Monte Carlo Simulations of Upsilon Meson Production

Jaroslav Bielcik, **Jakub Ceska**^{*}, Leszek Kosarzewski, Miroslav Myska Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague (CZ)

 Υ in QGP

 Υ mesons are a quark-gluon plasma (QGP) probe. The observed production suppression at higher temperatures is caused by:

- Debeye like colour screening of diquark potential [1];
- cold nuclear matter effects, such as shadowing, comover interaction or nuclear absorption [2];
- feed-down contributions.

Production mechanisms

 Υ production mechanism is not yet well understood. The important ingredients are:

• hard scattering - *bb* production;

PYTHIA

- p_T ordered showers
- Lund string hadronisation
- direct Upsilon production (matrix elements for Bottomonia)

Simulation

- PYTHIA and Herwig simulations of pp collisions at 500 GeV
 - Minimum bias: non-single-diffractive SoftQCD
- Track selection: $|\eta| < 1, \ p_T > 0.2 \ {
 m GeV/c}, \ {
 m stable} \ (au > 10 \ {
 m mm/c}) \ ({
 m STAR})$ cuts)

Herwig

- angular ordered showers
- cluster hadronisation
- Upsilon production during hadronisation (bb matrix element)

• bound state formation - colour singlet, colour octet channels.

Charged particle multiplicity dependence

- CMS: strong Υ production dependence on charged particle multiplicity in pp @ $\sqrt{s} = 2.76$ TeV [3]
- STAR: similar trend for J/Ψ in pp @ $\sqrt{s} = 200$ GeV [4]

This dependence is sensitive to:

- interplay between soft and hard processes;
- multiple parton interaction influence;

- Upsilon selection: $p_T > 0$ or 4 GeV/c, electron decay channel only, both electrons within acceptance
- Directly produced Upsilon(1S) no feed-down contribution
- Herwig production depends on b-parton k_{\perp} cut (4 or 20 GeV/c) lower values result in spoiling track multiplicity while improving Upsilon characteristics

• Comparison to STAR preliminary data [5]

Multiplicity distributions for MB (left) and Upsilon(1S) (middle) events and p_T distributions for Upsilon events (right).

Results

• possible parton saturation signatures.

Normalised multiplicity dependence

Experimental observable $N_{\Upsilon} / \langle N_{\Upsilon} \rangle$ defined as:

$N_{\Upsilon}/\langle N_{\Upsilon}\rangle = (N_{\rm MB}/N_{\rm MB}^{\rm bin})(N_{\Upsilon}^{\rm bin}/N_{\Upsilon})$

 $N_{\rm ch}/\langle N_{\rm ch}\rangle$... self-normalised particle multiplicity N_{Υ} ... total number of events containing Upsilon meson $N_{\Upsilon}^{\rm bin}$... number of Upsilon events in corresponding multiplicity bin $N_{\rm MB}$... total number of minimum bias (MB) events $N_{\rm MB}^{\rm bin}$... number of MB events in corresponding $N_{\rm ch}/\langle N_{\rm ch}\rangle$ bin

References

* speaker, ceskajak@fjfi.cvut.cz

- [1] S. Chatrchyan *et al.* [CMS], Phys. Rev. Lett. **109** (2012), 222301 [2] Ziwei Lin and C.M. Ko, Phys. Lett. B **503** (2001), 104 - 112
- [3] S. Chatrchyan *et al.* [CMS], JHEP **04** (2014), 103
- [4] J. Adam, et al. [STAR], Phys. Lett. B **786** (2018), 87-93

- Normalised event multiplicity of Upsilon yield calculated using (1)
- $N_{\rm ch}/\langle N_{\rm ch}\rangle$ binning selected according to STAR preliminary data: 0-1, 1-2, 2-3, 3-8 and 8-100 (overflow bin)

Normalised Upsilon(1S) yield dependence on normalised multiplicity for PYTHIA and Herwig compared to STAR preliminary data [5]; left: p_T integrated; right: $p_T > 4 \text{ GeV/c.}$

Conclusion

- The minimum bias spectra differ significantly for PYTHIA and Herwig in larger multiplicities
- Upsilon production in Herwig has limited validity
- [5] L. Kosarzewski [STAR]: Overview of quarkonium production studies in the STAR experiment, Presented at FAIRness 2019
- [6] J. Adam et al. [ALICE], JHEP 09 (2015), 148

Acknowledgements

The work was supported from the project LTT18002 of the Ministry of Education, Youth, and Sport of the Czech Republic and from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778.

- Both PYTHIA and Herwig ($k_{\perp} = 20 \text{ GeV/c}$) predict stronger than linear increase in normalised Upsilon yield in dependence on normalised multiplicity
- In comparison to STAR preliminary data [5] both PYTHIA and Herwig (k_{\perp} = 20 GeV/c) predict higher values for larger multiplicities, while underestimating smaller multiplicity values
- The data suggests, that Upsilon mesons are produced in multi-parton collisions [6], due to stronger than linear increase predicted by PYTHIA and Herwig $(k_{\perp} = 20 \text{ GeV/c})$

Presented at 20th Conference of Czech and Slovak Physicists, 7th - 10th September 2020, Prague, Czech Republic

EUROPEAN UNION European Structural and Investment Funds **Operational Programme Research**, **Development and Education**

