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Abstract
We use the Wick-rotated time-dependent supersymmetry to construct models of two- dimensional Dirac fermions in pres-

ence of an electrostatic grating. We show that there appears omnidirectional perfect transmission through the grating at specific
energy. Additionally to being transparent for incoming fermions, the grating hosts strongly localized states, see [7] for more
details.

Introduction
Klein tunneling is a phenomenon in relativistic quantum mechanics where the particle can tunnel through an
electrostatic barrier without being reflected, provided that the barrier is sufficiently high. This counter-intuitive
behavior stems from the fact that the electron converts into the positron inside the barrier, which is not allowed
in non-relativistic case.

Nonrelativistic system described by one-
dimensional Schrödinger Hamiltonian HS:

Relativistic system described by one-dimensional
stationary Dirac Hamiltonian HD:

In the nonrelativistic systems described by
Schrödinger equation, the energy spectrum is
bounded from below. There are only exponentially
decreasing solutions available in the barrier, which
implies that the wave function of the particle gets
dampened and partially reflected.

In the relativistic wave equations (e.g. Dirac equa-
tion), there are both positive and negative energy
solutions. They correspond to particles and anti-
particles, respectively. When the electrostatic barrier
is strong enough (V0 > 2M ), then an incoming par-
ticle (electron) of energy E0 < (V0 −M) can prop-
agate as an antiparticle (positron) inside the barrier
and perfect transmission can occur.

Klein tunneling was not observed for elementary particles so far as the strength of the electrostatic field
necessary to observe the phenomenon surpasses possibilities of the current experiments. However, it was
observed in condensed matter systems.

In graphene, the quasi-particles behave as mass-less, two-dimensional Dirac fermions. The effective Hamil-
tonian reads

H = −iσ1∂x − iσ2∂y + V (x, y) (1)

where the (matrix) potential term V (x, y) represents the external fields.
The transport properties of the system described by (1), where V = V (x) is a rectangular potential barrier as

depicted above, were studied in [1]. The transmission T is strongly angle-dependent. The perfect tunneling
T = 1 occurs for a discrete set of incidence angles only.

Scheme of the scattering experiment Dependence of the transmission amplitude on the
incidence angle

Dirac fermion described by (1) bouncing on the rect-
angular electrostatic barrier V = V (x) under differ-
ent angles.

Figure from [1]: Transmission probability T for
Dirac Fermions in graphene through 100nm-wide
barrier, V0 = 200meV (red), V0 = 285meV (blue),
energy of incident particle E0 = 80meV .

Super-Klein tunneling (also called all-angle or omnidirectional Klein tunneling) is a phenomenon where rel-
ativistic particles can go through an electrostatic barrier at any angle without being reflected. It was revealed
recently in the condensed-matter systems where the quasi-particles behave as relativistic ones with spin one
[2], [3] one-half [4] and zero spin [5].

Omnidirectional Klein tunneling occurs exclusively for a specific energy. When the energy of the incoming
particle is mismatched with this critical value, transmission amplitude gets strongly angle-dependent. In all
the studied cases, the system possessed translational invariance in one direction, i.e. V = V (x).

Q: Does the super-Klein tunneling exist in the systems without translational symmetry?
A: Yes, it does. We found an explicit example.

Exactly solvable 1+1D Dirac equation via
time-dependent supersymmetry
Supersymmetric transformations allow to construct new solvable systems from the known ones. The Hamil-
tonians H0 of the original and H1 of the new system are intertwined by operator L that represents the super-
symmetric (Darboux) transformation,

LH0 = H1L, L†H1 = H0L
†. (2)

The intertwining relations are powerful as they allow to find solutions of (H1 − λ)ξ = 0 from (H0 − λ)ψ = 0
where ξ ≡ Lψ.

We utilize the results of [6] where H0 was fixed as the 1+1D Dirac operator of free particle,

H0ψ = (i∂t − iσ2∂z −mσ3)ψ = 0, (3)

and the operator L and H1 were found in the following form,

L = ∂z −
1

2D1

(
ω2 sinh(2kz)

k
σ0 − 2m cosh2(ωt)σ1 + ω sinh(2ωt)σ2

)
, (4)

H1 = i∂t − iσ2∂z +

(
−m +

4mk2 cosh2(ωt)

m2 + k2 cosh(2ωt) + ω2 cosh(2kz)

)
σ3. (5)

Here D1(z, t) = (m2 + k2 cosh(2ωt) + ω2 cosh(2kz))/2k2. As a by-product of the supersymmetric transfor-
mation, one gets two ”extra” solutions v1 and v2 that have no analog in the original system,

v1(z, t) =
1

D1
([m cosh(ωt) + iω sinh(ωt)] sinh kz, k cosh(ωt) cosh(zk))T , v2(z, t) = σ1v1(z, t)

∗.

They satisfy L†va = 0, H1va = 0.

From 1+1D to 2+0D: the Wick rotation
The Wick rotation was used originally to get solutions of Bethe-Salpeter equation in Minkowski space from
those defined in the Euclidean space. Let us go in the opposite direction and define a system living in two-
dimensional Euclidean space from a related 1+1 dimensional relativistic model and get a relevant information
on its physical properties.

We make the following change of coordinates, z = ix, ∂z = −i∂x, t = y, multiply the equation by σ3 and
make an additional gauge-transformation of the Hamiltonian,

H̃1(x, y)ψ̃(x, y) = −Uσ3H1(ix, y)U
−1ψ̃(x, y)

=

(
−iσ1∂x − iσ2∂y +m− 4mk2 cosh2(ωy)

m2 + k2 cosh(2ωy) + ω2 cos(2kx)
σ0

)
Uψ(ix, y) = 0,

where U = ei
π
4σ1 and k =

√
m2 + ω2. We get a stationary Dirac equation for zero energy in two dimensions.

For large |y|, the potential term tends to −m. We substract this constant value and attribute it to the energy.
We get stationary equation for energy E = m,(

−iσ1∂x − iσ2∂y + VA(x, y)σ0
)
ψ̃(x, y) = mψ̃(x, y), (6)

where VA(x, y) = −
4mω2 sin2(kx)

m2+k2 cosh(2ωy)+ω2 cos(2kx)
. The potential term vanishes for large |y| and is periodic in x,

lim|y|→∞ VA(x, y) = 0, VA(x+π/k, y) = VA(x, y), VA(x, y) = VA(−x,−y). It forms an electrostatic grating
in the graphene sheet.

The transformed extra solutions represent states that are strongly localized at the grating

ṽ1 = Uv1(ix, y), ṽ2 = Uv2(ix, y). (7)

Scattering
The intertwining relation (2) reduces to

(−iσ1∂x − iσ2∂y +mσ0)ψ̃ = 0⇒
(
−iσ1∂x − iσ2∂y + VA(x, y)σ0 −m

)
L̃ψ̃ = 0. (8)

It allows us to get scattering solutions of (6):
The free-particle solutions of H̃0ψ̃0(x, y, φ) = 0 can be written as

ψ̃0(x, y, φ) = eim(sinφx+cosφ y)
(

1

−ie−iφ
)
, kx = m sinφ, ky = m cosφ, φ = (−π/2, π/2),

where φ corresponds to the incidence angle of the plane wave. Let us investigate asymptotic behavior of L̃ψ̃0
for large |y|. The operator L̃ has the following asymptotic form

L̃ ∼ −i∂x +mσ1 ∓ ωσ3, y → ∓∞,

Comparing the behavior of L̃ψ̃0 at y → −∞ and y → +∞, there is just a phase shift,

lim
y→+∞

L̃ψ̃0 =
ω − im cosφ

−ω − im cosφ

(
lim

y→−∞
L̃ψ̃0

)
.

Hence, the function L̃ψ̃0 acquires just a phase shift when passing through the barrier, independently on the
incidence angle. Therefore, there is super-Klein tunneling in the system for energy E = m.

The potential term VA(x, y) (upper row) with density of probability of the confined state ṽ1
(lower left). The columns differ by the choice of ω and m. In the first column, we used
m = 1, ω = 0.5. In the lower middle and right, we show density of probability (interference
pattern) of a linear combination FA(x, y, φ1, φ2) = L̃ψ̃0(x, y, φ1) + L̃ψ̃0(x, y, φ2) of a free
particle (left) and the asymptotically plane-wave solutions fro the upper row potential for
m = 1 (center) and m = −1 (right). In these plots, we used ω = 0.75, φ1 = 0, φ2 = π/2.

Conclusions
• To our best knowledge, we found the first genuinely two-dimensional configuration of the electrostatic field

that permits super-Klein tunneling for the two-dimensional Dirac fermions.
• The model presented here shows that the omnidirectional Klein tunneling is not specific only for the systems

with translational symmetry.
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