4/2018.

