Novel high-luminosity fixedtarget experiment at the LHC

Barbara Trzeciak

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

20th Conference of Czech and Slovak Physicists September 7-10, 2020

ČVUT

KONFERENCE Českých a Slovenských Fyziků

LHC

The collider mode at LHC

LHCb

Collider Mode

proton

lead ion

The collider mode at LHC

> Energy range

Fixed-target Mode

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \mathrm{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$		Rapidity shift:
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Fifect of boost

7 TeV proton beam on a fixed target

c.m.s. energy	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \mathrm{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$		Rapidity shift:
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

→ Effect of boost

7 TeV proton beam on a fixed target

c.m.s. energy	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \mathrm{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

• y_{cms} > 0

Entire forward hemisphere within 1°

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$		Rapidity shift:
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

> Effect of boost

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \mathrm{GeV}$	Rapidity shift:	
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$	•

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$		Rapidity shift:
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

• y_{cms} > 0

Entire forward hemisphere within 1°

Easy access to (very) large CM backward rapidity range,

And large parton momentum fraction $x_2 \rightarrow 1 (x_F \rightarrow -1)$

 $[|x_F| \equiv \frac{|p_z|}{p_{z \max}} \to 1]$

First of boost

Possible implementations

Internal gas target

- Full LHC beam flux on internal gas target
- Feasibility demonstrated by SMOG at LHCb
- Storage cell target (HERMES-like) or gas-jet system (RHIC H-jet polarimeter) for (un)polarised gases
- Can be coupled with an existing experiment

> Internal wire/foil target

- Beam halo recycled directly on internal solid target
- As HERA-B and STAR, heavy-nucleus targets

Possible implementations (2)

Internal gas target

- Full LHC beam flux on internal gas target
- Feasibility demonstrated by SMOG at LHCb
- Storage cell target (HERMES-like) or gas-jet system (RHIC H-jet polarimeter) for (un)polarised gases
- Can be coupled with an existing experiment

> Internal wire/foil target

- Beam halo recycled directly on internal solid target
- As HERA-B and STAR, heavy-nucleus targets

Beam line extracted with a bent crystal

- Beam halo deflected onto an external target
- Thick (un)polarised and cryogenic polarised targets
- Considerable amount of civil engineering
- Beam "split" by a bent crystal
 - Beam halo deflected onto an internal solid or gas target
 - Inside beam pipe of an existing LHC experiment

S.Redaelli, Physics Beyond Collider Kickoff workshop, CERN, 2016

Possible implementations: ALICE

Beam splitting with bent crystal + internal target

- Crystal installed prior of the IP2, deviates the beam halo onto a target
- Pneumatic motion system with two position, IN and OUT of the beam pipe
- Various target type: from Be to W
- Target length from ${\sim}100\mu m$ to 1 cm
- Feasibility studies ongoing

beampine section

→ Gas storage cell target

Under study

Acceptance in centre-of-mass y

With7 TeV proton beam

 $\Delta y = 4.8$

E

Physics motivations

Advance our understanding of the high-x frontier in nucleons and nuclei (gluon and heavy-quark content) and its connection to astroparticle physics

Gluon nuclear PDF uncertainties in lead nuclei

Physics motivations

- Advance our understanding of the high-x frontier in nucleons and nuclei (gluon and heavy-quark content) and its connection to astroparticle physics
- Unravel the spin of the nucleon: dynamics and spin distributions of quarks and gluons inside (un)polarised nucleons

Physics motivations

- Advance our understanding of the high-x frontier in nucleons and nuclei (gluon and heavy-quark content) and its connection to astroparticle physics
- Unravel the spin of the nucleon: dynamics and spin distributions of guarks and gluons inside (un)polarised nucleons
- Studies of the quark-gluon plasma in heavy-ion collisions at a new energy domain down to the target-rapidity region

B.Trzeciak, kcsf2020

High-x PDF and nPDF

- Structure of nucleon and nuclei at high-x (>0.5) is poorly known, both at low and high scales
- Intrinsic (non-perturbative) charm (beauty) content of proton ? Important for reducing uncertainties of the neutrino flux

gluon nuclear PDF uncertainties

Spin of nucleon

- Unravel the spin of the nucleon: dynamics and spin distributions of quarks and gluons inside (un)polarised nucleons
- > 3D mapping of the proton momentum
- How quarks and gluons bind into a spin-1/2 object

- quark/anti-quark: ~30% of proton longitudinal spin
- gluons: even up to 40%
- Missing contribution to the proton spin from the transverse dynamics of quarks and gluons
 gluon and quark Orbital Angular Momentum L_{g:q}

arXiv: 1807.00603

Spin of nucleon

- Unravel the spin of the nucleon: dynamics and spin distributions of quarks and gluons inside (un)polarised nucleons
- > 3D mapping of the proton momentum
- How quarks and gluons bind into a spin-1/2 object

- → quark/anti-quark: ~30% of proton longitudinal spin
- ➔ gluons: even up to 40%
- Missing contribution to the proton spin from the transverse dynamics of quarks and gluons
 gluon and quark Orbital Angular Momentum L_{g:q}

1980s now

- Single Transverse Spin Asymmetries

 (with transversely polarised target) → Orbital
 motion of partons inside hadron:
 Sivers effect
- Non-zero quark/gluon Sivers functions
 → non-zero OAM

$$f_{\rm 1T}^{\perp} = \underbrace{\bullet}_{\rm Sivers} - \underbrace{\bullet}_{\rm Sivers} A_N = \frac{1}{\mathcal{P}_{\rm eff}} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

arXiv: 1807.00603

Quark-Gluon Plasma

- → Study of the **quark-gluon plasma** between SPS and top RHIC energies of $\sqrt{s_{NN}} = 72$ GeV over broad rapidity range
- > Complete studies as a function of rapidity, centrality and system size → scan in μ_B complementary to RHIC BES programme

Quark-Gluon Plasma (2)

- → Study of the **quark-gluon plasma** between SPS and top RHIC energies of $\sqrt{s_{_{NN}}} = 72$ GeV over broad rapidity range
- > Complete studies as a function of rapidity, centrality and system size → scan in μ_B complementary to RHIC BES programme
- Precise measurements of soft and hard probes of the QGP

Summary

- AFTER@LHC: high-statistics measurements in an energy domain between the SPS and top RHIC, in an unexplored rapidity domain
- Three main physics motivations:
 - High-x frontier: nucleon and nuclear structure
 - Spin of the nucleon and the transverse dynamics of partons
 - Quark-gluon plasma over broad rapidity domain
- Experimental implementation possible based on the existing LHCb and ALICE detectors, two promising technical implementations:
 - Internal gas target
 - Beam halo extraction with a bent crystal on an internal target

A Fixed-Target Programme at the LHC: arXiv: 1807.00603 Submitted to Physics Report

B.Trzeciak, kcsf2020

GRANTOVÁ AGENTURA ČESKÉ REPUBLIKY

Summary

- AFTER@LHC: high-statistics measurements in an energy domain between the SPS and top RHIC, in an unexplored rapidity domain
- Three main physics motivations:
 - High-x frontier: nucleon and nuclear structure
 - Spin of the nucleon and the transverse dynamics of partons
 - Quark-gluon plasma over broad rapidity domain
- Experimental implementation possible based on the existing LHCb and ALICE detectors, two promising technical implementations:
 - Internal gas target
 - Beam halo extraction with a bent crystal on an internal target

A Fixed-Target Programme at the LHC: arXiv: 1807.00603 Submitted to Physics Report

> This work was supported by grant from The Czech Science Foundation, grant number: GJ20-16256Y

Detector requirements

→ Wide rapidity coverage of backward and mi-rapidity in y_{c.m.s.}

p beam: $y_{lab.}$ range 0 – 4.8

Pb beam: $y_{lab.}$ range 0 – 4.2

- → With (low p_T) **PID and vertexing** capabilities
- Heavy-ion: good performance in highmultiplicity events, up to 600 – 700 charged tracks per unit of rapidity at η_{lab}~4.2
- Readout rate similar to LHC collider
- Polarised target requires space e.g. for pumping system

Spin projections

- Transversely polarised target
 - Gluon Sivers effect:
 - With D^0 -difference in A_N of D^0 vs D^0 gives A_N of D^0 vs D^0 access to C-odd correlators (PHENIX: 1703.09333)
 - Quarkonia (Υ never measured) and di-J/ ψ access to $k_{_{\!T}}$ dependence of the gluon Sivers function for the first time

charm PDF (IC) with D

12

4

2

- Extremely good prospects for charm
 - Down to 0 $p_{\tau} \rightarrow$ total charm x-section
 - Wide rapidity coverage, $x_{F} \rightarrow -1$
 - High statistical precision in pp, p-A, A-A
 - With LHCb background well under control
 - Intrinsic charm modifies significantly D meson yields at large p_{τ} or forward rapidity
 - Large-x \rightarrow large charm PDF uncertainty
- uncertainty due to c(x) Perturbative via gluon splitting vs non-perturbative field relative from intrinsic charm
 - Impact on neutrino flux and cosmic-ray physics

gluon nPDF with heavy-flavour

- Constraining gluon nPDF with D, B and quarkonium measurements
- Almost unknown for x > 0.1; anti-shadowing, EMC effect ?
 - Reweigting analysis with pseudo data on $R_{_{\rm pA}}$
- Large reduction on the gluon nPDF uncertainty: unique constraints at large x and low scales
- Other nuclear effects in play: nuclear absorption, ...

Quarkonium measurements

- Determination of the QGP thermodynamic properties
 - Measurements of ψ and $\Upsilon(nS)$ states down to 0 $p_{_{T}}$, in pp, pA and PbA
 - Negligible contribution from recombination

Few Body Syst. 58 (2017) 5, 148

Quarkonium R_{AA}

- Precise measurements of charmonium states vs rapidity
- Measurement of the 3 $\Upsilon(\mathrm{nS})$ state suppression

- Possibility to access χ_{c} and $\eta_{c},$ J/ ψ – J/ ψ and J/ ψ – D correlations

Few Body Syst. 58 (2017) 5, 148 arXiv: 1807.00603

Open HF in small systems

- P-A collisions: cold nuclear matter effects, collectivity in small systems, QGP ?
- Simultaneous measurements of D meson elliptic flow and nuclear modification factor, in different systems

- ALICE: target at z = -4.7 m, with 1cm long solid targets
- Similar precision expected in 10-20, 20-40% centrality intervals
- -> Quarkonia and HF $_{\mu}$ can be studied with ALICE muon arms at: -1.6 < y_{_{CMS}} < -0.5

QGP: Open Heavy-Flavour

- Precise suppression measurements of charm and beau vs rapidity and $p_T \rightarrow$ medium transport coefficient
- Useful reference for charmonium studies
- p-A: study collective-like effects in small systems
- Precise D meson v₂ measurement
 - Studies vs y and different target type

Possible implementation: ALICE

Beam splitting with bent crystal + internal target

- Crystal installed prior of the IP2 (ALICE), at ~70m
- Deviates the beam halo onto a solid target in L3 magnet
- Target z position < 4.8m

Gas storage cell target

Possible implementation: LHCb

- Several investigations/projects:
 - Unpolarised storage cell gas target: SMOG2
 - Polarized storage cell gas target: LHCSpin, R&D needed with possible installation in LS3
 - Beam split and internal W solid gas (with a second crystal)

- Forward detector with full PID, 2 < $\eta_{\rm lab}$ < 5
- Precision tracking system, vertex locator

LHCb:

- Limitation in high-multiplicity event reconstruction
- New VELO: high readout rate, higher multiplicities

Possible implementations

Internal gas target

- Full LHC beam flux on internal gas target
- Use of an existing LHC experiment
- · Feasibility demonstrated by SMOG at LHCb
- Storage cell target (HERMES-like) or gas-jet system (RHIC H-jet polarimeter) for (un)polarised gases

- Measures proton beam polarisation at RHIC
- Polarised gas: H, D and He possible