

Physics at future EIC experiments

Michal Krelina

In collaboration with

Jan Nemchik

KCSF 2020 | Prague, 10 September 2020

Outline

- What is EIC?
- For what the EIC is useful?
- Vector mesons
 - On proton target
 - On nuclear target
- Nuclear shadowing

What is EIC

- EIC = Electron-ion collider
- Particle accelerator colliding polarized beam of electrons and ions
- Will be build in Brookhaven National Laboratory (BNL)
- Possible ions: p, d, He, Ca, C, Au, U, ... (all that worked at RHIC)
- Energies: $E_e = 15.9$ GeV, $E_A = 100$ GeV
- Current status: Yellow Report preparations

What will be studied at EIC

- Advantages:
 - Electron = clear physics (virtual photon scattering), elementary physics
 - Low-x DIS, nDIS
 - **Electroproduction** processes
- Physics program:
 - Spin and 3D structure of the nucleon (longitudinal spin, TMDs,...)
 - Quark and gluon distribution in the nucleus (nPDF, color charge propagation,...)
 - **High gluon density physics** (saturation scale, non-linear QCD evolution, diffractive physics,...)

We are interested in

- Detailed study of vector meson (VM) wave function
 - Electroproduction on proton target is an ideal tool

Nuclear effects

- Particularly nuclear shadowing including gluon shadowing
- Proper coherence length treatment
- Coherent and incoherent productions on nucleus
 - Vector mesons, di-jets, deep virtual Compton scattering, di-lepton
 - Allow study high gluon density regime of QCD

Color Dipole Framework

- Reference frame: rest frame of the nucleus
- Virtual photon fluctuations:
 - Fock component expansion: $|q\bar{q}\rangle + |q\bar{q}G\rangle + |q\bar{q}2G\rangle + |q\bar{q}3G\rangle + \cdots$
 - For DIS at proton target only the first Fock component
- Cross section:

$$\sigma_{tot}^{\gamma^*N}(x_{Bj},Q^2) = \int d^2r \int_0^1 d\alpha \left| \Psi_{q\bar{q}}^{T,L}(\vec{r},\alpha,Q^2) \right|^2 \sigma_{q\bar{q}}(\vec{r},s)$$

See more: arXiv:2003.04156

• $\gamma^* \to q \bar{q}$ wave function:

$$\Psi_{q\bar{q}}^{T,L}(\vec{r},\alpha,Q^2) = \frac{\sqrt{N_c \alpha_{em}}}{2\pi} Z_q \, \bar{\chi} \hat{O}^{T,L} \chi K_0(\epsilon r)$$

• *Improvement:* non-perturbative interaction $q-\bar{q}$

See more: Phys. Rev. D62, 054022 (2000)

Why to be interested in VM?

- Vector Mesons (VM) are used as a probe for example in heavy-ion collisions
- Mostly 1S states of heavy quarkonia are used J/ψ and Υ
- The size of heavy quarkonia is relatively small

But do we use the correct wave functions?

- Many publication uses the so called boosted-Gaussian light cone wave function
 - Uses photon-like vertex
 - Consider the HO Qar Q potential

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$I = 0, c\bar{c}$ $I = 0, b\bar{b}$ $I = 1/2, u\bar{c}, \bar{u}c$ $I = 1/2, d\bar{c}, \bar{d}c$ $I = 0, c\bar{s}, \bar{c}s$ $I = 1/2, d\bar{b}, \bar{d}b$ $I = 1/2, u\bar{b}, \bar{u}b$ $I = 0, b\bar{s}, \bar{b}s$ $I = 0, c\bar{c}$ $I = 0, c\bar{c}$ $I = 0, c\bar{c}$ $I = 0, b\bar{b}$ $I = 0, b\bar{b}$ $I = 0, b\bar{b}$ $I = 0, b\bar{b}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ \pm 1 \\ \pm 1 \\ 0 \\ \pm 1 \\ 0 \\ 0 \\ \pm 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$J/\psi(1S)$ $\Upsilon(1S)$ D^* D^* D^* B^* B^* B_s^* $\psi(3770)$ $D_{s1}^*(2700)^{\pm}$ $\psi(2S)$ $\Upsilon(2S)$ $\Upsilon(3S)$ $\Upsilon(4S)$	3.0969 9.46030 2.00685 2.01026 ?? 5.32465 ?? 5.4154 3.77313 2.7083 3.686097 10.02326 10.3552 10.5794
1 0 - /				

CTU CZECH TECHNICAL UNIVERSITY IN PRAGUE

VM wave function cookbook

- 1) Go to the rest frame of the quark-antiquark Qar Q system
- 2) Solve the Schrödinger equation (SE)

 The potential in SE corresponds to the potential between both quark and antiquark
- 3) Boost it to the light cone (LC) frame
- 4) Use it for example within the color dipole framework
- In case of VM, we can factorize the radial and spin-orbital part
- In most cases, the spin-orbital part is omitted (only effect in normalization)
 - Application of Melosh spin rotation
 - H.J. Melosh, Phys. Rev. D 9, 1095 (1974)
 J. Hufner, Y.P. Ivanov, B.Z. Kopeliovich, A.V. Tarasov, Phys. Rev. D 62, 094022 (2000)

Results – highlight of SR effect

- BT potential + KST/GBW dipole cross section
- Stronger effect of the spin rotation for $\psi(2S)$

Results – highlight of SR effect

BT potential + KST/GBW dipole cross section

Buchmuller-Tye potential

Nuclear shadowing

- Nuclear shadowing: shadowing of hadronic components of virtual photon caused by their multiple scattering inside the target
- Coherence length (CL)/time:
 - Controls the dynamics of nuclear shadowing
 - Photon fluctuation lifetime
 - For example: lowest Fock component $|q\bar{q}\rangle$

$$l_c = \frac{2\nu}{Q^2 + M_{q\bar{q}}^2}, \quad \nu = \frac{Q^2}{2m_N x_{Bj}}$$

• CL is related to the longitudinal momentum $q_c = 1/l_c$

Nuclear shadowing limits

- Eikonal approximation (LCL long coherence length)
 - $\sigma_{q\bar{q}} \to 2\left(1 e^{-\frac{1}{2}T_A(b)\sigma_{q\bar{q}}}\right)$
 - This is valid for $l_c\gg R_A$
 - I.E.: for small x_{Bi}
- For all other l_c use the Green function technique
- This technique is more important for higher Fock components, because

$$M_{q\bar{q}}^2 \ll M_{q\bar{q}G}^2 \ll M_{q\bar{q}2G}^2 \ll \cdots$$

Gluon shadowing

- $\gamma^* \to q \overline{q} G$ wave function
 - $\gamma^* \to GG$ approximation, valid for higher Q^2
 - The full $\gamma^* \to q \bar{q} G$ wave function in progress
- Small $\sigma_{q\bar{q}}(\vec{r},s)$ approximation, i.e., $\sigma_{q\bar{q}} \sim Cr^2$
 - Various ways to get factor C
 - We discuss two of them denotes as C_0 and more realistic $C_{
 m eff}$
- Green function considered only because

•
$$M_{q\bar{q}G}^2 = \frac{p_T^2}{\alpha_G(1-\alpha_G)} + \frac{M_{q\bar{q}}^2}{1-\alpha_G} >> M_{q\bar{q}}^2$$
 See more: Phys. Rev. C62, 035204 (2000)

• Implemented as $\sigma_{q\bar{q}}(\vec{r},s) \to R_G(b,x_{Bj},Q^2)\sigma_{q\bar{q}}(\vec{r},s)$

See more: Nucl. Phys. A696, 669 (2001)

Results: Gluon shadowing standalone

Results: Full shadowing

Results: Data comparison

Coherence correction applications

- About coherence length we should care for all processes on nuclear target
 - At least at lower $\sqrt{s_{NN}}$ energies (~RHIC, EIC), or
 - At LHC energies and large rapidities
- Example:
 - Currently, the correct finite coherence length is hot topic for EIC that will probe energies, where the eikonal form is not more safe
 - VM photo/electro production, DVCS, di-jets, ...
 - Other hot topic are UPC, see next slides...

Application for VM photoproduction

PRELIMINARY (RHIC energy)

Application for VM photoproduction

PRELIMINARY (LHC energy)

Conclusions and outlooks

Vector mesons

- Proper wave function calculation
- Spin rotation effects contribute to obtain a reasonable agreement with available data without any adjusted parameter (e.g. skewedness);
- Spin rotation effects lead to a rise of the higher state VM photoproduction cross section by a factor of $2 \div 3$
- Nuclear shadowing
 - Non-perturbative effects in $q \overline{q}$ interaction
 - Exact treatment of coherence length
 - Green function technique
 - Gluon shadowing
- Main source of uncertainty: dipole cross section $\sigma_{q\bar{q}}(\vec{r},s)$
 - $\sigma_{q\bar{q}}(\vec{r},s)$ is fitted from DIS
 - Nuclear DIS can help to exclude some of them
- Color dipole formalism offers nature calculations for nuclear targets

Thank you for your attention!

The work was supported from European Regional Development Fund-Project

"Center of Advanced Applied Science"

No. CZ.02.1.01/0.0/0.0/16-019/0000778.

EUROPEAN UNION
European Structural and Investment Funds
Operational Programme Research,
Development and Education

