ELECTROWEAK CORRECTIONS FOR LHC PHYSICS

HUA-SHENG SHAO

RECONTRES DE PHYSIQUE DES PARTICULES 2020 30 JANUARY 2020

Plan

Introduction (why bother ?)

• The current status

The theoretical issues

A few phenomenological implications

INTRODUCTION

PRECISION MEASUREMENTS AT THE LHC

A very impressive SM cross section measurements at the LHC

many processes are at percent even subpercent level

In order to fully exploit these data, theoretical calculations are crucial to keep pace !

- LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV
 - energy reaches deeper into multi-TeV region & high integrated luminosity
 - many processes (even rare processes before) reach precision era (precent)
- NLO QCD becomes standard: automation (e.g. MG5_aMC)
 - scale uncertainty reaches to 10% level

- LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV
 - energy reaches deeper into multi-TeV region & high integrated luminosity
 - many processes (even rare processes before) reach precision era (precent)
- NLO QCD becomes standard: automation (e.g. MG5_aMC)
 - scale uncertainty reaches to 10% level

$pp \mathop{\rightarrow} W^+ W^+ jj$	$2.251 \pm 0.011 \cdot 10^{-1}$	+10.5% +2.2% -10.6% -1.6%	d.1	$pp \rightarrow jj$	$1.580 \pm 0.007 \cdot 10^{6}$	+8.4% +0.7% -9.0% -0.9%
$pp \mathop{\rightarrow} W^- W^- jj$	$1.003 \pm 0.003 \cdot 10^{-1}$	+10.1% +2.5% -10.4% -1.8%	d.2	$pp \rightarrow jjj$	$7.791 \pm 0.037 \cdot 10^4$	+2.1% $+1.1%-23.2%$ $-1.3%$
$pp \rightarrow W^+W^-jj$ (4f)	$1.396 \pm 0.005 \cdot 10^{1}$	+5.0% +0.7% -6.8% -0.6%	d.7	$pp \rightarrow t\bar{t}$	$6.741 \pm 0.023 \cdot 10^2$	+9.8% +1.8%
$pp \rightarrow ZZjj$	$1.706 \pm 0.011 \cdot 10^{0}$	+5.8% +0.8% -7.2% -0.6%	d.8	$pp \rightarrow t\bar{t}j$	$4.106 \pm 0.015 \cdot 10^2$	-10.9% -2.1% +8.1% +2.1%
$pp \rightarrow ZW^{\pm}jj$	$9.139 \pm 0.031 \cdot 10^{0}$	+3.1% +0.7% -5.1% -0.5%	d.9	$pp \rightarrow t\bar{t}jj$	$1.795 \pm 0.006 \cdot 10^2$	-12.2% - 2.5% +9.3% +2.4%
$pp \rightarrow \gamma \gamma j j$	$7.501 \pm 0.032 \cdot 10^{0}$	+8.8% $+0.6%-10.1%$ $-1.0%$	d.10	$pp \rightarrow t\bar{t}t\bar{t}$	$9.201 \pm 0.028 \cdot 10^{-1}$	-10.1% - 2.9% -3 + 30.8% + 5.5% -25.6% - 5.0%
$pp \rightarrow \gamma Z j j$	$4.242 \pm 0.016 \cdot 10^{0}$	+0.5% +0.6% -7.3% -0.6%				-23.070 -3.97
$pp \rightarrow \gamma W^{\pm} jj$	$1.448 \pm 0.005 \cdot 10^{1}$	+3.6% +0.6% -5.4% -0.7%	d.11	$pp \rightarrow t\bar{t}b\bar{b}$ (4)	$1.452 \pm 0.005 \cdot 10^{1}$	$+37.6\% +2.9\% \\ -27.5\% -3.5\%$
	$\begin{array}{c} pp \rightarrow W^+W^+jj \\ pp \rightarrow W^-W^-jj \\ pp \rightarrow W^+W^-jj \ (\mathrm{4f}) \\ pp \rightarrow ZZjj \\ pp \rightarrow ZW^{\pm}jj \\ pp \rightarrow \gamma\gamma jj \\ pp \rightarrow \gamma Zjj \\ pp \rightarrow \gamma W^{\pm}jj \end{array}$	$\begin{array}{lll} pp \rightarrow W^+ W^+ jj & 2.251 \pm 0.011 \cdot 10^{-1} \\ pp \rightarrow W^- W^- jj & 1.003 \pm 0.003 \cdot 10^{-1} \\ pp \rightarrow W^+ W^- jj \ (4f) & 1.396 \pm 0.005 \cdot 10^1 \\ pp \rightarrow ZZ jj & 1.706 \pm 0.011 \cdot 10^0 \\ pp \rightarrow ZW^{\pm} jj & 9.139 \pm 0.031 \cdot 10^0 \\ pp \rightarrow \gamma \gamma jj & 7.501 \pm 0.032 \cdot 10^0 \\ pp \rightarrow \gamma Z jj & 4.242 \pm 0.016 \cdot 10^0 \\ pp \rightarrow \gamma W^{\pm} jj & 1.448 \pm 0.005 \cdot 10^1 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro JHEP'14

- LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV
 - energy reaches deeper into multi-TeV region & high integrated luminosity
 - many processes (even rare processes before) reach precision era (precent)
- NLO QCD becomes standard: automation (e.g. MG5_aMC)
 - scale uncertainty reaches to 10% level
- Frontier of precision theory for ElectroWeak scale observables
 - Goal: to achieve the precent level predictions
 - Request: NNLO QCD and NLO EW

LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV

RPP2020, X

Wednesday, January 29, 20

- LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV
 - energy reaches deeper into multi-TeV region & high integrated luminosity
 - many processes (even rare processes before) reach precision era (precent)
- NLO QCD becomes standard: automation (e.g. MG5_aMC)
 - scale uncertainty reaches to 10% level
- Frontier of precision theory for ElectroWeak scale observables
 - Goal: to achieve the precent level predictions
 - Request: NNLO QCD and NLO EW
 - Automation: complete NLO (i.e. QCD+EW+subleading orders)

- LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV
 - energy reaches deeper into multi-TeV region & high integrated luminosity
 - many processes (even rare processes before) reach precision era (precent)
- NLO QCD becomes standard: automation (e.g. MG5_aMC)
 - scale uncertainty reaches to 10% level
- Frontier of precision theory for ElectroWeak scale observables
 - Goal: to achieve the precent level predictions
 - Request: NNLO QCD and NLO EW
 - Automation: complete NLO (i.e. QCD+EW+subleading orders)
- Necessity of EW corrections:
 - First opportunity to explore TeV scale kinematics, where EWC ~ 10%
 - High precision measurements are present or in planned
 - cross section ratios, e.g. different center-of-mass energy, different processes
 - fundamental parameters, e.g. W mass

- LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV energy reaches deeper into m $p p \rightarrow Z + \ge 0$ jet $(p_T^Z > 20 \text{ GeV})$ many processes (even rare pro ent) NLO Data NLO QCD becomes standar scale uncertainty reaches to 1.3 Gehrmann-de Ridder et al. JHEP'16 Frontier of precision theor 1.2 Goal: to achieve the precent 1.1 **Request: NNLO QCD and NLO** 1.0 Automation: complete NLO (i 0.9 66 GeV < m_{II} < 116 GeV **Necessity of EW correctic** 0.8 First opportunity to explore T 50 also see Boughezal et al. PRL'16 100 p^Z[GeV] **High precision measurement** cross section ratios, e.g. different center-of-mass energy, different processes
 - fundamental parameters, e.g. W mass
 - (differential) cross sections for candle processes, e.g. top quark pair xs, Z pt

- LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV
 - energy reaches deeper into multi-TeV region & high integrated luminosity
 - many processes (even rare processes before) reach precision era (precent)
- NLO QCD becomes standard: automation (e.g. MG5_aMC)
 - scale uncertainty reaches to 10% level
- Frontier of precision theory for ElectroWeak scale observables
 - Goal: to achieve the precent level predictions
 - Request: NNLO QCD and NLO EW $\alpha_s^2 \simeq \alpha \simeq 1\%$
 - Automation: complete NLO (i.e. QCD+EW+subleading orders)
- Necessity of EW corrections:
 - First opportunity to explore TeV scale kinematics, where EWC ~ 10%
 - High precision measurements are present or in planned
 - cross section ratios, e.g. different center-of-mass energy, different processes
 - fundamental parameters, e.g. W mass
 - (differential) cross sections for candle processes, e.g. top quark pair xs, Z pt

Let us start from defining NLO "EW Corrections" (= "EWC")

RPP2020, X

$$\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)$$

HUA-SHENG SHAO

GENERAL FEATURE OF EW CORRECTIONS • Let us start from defining NLO "EW Corrections" (= "EWC") LO NLO NLO $\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \sigma^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots$

RPP2020, X

GENERAL FEATURE OF EW CORRECTIONS • Let us start from defining NLO "EW Corrections" (= "EWC") LO NLO NNLO $\hat{\sigma}(\alpha_s, \alpha, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \alpha^m \qquad \hat{\sigma}^{(0,0)} + \frac{\alpha_s}{2\pi} \sigma^{(1,0)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2,0)}(\mu_F, \mu_R) + \cdots + \frac{\alpha_s}{2\pi} \sigma^{(0,1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(0,2)}(\mu_F, \mu_R) + \cdots + \sum_{i>1} \sum_{j>1} \left(\frac{\alpha_s}{2\pi}\right)^j \hat{\sigma}^{(i,j)}(\mu_F, \mu_R)$

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more $\,\alpha\,{\rm expansion}$ wrt Born

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more $\,\alpha\,{\rm expansion}$ wrt Born
 - Situation may be more complicated

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- CNIS
- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- CNTS
- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- CNTS
- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more $\alpha {\rm expansion} ~{\rm wrt}~{\rm Born}$
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\,\Gamma/M\simeq \alpha\,$
 - Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them ?)
 - The general matching between matrix element and parton shower will be difficult

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\,\Gamma/M\simeq\alpha$
 - Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them ?)
 - The general matching between matrix element and parton shower will be difficult
- Three α schemes are frequently used
 - lpha(0) scheme: appropriate for external photon
 - ${\scriptstyle \bullet}\, \alpha(M_Z) {\rm scheme:}\, {\rm works} \ {\rm good} \ {\rm for} \ {\rm internal} \ {\rm photon}$
 - $G_{\mu}~$ scheme: works good for weak bosons and well measured

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\Gamma/M\simeq \alpha$
 - Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them ?)
 - The general matching between matrix element and parton shower will be difficult
- Three $\alpha \, {\rm schemes} \, {\rm are} \, {\rm frequently} \, {\rm used}$
 - lpha(0) scheme: appropriate for external photon
 - ${\scriptstyle \bullet}\, \alpha(M_Z) {\rm scheme:}\, {\rm works} \ {\rm good} \ {\rm for} \ {\rm internal} \ {\rm photon}$
 - $G_{\mu}~$ scheme: works good for weak bosons and well measured

Shall we use different scheme/renormalization for different vertices in one diagram ?

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\Gamma/M\simeq \alpha$
 - Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them ?)
 - The general matching between matrix element and parton shower will be difficult
- Three $\alpha \, {\rm schemes} \, {\rm are} \, {\rm frequently} \, {\rm used}$
 - lpha(0) scheme: appropriate for external photon
 - ${\scriptstyle \bullet}\, \alpha(M_Z) {\rm scheme:}\, {\rm works} \ {\rm good} \ {\rm for} \ {\rm internal} \ {\rm photon}$
 - $G_{\mu}~$ scheme: works good for weak bosons and well measured
- Shall we use different scheme/renormalization for different vertices in one diagram ?
 - Use $K_{\text{NLO QCD}} \times K_{\text{NLO EW}}$ to capture the missing higher order ?

Enhance EWC by Yukawa coupling

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_z^2} \sim 3\%$

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 2%

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms

ENHANCE EW CORRECT

- Enhance EWC by Yukawa coupling
 - e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m^2}$ ~ 2% •
 - •
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons

e.g.

$$Q = 1 \text{ TeV}$$
 $-c_{\text{LL}} \times 26\% + c_{\text{NLL}} \times 16\%$

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 2% •
 - •
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons •
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel •
 - One does not treat W/Z inclusively as they can be (at least partially) reconst. ullet
ENHANCE EW CORRECTIONS

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- **Enhance EWC** by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
 - One does not treat W/Z inclusively as they can be (at least partially) reconst. •
 - Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet •

ENHANCE EW CORRECTIONS

ENHANCE EW CORRECTIONS

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- **Enhance EWC** by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons •
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
 - One does not treat W/Z inclusively as they can be (at least partially) reconst. ullet
 - Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet
 - However, EW Sudakov logarithms is not always relevant in Sudakov regime
 - e.g. Drell-Yan at large invariant mass receives large contributions from small t Dittmaier et al. '10

EW IN HIGH-ENERGY SCATTERINGS

- BSM effects are expected to be enhanced in the highenergy scatterings
- -> motivated BSM search go to the tail
- EW corr. increase up to tens of percent due to EW Sudakov logs
 - The EW log resummation is still not mandatory@ (HL-)LHC as

THE AUTOMATION ERA

AUTOMATION TOOLS FOR EW CORRECTIONS

- Automation tools for EWC so far (not as much as for QCD corr.)
 - MadGraph5_aMC@NLO Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18
 - **Openloops+Sherpa** Buccioni, Lang, Lindert, Maierhofer, Pozzorini, Zhang, Zoller (1907.13071)+ Schonherr EPJC'18
 - Recola+Sherpa Biedermann, Brauer, Denner, Pellen, Schumann, Thompson EPJC'17
 - GoSam+Sherpa Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)
 - More contributions like Feynman diagrams, off-shell currents
 - Usually involve many different mass scales (a problem of numerical stability)
 - More complicated CT vertices, e.g. top mass renormalization
 - Need to proper treat gamma5 issue for the chiral currents
 - Need to well implement complex mass scheme to treat unstable particles
 - Need to deal with expansion into QCD and EW couplings
 - It is necessary to properly treat the photon

VALIDATION: AN EXAMPLE

- Extensive validation among various tools is extremely important
 - Better being correct and slow than being wrong and fast

Les Houches SM report 2017 (1803.07977)

$pp \rightarrow e^+e^-\mu^+\mu^-$	σ^{LO}	$\sigma_{\rm EW}^{\rm NLO}$	Δc	,LO	$\Delta \sigma$	NLO EW
	[fb]	[fb]	$[\sigma]$	[‰]	$[\sigma]$	[‰]
average	11.49675[8]	10.88697[15]				
MCBB+Recola	11.49648[12]	10.88669[22]	-2.9	-0.02	-1.7	-0.03
Munich+OpenLoops	11.49702[11]	10.88720[25]	+3.2	+0.02	+1.2	+0.02
MoCaNLO+Recola	11.49666[26]	10.88734[56]	-0.3	-0.01	+0.7	+0.03
Sherpa+GoSam/OpenLoops/Recola	11.49670[34]	10.88737[77]	-0.1	-0.00	+0.5	+0.04
MADGRAPH5_AMC@NLO+MADLOOP	11.4956[22]	10.8860[63]	-0.5	-0.10	-0.1	-0.09
$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$	σ^{LO}	$\sigma_{\rm EW}^{\rm NLO}$	$\Delta \epsilon$	$\tau^{\rm LO}$	$\Delta \sigma$	NLO EW
	[fb]	[fb]	$[\sigma]$	[‰]	$[\sigma]$	[%]
average	448.5414[31]	438.1902[56]				
Munich+OpenLoops	448.5468[45]	438.1920[75]	+1.6	+0.01	+0.4	+0.00
MoCaNLO+Recola	448.538[10]	438.193[13]	-0.4	-0.01	+0.2	+0.01
Sherpa+GoSam/OpenLoops/Recola	448.5364[46]	438.186[11]	-1.4	-0.01	-0.4	-0.01
MadGraph5_aMC@NLO	448.541 40	438.113[70]	-0.0	-0.00	-1.1	-0.18

VALIDATION: AN EXAMPLE

- Extensive validation among various tools is extremely important
 - Better being correct and slow than being wrong and fast Les Houches SM report 2017 (1803.07977)

MADGRAPH5_AMC@NLO IN A NUTSHELL

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro JHEP'14

4 commands for a NLO calculation

- > ./bin/mg5_aMC
- > generate process [QCD]
- > output
- > launch

MADGRAPH5_AMC@NLO IN A NUTSHELL

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro JHEP'14

complete automation for QCD+EW

4 commands for a NLO calculation

- > ./bin/mg5_aMC
- > generate process [QCD]
- > output
- > launch

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

- > ./bin/mg5_aMC
- > generate process [QCD QED]
- > output
- > launch

MADGRAPH5_AMC@NLO: COMPLETE NLO

• Generation syntax for any LO and NLO (in v3.X):

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

MADGRAPH5_AMC@NLO: NLO EW

Cnr

• Examples:

MADGRAPH5_AMC@NLO: NLO EW

· -

• Examples:

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

O		· —		-	
Process		Syntax	Cross secti	Correction (in %)	
			LO	NLO	
	$pp ightarrow e^+\!$	p p > e+ ve QCD=0 QED=2 [QED]	$5.2498 \pm \ 0.0005 \cdot 10^{3}$	$5.2113\pm0.0006\cdot10^{3}$	-0.73 ± 0.01
	$pp \rightarrow e^+ \nu_e j$	pp > e+ ve j QCD=1 QED=2 [QED]	$9.1468 \pm \ 0.0012 \cdot 10^2$	$9.0449 \pm 0.0014 \cdot 10^2$	-1.11 ± 0.02
	$pp ightarrow e^+ u_e j j$	рр > e+ ve j j QCD=2 QED=2 [QED]	$3.1562 \pm 0.0003 \cdot 10^2$	$3.0985 \pm 0.0005 \cdot 10^2$	-1.83 ± 0.02
	$pp \rightarrow e^+e^-$	p p > e+ e- QCD=0 QED=2 [QED]	$7.5367 \pm \ 0.0008 \cdot 10^2$	$7.4997\pm0.0010\cdot10^2$	-0.49 ± 0.02
	$pp \rightarrow e^+e^-j$	p p > e+ e- j QCD=1 QED=2 [QED]	$1.5059 \pm 0.0001 \cdot 10^2$	$1.4909\pm0.0002\cdot10^{2}$	-1.00 ± 0.02
	$pp \rightarrow e^+e^-jj$	pp > e+ e- j j QCD=2 QED=2 [QED]	$5.1424 \pm 0.0004 \cdot 10^{1}$	$5.0410\pm0.0007\cdot10^{1}$	-1.97 ± 0.02
INLO ₂	$pp ightarrow e^+e^-\mu^+\mu^-$	p p > e+ e- mu+ mu- QCD=0 QED=4 [QED]	$1.2750\pm0.0000\cdot10^{-2}$	$1.2083\pm 0.0001\cdot 10^{-2}$	-5.23 ± 0.01
	$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$	p p > e+ ve nu- vn~ QCD=0 QED=4 [QED]	$5.1144 \pm 0.0007 \cdot 10^{-1}$	$5.3019\pm0.0009\cdot10^{-1}$	$+3.67\pm0.02$
	$pp \rightarrow He^+\nu_e$	pp > h e+ ve QCD=0 QED=3 [QED]	$6.7643 \pm 0.0001 \cdot 10^{-2}$	$6.4914 \pm 0.0012 \cdot 10^{-2}$	-4.03 ± 0.02
	$pp \rightarrow He^+e^-$	p p > h e+ e- QCD=0 QED=3 [QED]	$1.4554 \pm 0.0001 \cdot 10^{-2}$	$1.3700 \pm 0.0002 \cdot 10^{-2}$	-5.87 ± 0.02
	$pp \rightarrow Hjj$	pp>hjjQCD=0QED=3[QED]	$2.8268 \pm 0.0002 \cdot 10^{0}$	$2.7075 \pm 0.0003 \cdot 10^{0}$	-4.22 ± 0.01
	$pp \rightarrow W^+W^-W^+$	p p > w+ w- w+ QCD=0 QED=3 [QED]	$8.2874 \pm \ 0.0004 \cdot 10^{-2}$	$8.8017 \pm 0.0012 \cdot 10^{-2}$	$+6.21\pm0.02$
	$pp \rightarrow ZZW^+$	p p > z z w+ QCD=0 QED=3 [QED]	$1.9874 \pm 0.0001 \cdot 10^{-2}$	$2.0189 \pm 0.0003 \cdot 10^{-2}$	$+1.58 \pm 0.02$
$_N = 1$	$pp \rightarrow ZZZ$	pp>zzzQCD=0QED=3[QED]	$1.0761 \pm 0.0001 \cdot 10^{-2}$	$0.9741\pm 0.0001\cdot 10^{-2}$	-9.47 ± 0.02
	$pp \rightarrow HZZ$	pp>hzzQCD=0QED=3[QED]	$2.1005 \pm 0.0003 \cdot 10^{-3}$	$1.9155 \pm 0.0003 \cdot 10^{-3}$	-8.81 ± 0.02
	$pp \rightarrow HZW^+$	p p > h z w+ QCD=0 QED=3 [QED]	$2.4408 \pm \ 0.0000 \cdot 10^{-3}$	$2.4809\pm0.0005\cdot10^{-3}$	$+1.64\pm0.02$
	$pp \rightarrow HHW^+$	pp > h h w+ QCD=0 QED=3 [QED]	$2.7827 \pm 0.0001 \cdot 10^{-4}$	$2.4259 \pm 0.0027 \cdot 10^{-4}$	-12.82 ± 0.10
	$pp \rightarrow HHZ$	pp>hhzQCD=0QED=3[QED]	$2.6914 \pm 0.0003 \cdot 10^{-4}$	$2.3926\pm 0.0003\cdot 10^{-4}$	-11.10 ± 0.02
	$pp \rightarrow t \bar{t} W^+$	$p p > t t^{\sim} w + QCD=2 QED=1 [QED]$	$2.4119 \pm \ 0.0003 \cdot 10^{-1}$	$2.3025\pm0.0003\cdot10^{-1}$	-4.54 ± 0.02
	$pp \rightarrow t\bar{t}Z$	$p p > t t^{-} z QCD=2 QED=1 [QED]$	$5.0456 \pm \ 0.0006 \cdot 10^{-1}$	$5.0033 \pm 0.0007 \cdot 10^{-1}$	-0.84 ± 0.02
	$pp \rightarrow t\bar{t}H$	pp>tt~hQCD=2QED=1[QED]	$3.4480 \pm 0.0004 \cdot 10^{-1}$	$3.5102 \pm 0.0005 \cdot 10^{-1}$	$+1.81\pm0.02$
	$pp \rightarrow t\bar{t}j$	pp>ttjQCD=3QED=0[QED]	$3.0277 \pm 0.0003 \cdot 10^2$	$2.9683 \pm 0.0004 \cdot 10^2$	-1.96 ± 0.02
	pp ightarrow jjj	pp>jjjQCD=3QED=0[QED]	$7.9639 \pm \ 0.0010 \cdot 10^{6}$	$7.9472\pm0.0011\cdot10^{6}$	-0.21 ± 0.02
	$pp \rightarrow tj$	pp>tjQCD=0 QED=2 [QED]	$1.0613 \pm 0.0001 \cdot 10^2$	$1.0539\pm0.0001\cdot10^2$	-0.70 ± 0.02

MADGRAPH5_AMC@NLO: COMPLETE NLO

CNTS

• Examples:

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro IHEP'18

	$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}Z$	$pp \rightarrow t\bar{t}W^+$	$pp \rightarrow t\bar{t}H$	$pp \rightarrow t\bar{t}j$
LO ₁	$4.3803 \pm 0.0005 \cdot 10^2 \rm pb$	$5.0463 \pm 0.0003 \cdot 10^{-1} \rm pb$	$2.4116 \pm 0.0001 \cdot 10^{-1} \ \mathrm{pb}$	$3.4483 \pm 0.0003 \cdot 10^{-1} \ \mathrm{pb}$	$3.0278 \pm 0.0008 \cdot 10^2 \; \rm pb$
LO_2	$+0.405 \pm 0.001$ %	-0.691 ± 0.001 %	$+0.000 \pm 0.000$ %	$+0.406 \pm 0.001$ %	$+0.525 \pm 0.001$ %
LO ₃	$\pm 0.630 \pm 0.001$ %	$+2.259 \pm 0.001$ %	$+0.962 \pm 0.000$ %	$+0.702 \pm 0.001 \%$	$+1.208 \pm 0.001$ %
LO_4					$+0.006 \pm 0.000 \%$
NLO_1	$+46.164 \pm 0.022$ %	$+44.809 \pm 0.028$ %	$+49.504 \pm 0.015$ %	$+28.847 \pm 0.020$ %	$+26.571\pm0.063~\%$
NLO_2	-1.075 ± 0.003 %	-0.846 ± 0.004 %	-4.541 ± 0.003 %	$+1.794 \pm 0.005 \%$	-1.971 ± 0.022 %
NL O3	$\pm 0.552 \pm 0.002 \%$	$+0.845 \pm 0.003$ %	$+12.242 \pm 0.014$ %	$+0.483 \pm 0.008 \%$	$+0.292 \pm 0.007 \%$
NLO_4	$+0.005 \pm 0.000$ %	-0.082 ± 0.000 %	$+0.017 \pm 0.003$ %	$+0.044 \pm 0.000$ %	$+0.009 \pm 0.000 \%$
$\rm NLO_5$					$\pm 0.005 \pm 0.000 \%$

THEORETICAL ISSUES

How bright of the proton (the initial photon) ?

O

How bright of the proton (the initial photon) ?

- Both elastic and inelastic sources of photons
- Photon PDF was acknowledged to be solved by using the LUXqed approach Manohar, Nason, Salam, Zanderighi PRL'16, JHEP'17

How bright of the proton (the initial photon) ?

- Both elastic and inelastic sources of photons
- Photon PDF was acknowledged to be solved by using the LUXqed approach Manohar, Nason, Salam, Zanderighi PRL'16, JHEP'17
- How to define final photons, leptons and jets ?

How bright of the proton (the initial photon) ?

- Both elastic and inelastic sources of photons
- Photon PDF was acknowledged to be solved by using the LUXqed approach Manohar, Nason, Salam, Zanderighi PRL'16, JHEP'17
- Observe to the server of th
 - Photons and massless leptons must be part of a jet (IR safety)
 - But to what extent ? Democratic (simplest but a big disadvantage) ?
 - Better: tagging photons and leptons and/or anti-tagging jets via FFs Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'16;
 Frixione (1909.03886)

How bright of the proton (the initial photon) ?

- Both elastic and inelastic sources of photons
- Photon PDF was acknowledged to be solved by using the LUXqed approach Manohar, Nason, Salam, Zanderighi PRL'16, JHEP'17
- Output to define final photons, leptons and jets ?
 - Photons and massless leptons must be part of a jet (IR safety)
 - But to what extent ? Democratic (simplest but a big disadvantage) ?
 - Better: tagging photons and leptons and/or anti-tagging jets via FFs Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'16;
 - How to deal with resonances ?

Wednesday, January 29, 20

Frixione (1909.03886)

How bright of the proton (the initial photon) ?

- Both elastic and inelastic sources of photons
- Photon PDF was acknowledged to be solved by using the LUXqed approach Manohar, Nason, Salam, Zanderighi PRL'16, JHEP'17
- Observe to define final photons, leptons and jets ?
 - Photons and massless leptons must be part of a jet (IR safety)
 - But to what extent ? Democratic (simplest but a big disadvantage) ?
 - Better: tagging photons and leptons and/or anti-tagging jets via FFs Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'16;
- How to deal with resonances ?
 - A widely used approach is the complex-mass scheme Denner et al. NPB'99, NPB'05
 - However, there are subtleties in the complex-mass scheme

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

Frixione (1909.03886)

How bright of the proton (the initial photon) ?

- Both elastic and inelastic sources of photons
- Photon PDF was acknowledged to be solved by using the LUXqed approach Manohar, Nason, Salam, Zanderighi PRL'16, [HEP'17
- Observe to define final photons, leptons and jets ?
 - Photons and massless leptons must be part of a jet (IR safety)
 - But to what extent ? Democratic (simplest but a big disadvantage) ?
 - Better: tagging photons and leptons and/or anti-tagging jets via FFs Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'16;
- How to deal with resonances ?
 - A widely used approach is the complex-mass scheme Denner et al. NPB'99, NPB'05
 - However, there are subtleties in the complex-mass scheme

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

Frixione (1909.03886)

How to match parton showers (PS) ?

How bright of the proton (the initial photon) ?

- Both elastic and inelastic sources of photons
- Photon PDF was acknowledged to be solved by using the LUXqed approach Manohar, Nason, Salam, Zanderighi PRL'16, [HEP'17
- Observe to define final photons, leptons and jets ?
 - Photons and massless leptons must be part of a jet (IR safety)
 - But to what extent ? Democratic (simplest but a big disadvantage) ?
 - Better: tagging photons and leptons and/or anti-tagging jets via FFs Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'16;
- How to deal with resonances ?
 - A widely used approach is the complex-mass scheme Denner et al. NPB'99, NPB'05
 - However, there are subtleties in the complex-mass scheme

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

Frixione (1909.03886)

- How to match parton showers (PS)?
 - In the simultaneous presence of QCD and EW corrections:
 - no general solution because PS is classic (as opposed to quantum)
 - some dedicated approximated solutions exist for a few case studies

PHOTON PDF: THE LUXQED APPROACH Manohar, Nason, Salam, Zanderighi PRL'16, JHEP'17

- How bright of the proton (the initial photon) ?
- Photon PDF written in terms of inclusive DIS structure functions
 - elastic component given by magnetic/electric form factors from A1 + dipole
 - inelastic source:
 - resonance region : $(m_p + m_\pi)^2 < W^2 < 3.5 \text{ GeV}^2$
 - low-Q² continuous region : $W^2 > 3.5 \text{ GeV}^2$ and $Q^2 < 9 \text{ GeV}^2$
 - high-Q² continuous region : $W^2 > 3.5 \text{ GeV}^2$ and $Q^2 > 9 \text{ GeV}^2$

RPP2020, X

PHOTON PDF: THE LUXQED APPROACH Manohar, Nason, Salam, Zanderighi PRL'16, JHEP'17

- How bright of the proton (the initial photon) ?
- Photon PDF written in terms of inclusive DIS structure functions

Jet in QCD

- a cluster of hadronic objects
- At parton level, cluster all massless quarks and gluons
- Unambiguous and well defined up to all orders in perturbative QCD
- Jet with both strong and electromagnetic radiations
 - democratic jet: a cluster of hadronic and electromagnetic objects
 - At parton level, cluster all massless quarks/leptons and gluons/photons
 - How to define leptons and photons in terms of jets ?
- **QCD** parton-photon recombination in jet processes

Jet in QCD

- a cluster of hadronic objects
- At parton level, cluster all massless quarks and gluons
- Unambiguous and well defined up to all orders in perturbative QCD
- Jet with both strong and electromagnetic radiations
 - democratic jet: a cluster of hadronic and electromagnetic objects
 - At parton level, cluster all massless quarks/leptons and gluons/photons
 - How to define leptons and photons in terms of jets?
- QCD parton-photon recombination in jet processes
 - Hard photon containing gluon is not QCD IR safe

Jet in QCD

- a cluster of hadronic objects
- At parton level, cluster all massless quarks and gluons
- Unambiguous and well defined up to all orders in perturbative QCD
- Jet with both strong and electromagnetic radiations
 - democratic jet: a cluster of hadronic and electromagnetic objects
 - At parton level, cluster all massless quarks/leptons and gluons/photons
 - How to define leptons and photons in terms of jets?
- **QCD** parton-photon recombination in jet processes
 - Hard photon containing gluon is not QCD IR safe
 - hard photon containing quark is not QED IR safe

Jet in QCD

- a cluster of hadronic objects
- At parton level, cluster all massless quarks and gluons
- Unambiguous and well defined up to all orders in perturbative QCD
- Jet with both strong and electromagnetic radiations
 - democratic jet: a cluster of hadronic and electromagnetic objects
 - At parton level, cluster all massless quarks/leptons and gluons/photons
 - How to define leptons and photons in terms of jets ?
- QCD parton-photon recombination in jet processes
 - Hard photon containing gluon is not QCD IR safe
 - hard photon containing quark is not QED IR safe
 - Two current methods for second issue: FF and close quark-photon = quark

Kallweit, Lindert, Maierhofer, Pozzorini, Schonherr,'14 Denner, Hofer, Scharf, Uccirati' 14

- For the first issue: they both use a cut on the energy fraction of photon
- Cut on the energy fraction of photon is not always working

Jet in QCD

- a cluster of hadronic objects
- At parton level, cluster all massless quarks and gluons
- Unambiguous and well defined up to all orders in perturbative QCD
- Jet with both strong and electromagnetic radiations
 - democratic jet: a cluster of hadronic and electromagnetic objects
 - At parton level, cluster all massless quarks/leptons and gluons/photons
 - How to define leptons and photons in terms of jets ?
- QCD parton-photon recombination in jet processes
 - Hard phot
- $d\sigma_{v}^{(\text{antitag})}$ hard phote •
- $= d\sigma_{X;nj}^{(\text{dem})} \sum_{k=1}^{k=1} d\sigma_{X+k\gamma;nj}$ (nj rk-photon = quark **Two curre** t, Maierhofer, Pozzorini, Schonherr,'14
- For the first issue: they both use a cut on the energy fraction of photon
- Cut orantitag n-jets a democratic n-jets a n-jets with k photon jets
- Photon jet
 - A tagged photon with the FFs (not well determined bar quark-to-photon)

PHOTON & LEPTON DEFINITIONS

- What is a photon ?
 - There are two types of "photon":
 - short-distance photon same as QCD parton
 - long-distance photon (tagged or observed)
 - A tagged photon must be defined through FFs (like any other hadrons)

$$D_{\gamma}^{\gamma}(z,\mu) = \frac{\alpha(0)}{\alpha_{sd}} \delta(1-z) + \mathcal{O}(\alpha^2) - \frac{1}{\alpha_{sd}} \delta(1-z) + \frac{1}{\alpha_{sd}} \delta(1-z)$$

tagged photon is using scheme

- What is a lepton ?
 - bare lepton: keep lepton massive
 - dressed lepton: massless lepton and dressed with other massless objects Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

	Processes w PDF(qg)	vithout jets $PDF(qg\gamma)$	Processes PDF(qg)	s with jets $PDF(qg\gamma)$	Physical objects
i = 1	p = q g	p=qga	p = q g j = q g	p = q g a j = q g	$j(qg), \gamma, l, \nu,$ massive particles
i=2	inconsistent	p=qga	inconsistent	p = q g a j = q g a	$j(qg\gamma), l, \nu,$ massive particles
$i \ge 3$	inconsistent	p = q g a	inconsistent	p = q g a l j = q g a l	$j(qg\gamma l), \nu,$ massive particles

be careful with infrared safety

$$\Sigma_{\text{NLO}_{i-k}} + \ldots + \Sigma_{\text{NLO}_i}$$

for any k such that $1 \leq i - k \leq i$

COMPLEX-MASS SCHEME

- How to deal with resonances ?
 - A widely used approach is the complex-mass scheme Denner et al. NPB'99, NPB'05

$$\begin{split} i\frac{\not{p}+\bar{M}}{p^{2}-\bar{M}^{2}+i\Gamma\bar{M}} & \xrightarrow{m_{cms}\equiv\sqrt{\bar{M}^{2}-i\Gamma\bar{M}}} i\frac{\not{p}+m_{cms}}{p^{2}-m_{cms}^{2}} \\ i\frac{\not{p}+m_{cms}}{p^{2}-\bar{M}^{2}+i\Gamma\bar{M}} & i\frac{\not{p}+m_{cms}}{p^{2}-m_{cms}^{2}} \\ \bullet \text{ Renormalisation:} & \Sigma_{R}(p^{2})=\Sigma_{U}(p^{2})-\delta M^{2}+(p^{2}-M^{2})\delta Z \\ & \Re[\Sigma_{R}(p^{2})]|_{p^{2}=M^{2}}=0, \\ & \lim_{p^{2}\to M^{2}}\frac{1}{p^{2}-M^{2}}\,\Re[\Sigma_{R}(p^{2})]=1, \\ & \Re[\Sigma_{R}(p^{2}=M^{2})]=0 \implies \delta M^{2}=\Re[\Sigma_{U}(p^{2}=M^{2})] \\ & \Re[\Sigma_{R}(p^{2}=M^{2})]=0 \implies \delta Z=-\Re[\Sigma_{U}(p^{2}=M^{2})] \\ & & \overline{M}^{2}-i\Gamma\bar{M}\equiv m^{2}=M_{0}^{2}-\delta m^{2}. \\ & \Sigma_{R}(p^{2})=\Sigma_{U}(p^{2})-\delta m^{2}+(p^{2}-m^{2})\delta z \\ & \Sigma_{R}(p^{2}=\bar{M}^{2}-i\Gamma\bar{M})=0 \implies \delta m^{2}=\Sigma_{U}(p^{2}=\bar{M}^{2}-i\Gamma\bar{M}) \\ & \Sigma_{R}(p^{2}=\bar{M}^{2}-i\Gamma\bar{M})=0 \implies \delta z=-\Sigma_{U}'(p^{2}=\bar{M}^{2}-i\Gamma\bar{M}) \\ & \Im[m^{2}]=-\Gamma\bar{M}=-\Im[\delta m^{2}]=-\Im[\Sigma_{U}(p^{2}=\bar{M}^{2}-i\Gamma\bar{M})] \end{split}$$

COMPLEX-MASS SCHEME

- How to deal with resonances ?
 - A widely used approach is the complex-mass scheme Denner et al. NPB'99, NPB'05

$$\begin{split} i\frac{\not{p}+\bar{M}}{p^2-\bar{M}^2+i\Gamma\bar{M}} & \xrightarrow{m_{cms}\equiv\sqrt{\bar{M}^2-i\Gamma\bar{M}}} i\frac{\not{p}+m_{cms}}{p^2-m_{cms}^2} \\ i\frac{\not{p}+m_{cms}}{p^2-m_{cms}^2} \\ \bullet \text{ Renormalisation:} \\ \hline \text{Renormalisation:} \\ \hline (m^2+\delta m^2) - (M^2+\delta M^2) \\ \xrightarrow{m_{cms}} \mathcal{O}(\alpha^2) & \xrightarrow{\pi_{cms}} \mathcal{O}(\alpha^2) \\ \hline \frac{\bar{M}^2-i\Gamma\bar{M}}{p^2-M^2} \Re[\Sigma_R(p^2)] = 0 \\ \xrightarrow{\pi_{cms}} \delta M^2 = \Re[\Sigma_U(p^2=M^2)] \\ \Re[\Sigma_R(p^2=M^2)] = 0 \\ \xrightarrow{\pi_{cms}} \delta M^2 = \Re[\Sigma_U(p^2=M^2)] \\ \Re[\Sigma_R(p^2=M^2)] = 0 \\ \xrightarrow{\pi_{cms}} \delta M^2 = \Re[\Sigma_U(p^2=M^2)] \\ \Re[\Sigma_R(p^2=M^2)] = 0 \\ \xrightarrow{\pi_{cms}} \delta M^2 = \Re[\Sigma_U(p^2=M^2)] \\ \Re[\Sigma_R(p^2) = \Sigma_U(p^2) - \delta m^2 + (p^2-m^2)\delta z \\ \sum_R(p^2) = \Sigma_U(p^2) - \delta m^2 + (p^2-m^2)\delta z \\ \sum_R(p^2 = \bar{M}^2 - i\Gamma\bar{M}) = 0 \\ \xrightarrow{\pi_{cms}} \delta M^2 = \Sigma_U(p^2 = \bar{M}^2 - i\Gamma\bar{M}) \\ \Im[m^2] = -\Gamma\bar{M} = -\Im[\delta m^2] = -\Im[\Sigma_U(p^2 = \bar{M}^2 - i\Gamma\bar{M})] \\ \end{split}$$

RPP2020, X

HUA-SHENG SHAO

COMPLEX-MASS SCHEME

- How to deal with resonances ?
 - A widely used approach is the complex-mass scheme Denner et al. NPB'99, NPB'05

$$\begin{split} i \frac{\not p + \bar{M}}{p^2 - \bar{M}^2 + i\Gamma \bar{M}} & \xrightarrow{m_{cms} \equiv \sqrt{\bar{M}^2 - i\Gamma \bar{M}}} i \frac{\not p + m_{cms}}{p^2 - m_{cms}^2} \\ \text{c. Renormalisation:} \\ \hline \text{Renormalisation:} \\ \hline \text{CM scheme reorganises} \\ \text{the perturbative expansion} \\ (m^2 + \delta m^2) - (M^2 + \delta M^2) \\ \xrightarrow{\text{NEO}} \mathcal{O}(\alpha^2) \\ \hline \text{NEO} \mathcal{O}(\alpha^2) \\ \hline \text{Malytic continuation !} \\ \hline \text{Analytic continuation !} \\ \hline \text{Analytic continuation !} \\ \hline \text{Malytic continuation !} \\ \hline$$

COMPLEX-MASS SCHEME: ANALYTIC CONTINUATION CORS

• For example:

 $\Sigma_{\mathrm{U},T}^{\gamma W}(\bar{M}_W^2 - i\bar{\Gamma}_W\bar{M}_W) \supset B_0\left(p^2, 0, \bar{M}_W^2 - i\bar{\Gamma}_W\bar{M}_W\right)\Big|_{p^2 \to \bar{M}_W^2 - i\bar{\Gamma}_W\bar{M}_W}$

• Exact expression:

$$\frac{1}{i\pi^2} B_0 \left(p^2, 0, \bar{M}_W^2 - i\bar{\Gamma}_W \bar{M}_W \right) \Big|_{p^2 \to \bar{M}_W^2 - i\bar{\Gamma}_W \bar{M}_W} \\ = \frac{1}{\epsilon} + 2 + \log \frac{\mu^2}{\bar{M}_W^2 - i\bar{\Gamma}_W \bar{M}_W}$$

• The Taylor expansion:

$$B_0 \left(p^2, 0, \bar{M}_W^2 - i\bar{\Gamma}_W \bar{M}_W \right) = B_0 \left(\bar{M}_W^2, 0, \bar{M}_W^2 - i\bar{\Gamma}_W \bar{M}_W \right) \\ + \left(\frac{p^2 - \bar{M}_W^2}{\bar{M}_W^2} \right) B_0' \left(\bar{M}_W^2, 0, \bar{M}_W^2 - i\bar{\Gamma}_W \bar{M}_W \right) + \mathcal{O}\left(\left(\frac{p^2 - \bar{M}_W^2}{\bar{M}_W^2} \right)^2 \right)$$

• Taylor missing: $\Sigma_{\mathrm{U},T}^{\gamma W}(\bar{M}_W^2 - i\bar{\Gamma}_W\bar{M}_W) - \Sigma_{\mathrm{U},T}^{\gamma W,(1)}(\bar{M}_W^2 - i\bar{\Gamma}_W\bar{M}_W) = \frac{\pi^2\bar{\Gamma}_W}{\bar{M}_W} + \mathcal{O}\left(\left(\frac{\bar{\Gamma}_W}{\bar{M}_W}\right)^2\right)$

COMPLEX-MASS SCHEME: ANALYTIC CONTINUATION CITS

In general:

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

$$\frac{1}{i\pi^2} B_0(p^2, \mu_1^2, \mu_2^2) = \frac{1}{\epsilon} + 2 - \log \frac{p^2 - i0}{\mu^2} + \sum_{i=\pm} \left[\gamma_i \log \frac{\gamma_i - 1}{\gamma_i} - \log \left(\gamma_i - 1\right) \right]$$

$$\gamma_{\pm} = \frac{1}{2} \left(\gamma_0 \pm \sqrt{\gamma_0^2 - 4\gamma_1} \right) , \quad \gamma_0 = 1 + \frac{\mu_1^2}{p^2} - \frac{\mu_2^2}{p^2} , \qquad \gamma_1 = \frac{\mu_1^2}{p^2} - \frac{i0}{p^2}$$

RPP2020, X

HUA-SHENG SHAO

COMPLEX-MASS SCHEME: ANALYTIC CONTINUATION CITS

• Exact analytic continuation (MG5_aMC) vs Taylor exp. (others) Les Houches SM report 2017 (1803.07977)

$$G_{\mu} \rightarrow \lambda G_{\mu}$$
, $\alpha \rightarrow \lambda \alpha$, $\Gamma_{\rm Z} \rightarrow \lambda \Gamma_{\rm Z}$, $\Gamma_{\rm W} \rightarrow \lambda \Gamma_{\rm W}$

$$\delta V_{\text{finite}}(\lambda) = 2 \left| \frac{V_{\text{finite}}^{\text{MadLoop}}(\lambda) - V_{\text{finite}}^{\text{Recola/OpenLoops}}(\lambda)}{V_{\text{finite}}^{\text{MadLoop}}(\lambda) + V_{\text{finite}}^{\text{Recola/OpenLoops}}(\lambda)} \right|$$

MATCHING TO PARTON SHOWERS

How to match parton showers (PS) ?

Particle top-jet candidate p_r [GeV

- no general solution !
- some dedicated approximations !
- For example, modify MC@NLO \overline{B} function

PHENOMENOLOGY @ LHC

PHENOMENOLOGY @ LHC: WHEN NLO EW MATTERS PRECISION

RPP2020, X

PHENOMENOLOGY STUDY: TTBAR+H/V Frixione, Hirschi, Pagani, HSS, Zaro '14,'15

- Why top quark pair+(H,Z,W) ?
 - These processes are very important at the LHC
 - ttbar+Higgs: the last missing of 4 main Higgs production channel (progress this year)
 - ttbar+Z/W: the background of ttbar+Higgs and important to study anomalous couplings
 - Missing of EWC for these processes in the literature
 - No conceptual problem in principle
 - First public EWC results with MadGraph5_aMC@NLO

- Why top quark pair+(H,Z,W) ?
 - These processes are very important at the LHC
 - ttbar+Higgs: the last missing of 4 main Higgs production channel (progress this year)
 - ttbar+Z/W: the background of ttbar+Higgs and important to study anomalous couplings
 - Missing of EWC for these processes in the literature
 - No conceptual problem in principle
 - First public EWC results with MadGraph5_aMC@NLO
- EWC on the inclusive total cross sections
 - EWC is moderate (% level)
 - Increase with center-of-mass energy in general (not a real surprise)
 - LO₂ and NLO₂ accidentally cancel at 13 TeV
 - HBR only partly cancels NLO EW
 - **EWC** is enhanced by boosted final states $p_T(t) \ge 200 \text{ GeV}$, $p_T(\bar{t}) \ge 200 \text{ GeV}$, $p_T(V) \ge 200 \text{ GeV}$, $p_T(V) \ge 200 \text{ GeV}$, $\sigma_{\text{HBR}}(t\bar{t}H) = \sigma(t\bar{t}HH) + \sigma(t\bar{t}HZ) + \sigma(t\bar{t}HW^+) + \sigma(t\bar{t}HW^-)$,

	ttH : $\delta(\%)$	8 TeV	13 TeV	$100 { m TeV}$	2 2 2 3
	NLO QCD	$25.9^{+5.4}_{-11.1}\pm3.5$	$29.7^{+6.8}_{-11.1} \pm 2.8 \ (24.2^{+4.8}_{-10.6} \pm 4.5)$	$40.8^{+9.3}_{-9.1}\pm1.0$	$\alpha_s \alpha \ \alpha_s \alpha \ \alpha^\circ$
	LO EW	1.8 ± 1.3	$1.2 \pm 0.9 \ (2.8 \pm 2.0)$	0.0 ± 0.2	
	LO EW no γ	-0.3 ± 0.0	$-0.4 \pm 0.0 (-0.2 \pm 0.0)$	-0.6 ± 0.0	
	NLO EW	-0.6 ± 0.1	$-1.2\pm0.1~(-8.2\pm0.3)$	-2.7 ± 0.0	
	NLO EW no γ	-0.7 ± 0.0	$-1.4\pm0.0~(-8.5\pm0.2)$	-2.7 ± 0.0	$\alpha_s^3 \alpha \ \alpha_s^2 \alpha^2 \ \alpha_s \alpha^3 \ \alpha^4$
	HBR	0.88	0.89(1.87)	0.91	
Ρ	P2020. X		30		HUA-SHENG SHAC

- Frixione, Hirschi, Pagani, HSS, Zaro '14,'15
 EWC on differential distributions (and for fiducial xs)
- Both NLO EW and photon PDF become important when boost final states
 NNPDF2.3QED here

- Frixione, Hirschi, Pagani, HSS, Zaro '14,'15
 EWC on differential distributions (and for fiducial xs)
 - Both NLO EW and photon PDF become important when boost final states
 NNPDF2.3QED here
 - EWC for ttW is more significant (~-8% at 13 TeV) than ttH and ttZ
 - No LO EW to cancel NLO EW (color flow) and HBR opens gg initial states

- Frixione, Hirschi, Pagani, HSS, Zaro '14,'15
 EWC on differential distributions (and for fiducial xs)
 - Both NLO EW and photon PDF become important when boost final states
 NNPDF2.3QED here
 - EWC for ttW is more significant (~-8% at 13 TeV) than ttH and ttZ
 - No LO EW to cancel NLO EW (color flow) and HBR opens gg initial states
- Is EWC for ttbarH (or ttbarV) relevant ? YES
 - Current scale uncertainty in NLO QCD is 10%
 - Will be improved by the theory community with NNLO QCD corrections
 - Even at the moment, EWC will be relevant, especially at Sudakov region
 - EWC is also quite important for the cross section ratios, e.g. ttbarH/ttbarZ

		$\alpha(m_Z)$ scheme		G_{μ} scheme			
		$\sigma(t\bar{t}H)[{\rm pb}]$	$\sigma(t\bar{t}Z)[{\rm pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$	$\sigma(t\bar{t}H)[{\rm pb}]$	$\sigma(t\bar{t}Z)[{\rm pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$
	NLO QCD	0.475	0.785	0.606	0.462	0.763	0.606
	$\mathcal{O}(\alpha_S^2 \alpha^2)$ Weak	-0.006773	-0.02516		0.004587	-0.007904	
$13 { m TeV}$	$O(\alpha_S^2 \alpha^2)$ EW	-0.0045	-0.022		0.0071	-0.0033	
	NLO QCD+Weak	0.468	0.760	0.617	0.467	0.755	0.619
	NLO QCD+EW	0.471	0.763	0.617	0.469	0.760	0.618
	NLO QCD	33.9	57.9	0.585	32.9	56.3	0.585
	$\mathcal{O}(\alpha_S^2 \alpha^2)$ Weak	-0.7295	-2.146		0.0269	-0.8973	
$100 { m TeV}$	$O(\alpha_S^2 \alpha^2)$ EW	-0.65	-2.0		0.14	-0.77	
	NLO QCD+Weak	33.1	55.8	0.594	32.9	55.4	0.594
	NLO QCD+EW	33.2	55.9	0.594	33.1	55.6	0.595

Mangano, Plehn, Reimitz, Schell, HSS '15

- Frixione, Hirschi, Pagani, HSS, Zaro '14,'15
 EWC on differential distributions (and for fiducial xs)
 - Both NLO EW and photon PDF become important when boost final states
 NNPDF2.3QED here
 - EWC for ttW is more significant (~-8% at 13 TeV) than ttH and ttZ
 - No LO EW to cancel NLO EW (color flow) and HBR opens gg initial states
- Is EWC for ttbarH (or ttbarV) relevant ? YES
 - Current scale uncertainty in NLO QCD is 10%
 - Will be improved by the theory community with NNLO QCD corrections
 - Even at the moment, EWC will be relevant, especially at Sudakov region
 - EWC is also quite important for the cross section ratios, e.g. ttbarH/ttbarZ
 - The results are in the LHCHXSWG recommendation in YR4

PHENOMENOLOGY @ LHC: WHEN COMPLETE NLO ARE NECESSARY

TWO JETS

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'I6

- p_T inclusive is crucial for PDF fit
- Breakdown of different contributions
- QCD correction is dominant in NLO
- EWC (LO₂) is important in the tail
- Hierarchy between different orders
- Subleading is indeed subleading

TWO JETS

HUA-SHENG SHAO

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'I6

- p_T inclusive is crucial for PDF fit
- Breakdown of different contributions
- QCD correction is dominant in NLO
- EWC (LO₂) is important in the tail
- Hierarchy between different orders
- Subleading is indeed subleading

subleading is small

THREE JETS

• however ...

Reyer, Schonherr, Schumann EPJC'19

subleading contribution still do not understand why however

THREE JETS

• however ...

Reyer, Schonherr, Schumann EPJC'19

subleading contribution still do not understand why however

subleading starts to be relevant

TOP PAIR + W

Frederix, Pagani, Zaro JHEP'18 Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

 $t\bar{t}W^{\pm}$ production at 13 TeV

δ [%]	$\mu = H_T/4$	$\mu = H_T/2$	$\mu = H_T$
LO_2	-	-	-
LO_3	0.8	0.9	1.1
NLO ₁	34.8 (7.0)	50.0 (25.7)	63.4 (42.0)
NLO_2	-4.4(-4.8)	-4.2(-4.6)	-4.0(-4.4)
NLO ₃	11.9 (8.9)	12.2(9.1)	12.5(9.3)
NLO_4	0.02(-0.02)	0.04(-0.02)	0.05(-0.01)

 $NLO_3 > NLO_2$ (NLO EW)

 $tW \rightarrow tW$ scattering

TOP PAIR + W

Frederix, Pagani, Zaro JHEP'18 Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

 $t\bar{t}W^{\pm}$ production at 13 TeV

δ [%]	$\mu = H_T/4$	$\mu = H_T/2$	$\mu = H_T$
LO_2	-	-	-
LO_3	0.8	0.9	1.1
NLO ₁	34.8 (7.0)	50.0 (25.7)	63.4 (42.0)
NLO_2	-4.4(-4.8)	-4.2(-4.6)	-4.0(-4.4)
NLO ₃	11.9 (8.9)	12.2(9.1)	12.5(9.3)
NLO_4	0.02(-0.02)	0.04(-0.02)	0.05(-0.01)

 $NLO_3 > NLO_2$ (NLO EW)

 $tW \rightarrow tW$ scattering

subleading is larger than NLO EW

HUA-SHENG SHAO

VBS OF SAME-SIGN WW

Biedermann, Denner, Pellen JHEP' 17

 $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$

Order	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{\rm s}\alpha^6)$	$\mathcal{O}\left(lpha_{ m s}^2lpha^5 ight)$	$\mathcal{O}(lpha_{ m s}^3 lpha^4)$	Sum
$\delta \sigma_{\rm NLO}$ [fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
$\delta \sigma_{\rm NLO} / \sigma_{\rm LO} \ [\%]$	-13.2	-3.5	0.0	-0.4	-17.1

NLO₄ NLO₃ NLO₂ NLO₁

$NLO_4 > NLO_3 > NLO_{1,2}$

VBS cuts determines the pattern !

VBS cuts $m_{jj} > 500 \,\text{GeV}, \qquad |\Delta y_{jj}| > 2.5$

VBS OF SAME-SIGN WW

Biedermann, Denner, Pellen JHEP' 17

 $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$

Order	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{\rm s}\alpha^6)$	$\mathcal{O}\left(lpha_{ m s}^2 lpha^5 ight)$	$\mathcal{O}(lpha_{ m s}^3 lpha^4)$	Sum
$\delta \sigma_{\rm NLO}$ [fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
$\delta \sigma_{\rm NLO} / \sigma_{\rm LO} \ [\%]$	-13.2	-3.5	0.0	-0.4	-17.1

NLO₄ NLO₃ NLO₂ NLO₁

$NLO_4 > NLO_3 > NLO_{1,2}$

VBS cuts determines the pattern !

VBS cuts $m_{jj} > 500 \,\text{GeV}, \qquad |\Delta y_{jj}| > 2.5$

subleading is the dominant correction

PHENOMENOLOGY @ LHC: NLO EW CAN BE MUCH LARGER THAN LO

PHENOMENOLOGY STUDY: HW

Mangano et al., FCC-hh Physics report: SM processes (1607.01831)

A funny and surprising example is HW production

- NLO EW: Ciccolini, Dittmaier, Kramer '03
- NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12

PHENOMENOLOGY STUDY: HW

Mangano et al., FCC-hh Physics report: SM processes (1607.01831)

- A funny and surprising example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)

PHENOMENOLOGY STUDY: HW Mangano et al., FCC-hh Physics report: SM processes (1607.01831)

A funny and surprising example is HW production

- NLO EW: Ciccolini, Dittmaier, Kramer '03
- NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)
 - It is mainly coming from photon initial state

PHENOMENOLOGY STUDY: HW Mangano et al., FCC-hh Physics report: SM processes (1607.01831)

A funny and surprising example is HW production

- NLO EW: Ciccolini, Dittmaier, Kramer '03
- NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)
 - It is mainly coming from photon initial state
 - There is no photon-quark or gluon-quark for H+jet at Born, when W soft/coll.
 - At Born, HW is produced via s-channel only, while NLO introduces t-channel
 - At large inv. mass, t-channel is dominant

PHENOMENOLOGY STUDY: HW Mangano et al., FCC-hh Physics report: SM processes (1607.01831)

A funny and surprising example is HW production

- NLO EW: Ciccolini, Dittmaier, Kramer '03
- NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)
- It is mainly coming from photon initial state
- There is no photon-quark or gluon-quark for H+jet at Born, when W soft/coll.
- At Born, HW is produced via s-channel only, while NLO introduces t-channel
- At large inv. mass, t-channel is dominant
- Such a contribution can be suppressed by cut e.g. on pseudorapidity

PHENOMENOLOGY STUDY: HW

Mangano et al., FCC-hh Physics report: SM processes (1607.01831)

- A funny and surprising example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why ?)
 - It is mainly coming from photon initial state
 - There is no photon-quark or gluon-quark for H+jet at Born, when W soft/coll.
 - At Born, HW is produced via s-channel only, while NLO introduces t-channel
 - At large inv. mass, t-channel is dominant
 - Such a contribution can be suppressed by cut e.g. on pseudorapidity
- Message: do not simply overlook EWC even you are not a precision guy

PHENOMENOLOGY @ LHC: A CAVEAT IN DATA-DRIVEN BK ESTIMATE

DIPHOTON Talk by M. Schonherr at Durham '19

NLO EW corrections to diphoton production

- peak-like enhancement around $m_{\gamma\gamma} = 2 m_W$
- induced by W-box creating pseudo-resonant structures

 should be accounted for in data-driven background fits in diphoton resonance searches

CONCLUSION

- Precision theory requires the good knowledge of EW corrections
- EW corrections can also be enhanced in some (not rare) cases
- It also requires more study on the new ingredients: e.g. PDF and FF
- Many challenges are still present with both QCD and EWC, e.g. to PS
- Automation of complete NLO at fixed order is there !
- MadGraph5_aMC@NLO v3.X has been released (EWC & complete NLO)
 <u>https://launchpad.net/mg5amcnlo</u>

A recent nice review: Denner & Dittmaier (1912.06823)

Thank you for your attention !