Probing the flavor of New Physics with dipoles

Luiz Vale Silva

IFIC, UV - CSIC

30 January, 2019

Work in collaboration with **S. Jäger** and **K. Leslie** (U. Sussex) Rencontres de Physique Théorique

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

Outline

Introduction

- Dim.-6 corrections to Yukawa couplings
- Sour-fermion operators

Conclusions

Outline

Introduction

- Dim.-6 corrections to Yukawa couplings
 - Four-fermion operators

-

Radiative processes

 \rightarrow Low-energy dipole ops.: $\mathcal{L}_{dipole} = e \frac{v_{\rm EW}}{\sqrt{2}} \mathcal{C}^{\beta \alpha}_{\psi \gamma} \bar{\psi}_{\beta} \sigma^{\mu \nu} P_R \psi_{\alpha} F_{\mu \nu} + \text{h.c.}$

E.M. form factors: *Magnetic Dipole Moment* (MDM), *Electric Dipole Moment* (EDM), etc.

Flavor transitions: $\mu \to e\gamma$, $\tau \to (e, \mu)\gamma$, $\nu' \to \nu\gamma$, $s \to d\gamma$, $b \to (s, d)\gamma$, etc.

 \rightarrow Multitask tool: structure of flavor, sources of CP violation of the SM and beyond, in both quark and lepton sectors

 \rightarrow NP flavour structure:

$$\begin{array}{ll} \text{eEDM:} & |\text{Im}[\mathcal{C}_{e\gamma}^{ee}]| \lesssim (8 \times 10^5 \text{ TeV})^{-2} & \text{[ACME]} \\ \mu \to e\gamma: & \sqrt{|\mathcal{C}_{e\gamma}^{e\mu}|^2 + |\mathcal{C}_{e\gamma}^{\mu e}|^2} \lesssim (4 \times 10^4 \text{ TeV})^{-2} & \text{[MEG]} \\ \text{nEDM:} & \left|\text{Im}[\mathcal{C}_{d\gamma}^{dd}]\right|, \left|\text{Im}[\mathcal{C}_{u\gamma}^{uu}]\right| \lesssim (2 \times 10^4 \text{ TeV})^{-2} & \text{[PRD92, 092003 (2015)]} \\ \text{viz Vale Silva (IEIC, UV - CSIC)} & \text{NP in dipoles} & 30 \text{ January, 2019} & 4/28 \end{array}$$

SMEFT way: NP sector much above EW scale

 \rightarrow Persistent absence of experimental evidence for non-SM particles below the EW scale

 \to Generic NP involving new heavy d.o.f. $\sim\Lambda\gg v_{\rm EW}$ lead to higher dimensional operators

$$\frac{C^{(5)} \times Q^{(5)}}{\Lambda}, \ \frac{C^{(6)} \times Q^{(6)}}{\Lambda^2}, \ \frac{C^{(7)} \times Q^{(7)}}{\Lambda^3}, \ \frac{C^{(8)} \times Q^{(8)}}{\Lambda^4}, \ \text{etc.}$$

 \rightarrow Consider operators $Q^{(n)}$ respecting SM local symmetries and containing SM d.o.f. only

 \rightarrow Non-SM interactions $C^{(n)}$ among the d.o.f. that we know

 \rightarrow New weak sector: typically effects from lower-dimensionality operators are more important for low-energy observables

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

Basis of dimension-six operators

 \rightarrow Focus on operators of dimension-six

→ Equations Of Motion (EOMs) eliminate redundant cases: 59 linearly independent operators, with 1350 CP-even + 1149 CP-odd couplings, assuming SM global symmetries, B_{tot} and L_{tot}

Warsaw: X^3 , H^6 , H^4D^2 , ψ^2H^3 , X^2H^2 , ψ^2XH , ψ^2H^2D , ψ^4

 $[\psi \text{ fermions}; D \text{ cov. derivative}; X \text{ field strengths}]$

[Buchmüller, Wyler '86; Grzadkowski, Iskrzyński, Misiak, Rosiek '10]

$$\underbrace{\psi^2 XH \text{ class:}}_{\mathcal{L}_{dipole} @ \text{ tree}} (\bar{q}\sigma^{\mu\nu}d)HB_{\mu\nu}, (\bar{q}\sigma^{\mu\nu}d)\tau^I HW^I_{\mu\nu}, (\bar{q}\sigma^{\mu\nu}T^Ad)HG^A_{\mu\nu}, \text{ etc.} \\ [q (d) SU(2) \text{ doublet (singlet)}]$$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Basis of dimension-six operators

 \rightarrow Focus on operators of dimension-six

→ Equations Of Motion (EOMs) eliminate redundant cases: 59 linearly independent operators, with 1350 CP-even + 1149 CP-odd couplings, assuming SM global symmetries, B_{tot} and L_{tot}

Warsaw: X^3 , H^6 , H^4D^2 , ψ^2H^3 , X^2H^2 , ψ^2XH , ψ^2H^2D , ψ^4

[ψ fermions; D cov. derivative; X field strengths]

[Buchmüller, Wyler '86; Grzadkowski, Iskrzyński, Misiak, Rosiek '10]

 $\psi^2 H^3$ class: $(H^{\dagger}H)(\bar{q}dH)$, $(H^{\dagger}H)(\bar{q}u\tilde{H})$, $(H^{\dagger}H)(\bar{\ell}eH)$ [$q, \ell (d, u, e) SU(2)$ doublets (singlets)]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 ののべ

Basis of dimension-six operators

 \rightarrow Focus on operators of dimension-six

→ Equations Of Motion (EOMs) eliminate redundant cases: 59 linearly independent operators, with 1350 CP-even + 1149 CP-odd couplings, assuming SM global symmetries, B_{tot} and L_{tot}

Warsaw: X³, H⁶, H⁴D², $\psi^2 H^3$, X²H², $\psi^2 XH$, $\psi^2 H^2D$, ψ^4

 $[\psi \text{ fermions}; D \text{ cov. derivative}; X \text{ field strengths}]$

[Buchmüller, Wyler '86; Grzadkowski, Iskrzyński, Misiak, Rosiek '10]

 ψ^4 class: $(\bar{q}\gamma_\mu q)(\bar{q}\gamma^\mu q)$, $(\bar{d}\gamma_\mu d)(\bar{d}\gamma^\mu d)$, $(\bar{q}\gamma_\mu T^A q)(\bar{d}\gamma^\mu T^A d)$, etc. [q (d) SU(2) doublet (singlet)]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 ののべ

Probing non-dipole operators

Here,
$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i C_i Q_i$$
, C_i scales as Λ^{-2}

Mixing with dipole:

$$16\pi^{2} \frac{d}{d\ell n(\mu)} C_{\psi^{2} X H}(\mu) = \sum_{i} (C_{\psi^{2} X H}, C_{\psi^{4}}, C_{X^{3}}, C_{X^{2} H^{2}})_{i}(\mu) \gamma_{i,\psi^{2} X H}^{(1-\text{loop})}$$

 $\{\psi^2 X H, \psi^4, X^3, X^2 H^2\} \xrightarrow[Loop]{RGE} \psi^2 X H$ [1-loop: Alonso, Jenkins, Manohar, Trott '13] [Pruna, Signer '14; Davidson '16; Crivellin, Davidson, Pruna, Signer '17]

Ex. of bound: [ACME] $\left|\operatorname{Im} C_{\ell equ}^{(3),eett}\right| \lesssim (3 \times 10^5 \text{ TeV})^{-2}$ [\blacksquare : possible vertices]

- 4 四 ト - 4 回 ト

Roadmap to phenomenology

Luiz Vale Silva (IFIC, UV - CSIC)

30 January, 2019 10 / 28

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

HERE: Operators for which $\gamma_{i,\psi^2 XH}^{(1-\text{loop})} = 0$ (i.e., no mixing at 1-loop)

 \rightarrow Leading Order mixing with the dipole arriving at 2-loops

 \rightarrow How flavor in other operators feed into dipole operators

Outline

Four-fermion operators

4 Conclusions

EL SQA

Renormalization of $\psi^2 H^3$ operators

ightarrow 1-loop: $\psi^2 H^3$ mix only into $\psi^2 H$ (dim.=4), & $H^6, \psi^2 H^3$ (dim.=6)

 \rightarrow Mixing with the dipole: LO at 2-loops $\psi^2 H^3 \frac{RG}{M}$

 $\psi^2 H^3 \xrightarrow[1Loop]{RGE} \{\psi^2 H; H^6, \psi^2 H^3\}$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Renormalization of $\psi^2 H^3$ operators

ightarrow 1-loop: $\psi^2 H^3$ mix only into $\psi^2 H$ (dim.=4), & $H^6, \psi^2 H^3$ (dim.=6)

 \rightarrow Mixing with the dipole: LO at 2-loops $\psi^2 H^3 \xrightarrow{RGE} {\psi^2 H; H^6, \psi^2 H^3}$

Ex. of diagrams necessary to determine the mixing with dipoles:

 $g \times Y^{2} \times C_{NP}$ $g \times Y^{2} \times C_{NP}$ $[\times: \text{ gauge boson}]$ Neglecting Yukawa couplings: $Z_{\psi^{2}H^{3},\psi^{2}XH} \stackrel{(\longrightarrow)}{=} \operatorname{Coef.}[\mathcal{G}_{\psi^{2}H^{3}}(\psi^{2}AH), \notin \notin(k)]$ $[\text{Kinetic basis: } p \cdot \epsilon(k), p' \cdot \epsilon(k), k \cdot \epsilon(k), \notin \notin(k), \notin \notin(k), \notin \notin(k)]$ $[\text{Viz Yale Silva (IFIC, UV-CSIC)} \qquad \text{NP in dipoles} \qquad 30 \text{ January, 2019} \qquad 13/28$

Anomalous Dimension Matrix elements

Dipole:
$$g_X(\bar{\psi}_L \sigma^{\mu\nu} t' \xi_R \varphi) X'_{\mu\nu}$$
, (q_L, u_R) , (q_L, d_R) , (ℓ_L, e_R) , (ℓ_L, ν_R)

$$(16\pi^{2})^{2} \frac{d}{d\ell n(\mu)} C_{\psi^{2} X H}(\mu) = \left(g_{Y}^{2} \gamma_{Y}^{X} + g_{L}^{2} \gamma_{L}^{X} + g_{C}^{2} \gamma_{c}^{X} + Y^{2} \gamma_{L}^{X}\right) C_{\psi^{2} H^{3}}(\mu)$$

		$X^{\mu u}=B^{\mu u}$	$X^{\mu u}=W^{\mu u}$	$X^{\mu u}=G^{\mu u}$
=	γ_Y^X	$3Q_{\varphi}^{Y}Q_{\varphi}^{Y}(Q_{L}^{Y}+Q_{R}^{Y})$	$rac{1}{2}Q_arphi^{Y}(Q_L^{Y}+Q_R^{Y})$	0
-	γ_L^X	$rac{3}{4}Q_{arphi}^{Y}$	<u>3</u> 8	0
-	γ_c^X	0	0	0
$Q_{\phi}^{Y} =$	$-Q_{\tilde{\phi}}^{Y} =$	= 1/2; $Q_{\ell_L}^Y = -1/2$, $Q_{e_R}^Y = -1$, $Q_{ u_R}^Y=$ 0; $Q_{q_L}^Y=$ 1/6, $Q_{u_L}^Y$	$\dot{Q}_{R} = +2/3, \ Q_{d_{R}}^{Y} = -1/3$

 γ^{X} : cases involving dim.=4 Yukawas Y given in the spare slides

Checks: arbitrary Feynman gauge $\sqrt{}$ relations among Green's functions $\sqrt{}$

Also, results agree with γ_Y^X , γ_L^X discussed by [Panico Pomarol, Riembau 18]

Running of dipole Wilson coef.

$$\begin{aligned} \mathcal{L}_{dipole} &= e^{\frac{v_{\rm EW}}{\sqrt{2}}} \mathcal{C}_{\psi\gamma}^{\beta\alpha} \bar{\psi}_{\beta} \sigma^{\mu\nu} P_R \psi_{\alpha} F_{\mu\nu} + \text{h.c.} \\ \mathcal{C}_{e\gamma} &= C_{g_{\gamma}eB} - C_{g_LeW} , \qquad \mathcal{C}_{d\gamma} = C_{g_{\gamma}dB} - C_{g_LdW} \\ \mathcal{C}_{\nu\gamma} &= C_{g_{\gamma}\nu B} + C_{g_L\nu W} , \qquad \mathcal{C}_{u\gamma} = C_{g_{\gamma}uB} + C_{g_LuW} \end{aligned}$$

[ex. pheno: Crivellin, Najjari, Rosiek '13; Panico, Pomarol, Riembau '18]

- ightarrow Consider the pheno. of $C^{fg}_{\psi H}(\Lambda)
 eq 0$
- \rightarrow Solution of the RGE:

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Tree-level constraints on $\psi^2 H^3$ $\psi^2 H^3$ changes couplings of the physical Higgs h: $\mathcal{L} = -\bar{u}' M_{\mu} u' - h \bar{u}' \mathcal{V}_{\mu} u' + \dots$ $[M_{\psi}]_{ij} \simeq \frac{\mathsf{v}_{\mathrm{EW}}}{\sqrt{2}} \left([Y_{\psi}]_{ij} - \frac{1}{2} \mathsf{v}_{\mathrm{EW}}^2 [C_{\psi H}^{\dagger}]_{ij} \right) \,,$ $[\mathcal{Y}_{\psi}]_{ij} \simeq \frac{1}{v_{\text{EW}}} [M_{\psi}]_{ij} - \frac{v_{\text{EW}}^2}{\sqrt{2}} [C_{\psi H}^{\dagger}]_{ij}, \quad \psi = u, d, e \quad h^0 \swarrow^{f'}$ \rightarrow Possible tuning if $\tilde{Y}_{\psi} \sim \frac{1}{2} v_{\rm EW}^2 \tilde{C}_{\psi H}^{\dagger} \gg \tilde{M}_{\psi}$ $\mathcal{B}(h
ightarrow e \mu) \Rightarrow \sqrt{|\tilde{C}_{eH}^{e\mu}|^2 + |\tilde{C}_{eH}^{\mu e}|^2} < 5.2 imes 10^{-3} \text{ TeV}^{-2}$ $\mathcal{B}(h \to e\tau) \Rightarrow \sqrt{|\tilde{C}_{eH}^{e\tau}|^2 + |\tilde{C}_{eH}^{\tau e}|^2} < 4.6 \times 10^{-2} \text{ TeV}^{-2}$ $\mathcal{B}(h \to \mu \tau) \Rightarrow \sqrt{|\tilde{C}_{eH}^{\mu \tau}|^2 + |\tilde{C}_{eH}^{\tau \mu}|^2} < 3.6 \times 10^{-2} \text{ TeV}^{-2}$ $\mathcal{B}(h \to \ell \ell) \Rightarrow |\tilde{C}_{a\mu}^{ee}| < 2.9 \times 10^{-2} \text{ TeV}^{-2}, \quad |\tilde{C}_{a\mu}^{\mu\mu}| < 1.7 \times 10^{-2} \text{ TeV}^{-2}$ \rightarrow **Meson-mixing** (K^0, D^0, B^0_d, B^0_s systems) dominates constraints on s, c, b, t flavor-changing currents w.r.t. $s \rightarrow d\gamma$, $b \rightarrow (s, d)\gamma$, etc. Icf., e.g., Harnik, Kopp, Zupan 12 \\ \alpha \\ \end{tabular}

16 / 28

Two-loop constraints on $\psi^2 H^3$

Radiative decays:

$$\begin{split} \mathcal{B}(\mu \to e\gamma) \Rightarrow \sqrt{|\tilde{C}_{eH}^{e\mu}(\Lambda)|^2 + |\tilde{C}_{eH}^{\mu e}(\Lambda)|^2} \lesssim 9 \times 10^{-5} \text{ TeV}^{-2} &= 0.1 \times \frac{\sqrt{2m_e m_\mu}}{v_{\rm EW}^3} \\ \mathcal{B}(\tau \to e\gamma) \Rightarrow \sqrt{|\tilde{C}_{eH}^{e\tau}(\Lambda)|^2 + |\tilde{C}_{eH}^{\tau e}(\Lambda)|^2} \lesssim 1 \text{ TeV}^{-2} &= 400 \times \frac{\sqrt{2m_e m_\tau}}{v_{\rm EW}^3} \\ \mathcal{B}(\tau \to \mu\gamma) \Rightarrow \sqrt{|\tilde{C}_{eH}^{\mu\tau}(\Lambda)|^2 + |\tilde{C}_{eH}^{\tau\mu}(\Lambda)|^2} \lesssim 1 \text{ TeV}^{-2} &= 30 \times \frac{\sqrt{2m_\mu m_\tau}}{v_{\rm EW}^3} \end{split}$$

Anomalous Magnetic Moments (AMMs):

$$\begin{split} \Delta a_e &= a_e^{\mathrm{exp}} - a_e^{\mathrm{SM}} \Rightarrow 0.06 \ \mathrm{TeV}^{-2} \lesssim \mathrm{Re}[\tilde{C}_{eH}^{ee}(\Lambda)] \lesssim 0.6 \ \mathrm{TeV}^{-2} \ @ \ 2\sigma \\ \Delta a_\mu &= a_\mu^{\mathrm{exp}} - a_\mu^{\mathrm{SM}} \Rightarrow -7 \ \mathrm{TeV}^{-2} \lesssim \mathrm{Re}[\tilde{C}_{eH}^{\mu\mu}(\Lambda)] \lesssim -2 \ \mathrm{TeV}^{-2} \ @ \ 2\sigma \\ & \mathsf{However}, \ |\mathrm{Re}[\tilde{C}_{eH}^{\ell\ell}(\Lambda)]| \gg m_\ell/v_{\mathrm{EW}}^3 \end{split}$$

EDMs: $|d_e| \Rightarrow |\mathrm{Im}[\tilde{C}_{eH}^{ee}(\Lambda)]| \lesssim 2 \times 10^{-7} \mathrm{TeV}^{-2} = 0.004 \times \frac{\sqrt{2}m_e}{v_{EW}^3}$ $|d_N| \Rightarrow |\mathrm{Im}[\tilde{C}_{dH}^{dd}(\Lambda)] + 1.3 \times \mathrm{Im}[\tilde{C}_{uH}^{uu}(\Lambda)]| \lesssim 4 \times 10^{-3} \mathrm{TeV}^{-2} \sim 9 \times \frac{\sqrt{2}m_d}{v_{EW}^3}$ Luiz Vale Silva (IFIC, UV - CSIC) NP in dipoles 30 January, 2019 17/28

Finite contributions

 \rightarrow Loop-induced **finite** effects from flavor violating Higgs couplings:

 \rightarrow By avoiding a small Yukawa coupling, 2-loop diagrams may (over) compensate for the loop-suppression

 \rightarrow Analogously, the 2-loop **mixing**-induced effect will also be enhanced compared to 1-loop finite terms

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

JOC ELE

Bounds from effects induced at 2-loop

 \rightarrow Improvement by Barr-Zee diagrams:

$$\mathbf{eEDM}: |\mathrm{Im}[\tilde{C}^{ee}_{e\mathcal{H}}(\Lambda)]| \lesssim 0.004 \times \frac{\sqrt{2}m_e}{v_{\mathrm{EW}}^3} \tag{ACME}$$

$$\mu
ightarrow e \gamma: \; (| ilde{C}^{e\mu}_{e\mathcal{H}}(\Lambda)|^2 + (\mu \leftrightarrow e))^{1/2} \lesssim 0.1 imes rac{\sqrt{2m_e m_\mu}}{v_{
m EW}^3}$$

nEDM:
$$\left| \operatorname{Im}[ilde{C}^{\psi\psi}_{\psi H}(\Lambda)] \right|_{(\psi=u,d)} \lesssim 10 imes rac{\sqrt{2}m_d}{v_{\mathrm{EW}}^3}$$

[PRD92, 092003 (2015); theory: e.g., Pospelov, Ritz '05]

[Values for $\Lambda = 1$ TeV, and $\mu = M_H$: further RGE corrections are omitted]

[MEG]

Bounds from effects induced at 2-loop

 \rightarrow Improvement by Barr-Zee diagrams:

$$\begin{split} \mathbf{eEDM} &: |\mathrm{Im}[\tilde{C}_{eH}^{ee}(\Lambda)]| \lesssim 0.004 \times \frac{\sqrt{2}m_e}{v_{\mathrm{EW}}^3} \xrightarrow{\mathrm{Barr-Zee}} 0.002 \times \frac{\sqrt{2}m_e}{v_{\mathrm{EW}}^3} \\ \mu \to e\gamma &: (|\tilde{C}_{eH}^{e\mu}(\Lambda)|^2 + (\mu \leftrightarrow e))^{1/2} \lesssim 0.1 \times \frac{\sqrt{2}m_e m_{\mu}}{v_{\mathrm{EW}}^3} \xrightarrow{\mathrm{Barr-Zee}} 0.02 \times \frac{\sqrt{2}m_e m_{\mu}}{v_{\mathrm{EW}}^3} \\ \mathbf{nEDM} &: \left| \mathrm{Im}[\tilde{C}_{\psi H}^{\psi \psi}(\Lambda)] \right|_{(\psi=u,d)} \lesssim 10 \times \frac{\sqrt{2}m_d}{v_{\mathrm{EW}}^3} \xrightarrow{\mathrm{Barr-Zee}} 3 \times \frac{\sqrt{2}m_d}{v_{\mathrm{EW}}^3} \end{split}$$
 [MEG]

[PRD92, 092003 (2015); theory: e.g., Pospelov, Ritz '05]

[Values for $\Lambda = 1$ TeV, and $\mu = M_H$: further RGE corrections are omitted]

 \rightarrow Enhancements in the **finite** corrections (such as $N_c = 3$) compared to **mixing**-induced effects (for which $\gamma^X \sim 1/4$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Summary

	$\psi^2 H^3 \xrightarrow[2Loop]{RGE} \psi^2 XH$	
Channel	Coupling	Bound
$\mu ightarrow e\gamma$	$\sqrt{ \tilde{C}^{e\mu}_{eH}(\Lambda) ^2 + \tilde{C}^{\mu e}_{eH}(\Lambda) ^2}$	$\lesssim 0.02 imes rac{\sqrt{2m_e m_\mu}}{v_{\rm EW}^3}$
eEDM	$ \mathrm{Im}[ilde{C}^{ee}_{eH}(\Lambda)] $	$\lesssim 0.002 imes rac{\sqrt{2}m_e}{v_{ m EW}^3}$
h ightarrow e au	$\sqrt{ \tilde{C}_{eH}^{e au} ^2 + \tilde{C}_{eH}^{ au e} ^2}$	(tree)
$h ightarrow \mu au$	$\sqrt{ ilde{C}^{\mu au}_{e extsf{H}} ^2+ ilde{C}^{ au\mu}_{e extsf{H}} ^2}$	(tree)
h ightarrow ee	$ \tilde{C}^{ee}_{eH} $	(tree)
$h ightarrow \mu \mu$	$ \tilde{C}^{\mu\mu}_{eH} $	(tree)
nEDM	$\left \operatorname{Im}[\tilde{C}_{\psi H}^{\psi \psi}(\Lambda)]\right _{(\psi=u,d)}$	$\lesssim 3 imes rac{\sqrt{2}m_d}{v_{ m EW}^3}$
$ \Delta q' , \Delta q = 2$ (q, q' = u, d, s, c, b)	$ ilde{C}^{qq'}_{\psi H}(\Lambda) ^2 + ilde{C}^{q'q}_{\psi H}(\Lambda) ^2$	(tree)

2-Loop effects set most important bounds in many cases

Luiz Vale Silva (IFIC, UV - CSIC)

30 January, 2019 20 / 28

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

4) Conclusions

\rightarrow Four-fermions: only $Q^{(3)}_{\ell equ}$ mixes directly w/ the dipole at 1-loop

LRRL operators				
$Q_{\ell e d q}(prst) = (\bar{\ell}_p e_t)(\bar{d}_s q_r)$				
$Q_{\ell\nu uq}(prst) = (\bar{\ell}_p \nu_t)(\bar{u}_s q_r)$				
[Fierzed] LLRR operators				
$Q_{\ell e}(prst) = (\bar{\ell}_p e_t)(\bar{e}_s \ell_r)$				
$Q_{\ell\nu}(prst) = (\bar{\ell}_p\nu_t)(\bar{\nu}_s\ell_r)$				
$(q_u^{(1)}(prst)) = (\bar{q}_p^{\alpha}u_t^{\beta})(\bar{u}_s^{\beta}q_r^{\alpha})$				
$(q_{qu}^{(8)}(prst) = (\bar{q}_{p}^{\alpha}T_{\alpha\tilde{\alpha}}^{A}u_{t}^{\tilde{\beta}})(\bar{u}_{s}^{\beta}T_{\beta\tilde{\beta}}^{A}q_{t}^{\tilde{\alpha}})$				
$^{(1)}_{qd}(prst) = (\bar{q}^{\alpha}_{p}d^{\beta}_{t})(\bar{d}^{\beta}_{s}q^{\alpha}_{r})$				
$^{(8)}_{qd}(prst) = (\bar{q}^{\alpha}_{p}T^{A}_{\alpha\tilde{\alpha}}d^{\tilde{\beta}}_{t})(\bar{d}^{\beta}_{s}T^{A}_{\beta\tilde{\beta}}q^{\tilde{\alpha}}_{r})$				
[Fierzed] LLRR operators				
$Q_{\ell u}(prst) = (\bar{\ell}_p u_t)(\bar{u}_s \ell_r)$				
$Q_{\ell d}(prst) = (\bar{\ell}_p d_t)(\bar{d}_s \ell_r)$				
$Q_{qe}(prst) = (\bar{q}_p e_t)(\bar{e}_s q_r)$				
$Q_{q\nu}(prst) = (\bar{q}_p\nu_t)(\bar{\nu}_sq_r)$				

LLLL operators

$Q_{\ell\ell}(prst)$	$= (\bar{\ell}_p \gamma_\mu \ell_r) (\bar{\ell}_s \gamma^\mu \ell_t)$
$Q_{qq}^{(1)}(prst)$	$= (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$
$Q_{qq}^{(3)}(prst)$	$= (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$
$Q_{\ell q}^{(1)}(prst)$	$= (\bar{\ell}_p \gamma_\mu \ell_r)(\bar{q}_s \gamma^\mu q_t)$
$Q_{i}^{(3)}(mst)$	$= (\bar{\ell}_{-} \gamma_{-} \tau^{I} \ell_{-}) (\bar{a}_{-} \gamma^{\mu} \tau^{I} a_{+})$

RRRR operators

$Q_{ee}(prst)$	$= (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{\nu\nu}(prst)$	$= (\bar{\nu}_p \gamma_\mu \nu_r)(\bar{\nu}_s \gamma^\mu \nu_t)$
$Q_{uu}(prst)$	$= (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{dd}(prst)$	$= (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{eu}(prst)$	$= (\bar{u}_p \gamma^{\mu} u_r)(\bar{e}_s \gamma_{\mu} e_t)$
$Q_{ed}(prst)$	$= (\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{\nu u}(prst)$	$= (\bar{\nu}_p \gamma_\mu \nu_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{\nu d}(prst)$	$= (\bar{\nu}_p \gamma_\mu \nu_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{e\nu}(prst)$	$= (\bar{\nu}_p \gamma_\mu \nu_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{ud}^{(1)}(prst)$	$= (\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{ud}^{(8)}(prst)$	$= (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t$
$Q_{duve}(prst)$	$= (\bar{d}_p \gamma_\mu u_r) (\bar{\nu}_s \gamma^\mu e_t)$

→ \Box 1-loop, \Box main interest (preliminary), \Box ongoing calculation → Focus on light external fermions: other cases \propto external masses

Mixing of four-fermion ops. into dipoles

strong coupling, color factor

 \rightarrow Analogous to Barr-Zee type of contributions

 \rightarrow In the following: preliminary bounds from $\mu \rightarrow e \gamma$, EDMs

 $ightarrow \gamma_5$: Breitenlohner-Maison-'t Hooft-Veltman scheme

CP violation in quark dipoles

 $\begin{array}{l} \rightarrow \text{ One-loop: } Q_{\ell equ}^{(1)}, \ Q_{\ell equ}^{(3)} \\ \rightarrow \text{ Two-loop, } y_t \text{-enhancement: } Q_{qu}^{(1)}, \ Q_{qu}^{(8)}, \ Q_{quqd}^{(1)}, \ Q_{quqd}^{(8)} \\ \rightarrow \text{ Two-loop: } Q_{qd}^{(1)}, \ Q_{qd}^{(8)}, \ Q_{\ell edq} \end{array}$

$$(16\pi^2)^2 \frac{d}{d\ell n(\mu)} C_{\psi^2 X H}(\mu) = \left(g_Y^2 \gamma_Y^X + g_L^2 \gamma_L^X + g_C^2 \gamma_c^X + Y^2 \gamma^X \right) C_{\psi^2 H^3}(\mu)$$

	$Q^{(1)}_{qu} = (ar{q}^lpha_{ ho} u^eta_t)(ar{u}^eta_{ ho} q^lpha_r) \qquad Q^{(8)}_{qu} = (ar{q}^lpha_{ ho} T^A_{lpha eta} u^eta_t)(ar{u}^eta_{ ho} T^A_{eta eta} q^{lpha}_r)$						
	X = B	X = W	X = G		X = B	X = W	X = G
γ_Y^X	$-\frac{835}{3456}$	$+\frac{137}{384}$	$+\frac{7}{72}$	γ_Y^X	$-\frac{835}{648}$	$+\frac{137}{72}$	$-\frac{25}{16}$
γ_L^X	$+\frac{509}{768}$	$-\frac{923}{768}$	$+\frac{37}{64}$	γ_L^X	$+\frac{509}{144}$	$-\frac{923}{144}$	$-\frac{983}{192}$
γ_c^{X}	$-\frac{20}{9}$	$-\frac{4}{3}$	$+\frac{11}{3}$	γ_c^X	$+\frac{760}{27}$	$+\frac{152}{9}$	$+\frac{446}{9}$

 $\rightarrow X = G$: Chromo-Magnetic Dipole Moment

Luiz Vale Silva (IFIC, UV - CSIC)

Quark EDMs, pheno

\rightarrow Electric Dipole Moment:

$$\mathcal{C}_{u\gamma}(\mu) \simeq \frac{1}{(16\pi^2)^2} \times \ell n \left(\frac{\Lambda^2}{\mu^2}\right) \times \mathsf{y}_{\mathsf{top}} \times \left\{ \mathsf{C}_{qu}^{(1)}(\Lambda) \left(-0.8 \times g_L^2 + 0.4 \times g_c^2 \right) + \mathsf{C}_{qu}^{(8)}(\Lambda) \left(-4.4 \times g_L^2 - 5.6 \times g_c^2 \right) \right\}$$

 \rightarrow Chromo-MDM generates a CPV $\pi \textit{NN}$ coupling $_{\text{[see, e.g., Pospelov, Ritz '05]}}$

$$\begin{split} \mathcal{C}_{uG}(\mu) &\simeq \frac{1}{(16\pi^2)^2} \times \ell n \left(\frac{\Lambda^2}{\mu^2}\right) \times y_{top} \times \left\{ \mathcal{C}_{qu}^{(1)}(\Lambda) \left(-0.3 \times g_L^2 - 1.8 \times g_c^2 \right) + \mathcal{C}_{qu}^{(8)}(\Lambda) \left(2.8 \times g_L^2 - 24.8 \times g_c^2 \right) \right\} \\ & \left| \operatorname{Im} \{ \tilde{\mathcal{C}}_{qu}^{(1)}(\Lambda) \} \right| \times y_{top} \\ \left| d_N \right| \quad \mathcal{O}(10^{-4}) \operatorname{TeV}^{-2} \sim \mathcal{O}(1) \frac{\sqrt{2}m_u}{\nu^3} \quad \mathcal{O}(10^{-6}) \operatorname{TeV}^{-2} \sim \mathcal{O}(10^{-2}) \frac{\sqrt{2}m_u}{\nu^3} \\ \left| d_{Hg} \right| \quad \mathcal{O}(10^{-6}) \operatorname{TeV}^{-2} \sim \mathcal{O}(10^{-2}) \frac{\sqrt{2}m_u}{\nu^3} \quad \mathcal{O}(10^{-7}) \operatorname{TeV}^{-2} \sim \mathcal{O}(10^{-3}) \frac{\sqrt{2}m_u}{\nu^3} \end{split}$$

 \rightarrow No tops below EW scale: effects from SMEFT mixing only

ightarrow Wilson coefficients $\lesssim \mathcal{O}(10^{-6}) - \mathcal{O}(10^{-7}) \, \mathrm{TeV}_{\odot}^{-2}$

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

30 January, 2019 25 / 28

Summary

\rightarrow Typically, Wilson coefficients $< O(0.1) \,\mathrm{TeV}^{-2} \,w/o$ considering mixing w/ dipoles [e.g., (semi-)leptonic, low-energy + LHC: Falkowski, González-Alonso, Mimouni '17]

RGE LOLLIN

$\psi^* \xrightarrow{\psi^2 XH} \psi^2 XH$, preliminary $_{2Loop}$			
	Channel	Coupling	Bound
$Q_{qu}^{(1)}$	Hg-EDM	$y_{top} imes \mathrm{Im}[ilde{C}_{qu}^{(1),uutt}(\Lambda)] $	$\lesssim {\cal O}(10^{-6}){ m TeV}^{-2}$
$Q_{qu}^{(8)}$	I Ig-LDIVI	$y_{top} imes ext{Im}[ilde{C}^{(8),uutt}_{qu}(\Lambda)] $	$\lesssim {\cal O}(10^{-7}){ m TeV^{-2}}$
0.	$\mu ightarrow e\gamma$	$y_{ au} imes \sqrt{ ilde{C}^{e\mu au au}_{\ell e}(\Lambda) ^2 + ilde{C}^{\mu e au au}_{\ell e}(\Lambda) ^2}$	$\lesssim {\cal O}(10^{-5})~{ m TeV}^{-2}$
Ale	eEDM	$y_ au imes ext{Im}[ilde{C}^{ee au au}_{\ell e}(\Lambda)] $	$\lesssim {\cal O}(10^{-7}){ m TeV^{-2}}$
0	eEDM	$y_b imes \mathrm{Im}[ilde{C}^{eebb}_{\ell edq}(\Lambda)] $	$\lesssim {\cal O}(10^{-7}){ m TeV}^{-2}$
¥ℓedq	$\mu ightarrow$ e conv.	$y_b imes \sqrt{ ilde{C}^{e\mu bb}_{\ell edq}(\Lambda) ^2+ ilde{C}^{\mu ebb}_{\ell edq}(\Lambda) }$	(1Loop)

(ongoing analysis for further operators, channels, and couplings)

2-Loop effects set most important bounds in many cases

Outline

- 2 Dim.-6 corrections to Yukawa couplings
 - Four-fermion operators

Conclusions

Luiz Vale Silva (IFIC, UV - CSIC)

Conclusions

 \rightarrow Dipoles: probe very high energy scales, e.g., EDMs, $\mu \rightarrow e \gamma$, leading to a broad physics program

 \rightarrow Generic tool for improving our understanding of flavor and CPV

 \rightarrow SMEFT: systematic approach in the absence of new d.o.f. (so far)

 \rightarrow Important 2-loop effects generated by operator mixing

Conclusions

 \rightarrow Dipoles: probe very high energy scales, e.g., EDMs, $\mu \rightarrow e \gamma$, leading to a broad physics program

 \rightarrow Generic tool for improving our understanding of flavor and CPV

 \rightarrow SMEFT: systematic approach in the absence of new d.o.f. (so far)

 \rightarrow Important 2-loop effects generated by operator mixing

Merci !

Backup

Charged lepton dipoles

eEDM,
$$\mu \rightarrow e\gamma$$
:
 \rightarrow One-loop: $Q_{\ell equ}^{(1)}$, $Q_{\ell equ}^{(3)}$
 \rightarrow Two-loop, y_{τ} , y_{b} -enhanced: $Q_{\ell e}$, $Q_{\ell edq}$

 $Q_{\ell e} = (\bar{\ell}_{e} e_{t})(\bar{e}_{e} \ell_{r})$

$$(16\pi^{2})^{2} \frac{d}{d\ell n(\mu)} C_{\psi^{2} X H}(\mu) = \left(g_{Y}^{2} \gamma_{Y}^{X} + g_{L}^{2} \gamma_{L}^{X} + g_{C}^{2} \gamma_{c}^{X} + Y^{2} \gamma^{X}\right) C_{\psi^{2} H^{3}}(\mu)$$

 $Q_{\ell edg} = (\bar{\ell}_{p} e_{t})(\bar{d}_{s} q_{r})$

$$\mathcal{C}_{e\gamma}(\mu) \simeq rac{1}{(16\pi^2)^2} imes \ell n \left(rac{\Lambda^2}{\mu^2}
ight) imes \{-0.2 imes C_{\ell e}(\Lambda) imes y_{ au} + 0.3 imes C_{\ell edg}(\Lambda) imes y_b\} imes g_L^2$$

Mixing below EW scale, e.g., $(\bar{\ell}P_L\ell')(\bar{f}P_Rf)$, $\ell,\ell'=\mu,e$, f=b, au

[RGE below EW scale: Ciuchini, Franco, Reina, Silvestrini '93]

Luiz Vale Silva (IFIC, UV - CSIC)

NP in dipoles

Charged lepton dipoles, pheno

eEDM: $Q_{\ell edq}, Q_{\ell e}$ $|\operatorname{Im}\{\tilde{C}_{\ell edq(,\ell e)}^{eebb(,ee\tau\tau)}(\Lambda)\}| \times y_{b(,\tau)} \lesssim \mathcal{O}(10^{-7}) \operatorname{TeV}^{-2} \sim \mathcal{O}(10^{-3}) \frac{\sqrt{2}m_e}{v^3}$

 \rightarrow Running below EW scale: improves bound by a factor ~ 1

[Similar bounds found by Panico, Pomarol, Riembau '18]

$$\mu \to e\gamma: \ Q_{\ell e} \ | ilde{C}_{\ell e}^{\mu e au au}(\Lambda)| imes y_{ au} \lesssim \mathcal{O}(10^{-5}) \ {
m TeV}^{-2} \sim \mathcal{O}(0.01) imes rac{\sqrt{2m_e m_\mu}}{v^3}$$

ightarrow Running below EW scale: improves bound by a factor $\mathcal{O}(\mathrm{few})$

 $\mu \to e$ conversion in nuclei: $Q_{\ell edq}$ bound on $\tilde{C}^{\mu ebb}_{\ell edq}(\Lambda)$ stronger by a factor ~ 20 [Crivellin, Davidson, Pruna, Signer '17]

ightarrow Wilson coefficients $\lesssim \mathcal{O}(10^{-3}) - \mathcal{O}(10^{-5}) \,\mathrm{TeV}^{-2}$

Off-shell renormalization of SM + dim.=6 ops.

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} + \sum_i C_i Q_i, \qquad C_i ext{ scales as } \Lambda^{-2}$$

$$\mathcal{L}_{\rm SM} = -\frac{1}{4} G^{A}_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^{I}_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + (D_{\mu}H^{\dagger}) (D^{\mu}H) + \sum_{\psi=q,u,d,\ell,e} \bar{\psi} i \not\!\!\! D \psi \\ -\lambda \left(H^{\dagger}H - \frac{1}{2} v_{\rm EW}^2 \right)^2 - \left[H^{\dagger j} \bar{d} Y_d q_j + \tilde{H}^{\dagger j} \bar{u} Y_u q_j + H^{\dagger j} \bar{e} Y_e \ell_j + \text{h.c.} \right] \\ \text{[plus gauge fixing and ghost terms]}$$

Insertions of dim.-6 ops. \mathcal{O} that require dipoles as counter-terms: $\mathcal{O} = \psi^2 X H, \psi^4, X^3, X^2 H^2, \ [\mathcal{O}]^{ren} \supset Z_{\mathcal{O}, \psi^2 X H} \times \psi^2 X H$

Full set of local operators required in the renormalization program?

Full basis of operators

class \mathcal{O}, \mathcal{Q} : gauge-invariant operators, *e.g.*, *Warsaw basis* class A: BRST-exact operators, i.e., $A = \delta_{BRST}A'$ class B: vanish via the equations of motion $\begin{pmatrix} [\mathcal{O}]^{\text{ren}} \\ [A]^{\text{ren}} \\ [B]^{\text{ren}} \end{pmatrix} = \begin{pmatrix} Z_{\mathcal{O}\mathcal{Q}} & Z_{\mathcal{O}A} & Z_{\mathcal{O}B} \\ 0 & Z_{AA} & Z_{AB} \\ 0 & 0 & Z_{BB} \end{pmatrix} \begin{pmatrix} \mathcal{Q} \\ A \\ B \end{pmatrix} \qquad \begin{cases} \langle 0 | T \{A\Phi\} | 0 \rangle_{\text{on-shell}} = 0 \\ \langle 0 | T \{B\Phi\} | 0 \rangle_{\text{on-shell}} = 0 \\ \langle 0 | T \{B\Phi\} | 0 \rangle_{\text{on-shell}} = 0 \end{cases}$ Φ : set of local fields

[Dixon, Taylor '74; Kluberg-Stern, Zuber '75; Joglekar, Lee '76; Joglekar '77; Collins '84]

[cf. Herrlich, Nierste '96 for double insertions]

ヘロト 不過 ト イヨト イヨト しきょうのの

Full basis of operators

class \mathcal{O}, \mathcal{Q} : gauge-invariant operators, e.g., Warsaw basis class A: BRST-exact operators, i.e., $A = \delta_{BRST} A'$ class B: vanish via the equations of motion $\begin{pmatrix} \begin{bmatrix} \mathcal{O} \end{bmatrix}^{\text{ren}} \\ \begin{bmatrix} \mathbf{A} \end{bmatrix}^{\text{ren}} \\ \begin{bmatrix} \mathbf{B} \end{bmatrix}^{\text{ren}} \end{pmatrix} = \begin{pmatrix} Z_{\mathcal{O}\mathcal{Q}} & Z_{\mathcal{O}A} & Z_{\mathcal{O}B} \\ 0 & Z_{AA} & Z_{AB} \\ 0 & 0 & Z_{BB} \end{pmatrix} \begin{pmatrix} \mathcal{Q} \\ \mathbf{A} \\ \mathbf{B} \end{pmatrix} \qquad \begin{pmatrix} 0 \mid T\{A\Phi\} \mid 0 \rangle_{\text{on-shell}} = 0 \\ \langle 0 \mid T\{B\Phi\} \mid 0 \rangle_{\text{on-shell}} = 0 \\ \mathbf{A} \\ \mathbf{B} \end{pmatrix}$

$$(\mathbf{B})$$
 Φ : set of local fields

[Dixon, Taylor '74; Kluberg-Stern, Zuber '75; Joglekar, Lee '76; Joglekar '77; Collins '84]

[cf. Herrlich, Nierste '96 for double insertions]

Non-phys. ops. are enumerated systematically by extending BRST [Henneaux '93; Barnich, Brandt, Henneaux '00]

Ex. of gauge non-inv. structure from non-physical operators: $g_A[(\partial_{\nu}\bar{\psi}_L)\Gamma^{\mu\nu}t'\xi_R\varphi]A'_{\mu},\ldots$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mixing into dipole operators

Consider all operators Q that contribute to $\Sigma_Q Z_{OQ} \mathcal{G}_Q^{\text{tree}}(\cdot) = \mathcal{G}_O(\cdot)$ Need to look at many Green's functions to pin down Z_{OQ}

 $\Rightarrow Z_{OQ} = \text{linear combination of } \mathcal{G}_O(\psi^2 A^{\mu} H), \mathcal{G}_O(\psi^2 H), \mathcal{G}_O(\psi^2 A^{\mu}), \mathcal{G}_O(\psi^2)$

 $[\mathcal{G}_O:$ Green's functions of single insertions of (bare) operator O]

[cf., e.g., Grinstein, Springer, Wise '88 on $b \to s \gamma]$

Again, we want to determine $Z_{O,\psi^2 XH}$ for O such that $\gamma_{O,\psi^2 XH}^{(1-\text{loop})} = 0$

ELE NOR

Extended BRST-variation

→ Extend BRST-variation to "anti-fields"; $\delta_{BRST} = \delta + \gamma$ increases the mass power counting and the ghost number by one unit → Consider all polynomials of dim. \leq 5, and ghost number -1

$$\begin{split} D_{\mu}C^{I} &= \partial_{\mu}C^{I} + ef_{JK}^{I}A_{\mu}^{J}C^{K}, \ D_{\mu}A_{I}^{\dagger\mu} = \partial_{\mu}A_{I}^{\dagger\mu} - ef_{JI}^{K}A_{\mu}^{J}A_{K}^{\dagger\mu}, \text{ and } L_{I}^{\mu} = \frac{\delta L}{\delta A_{\mu}^{i}}, \\ L_{i} &= (-1)^{\epsilon_{i}}\frac{\delta L}{\delta \xi^{i}}, \text{ where } L \text{ is the action.} \\ \text{The field } \xi \text{ designates a fermion or a scalar.} \end{split}$$

Luiz Vale Silva (IFIC, UV - CSIC)

Some calculation aspects

$\int f[$ internal momenta q, external momenta p, masses M]

Expansion in external momenta for simplifying integrals:

[[]Chetyrkin, Misiak, Münz '97; Gambino, Gorbahn, Haisch '03; Zoller '14]

Basic formulas

$$\frac{dC^{T}}{d\ell n(\mu)} = -C^{T} \left(\frac{dZ}{d\ell n(\mu)} Z^{-1} - Z(\epsilon \Delta + \gamma_{M} N) Z^{-1} \right) \equiv C^{T} \gamma$$

for $\psi^{2} H^{3}$: $\Delta = -3, n = 2$;
for ψ^{4} : $\Delta = -2, n = 2$;
for $g\psi^{2} XH$: $\Delta = -1, n = 2$.

$$\mathcal{L}^{(6)}(\beta\alpha) = \sum_{i} M^{-2} \mu^{-\Delta_{i}\epsilon} [C_{i}(\mu)]^{\beta\alpha} [Q_{i}^{bare}]^{\beta\alpha} + \sum_{i,j,f,g} M^{-2} \mu^{-\Delta_{j}\epsilon} [C_{i}(\mu)]^{\beta\alpha} [(Z_{ij}^{X} - \delta_{ij})]^{\beta\alpha fg} [Q_{j}^{bare}]^{fg} + \ldots + \text{h.c.}$$

$$\begin{split} Z_{\psi^{2}H^{3},g\psi^{2}XH}^{X,\beta\alpha fg} &= \left[\left(\frac{g_{Y}^{2}}{(4\pi)^{4}} (Z_{Y}^{X})_{1}^{(1)} + \frac{g_{L}^{2}}{(4\pi)^{4}} (Z_{L}^{X})_{1}^{(1)} + \frac{g_{c}^{2}}{(4\pi)^{4}} (Z_{c}^{X})_{1}^{(1)} + \frac{\lambda}{(4\pi)^{4}} (Z_{\lambda}^{X})_{1}^{(1)} + \frac{\Sigma_{k,I}Y_{k}^{*} \times Y_{lk}}{(4\pi)^{4}} (Z_{\det^{2}}^{X})_{1}^{(1)} \right) \delta_{f\beta} \delta_{g\alpha} \\ &+ \frac{\Sigma_{l}(Y^{\dagger})_{fl} \times Y_{l\beta}}{(4\pi)^{4}} \delta_{g\alpha} (Z_{Y,Y}^{X})_{1}^{(1)} + \frac{(Y^{\dagger})_{g\beta} \times (Y^{\dagger})_{\alpha f}}{(4\pi)^{4}} (Z_{Y,Y}^{X})_{1}^{(1)} + \frac{\Sigma_{k}Y_{\alpha k} \times (Y^{\dagger})_{kg}}{(4\pi)^{4}} \delta_{f\beta} (Z_{Y,Y}^{X})_{1}^{(1)} \right] \frac{1}{\epsilon} + \dots \end{split}$$

Luiz Vale Silva (IFIC, UV - CSIC)

Appendix

Dipole: $g_X(\bar{\psi}_L \sigma^{\mu\nu} t^I \xi_R \varphi) X^I_{\mu\nu}$, (q_L, u_R) , (q_L, d_R) , (ℓ_L, e_R) , (ℓ_L, ν_R)

	X = B	X = W	X = G
$(Z_Y^X)_1^{(1)}$	$rac{3}{4}Q_arphi^YQ_arphi^Y(Q_L^Y+Q_R^Y)$	$rac{1}{8}Q_arphi^Y(Q_L^Y+Q_R^Y)$	0
$(Z_L^X)_1^{(1)}$	$rac{3}{16}Q_arphi^{m{Y}}$	$\frac{3}{32}$	0
$(Z_c^X)_1^{(1)}$	0	0	0
$(Z_{\lambda}^X)_1^{(1)}$	0	0	0
$(Z_{y,y}^X)_1^{(1)}$	$rac{1}{16}(5Q_{L}^{Y}+Q_{R}^{Y})$	$\frac{1}{32}$	38
$(Z_{Y,y}^{X})_{1}^{(1)}$	0	0	0
$(Z_{Y,Y}^X)_1^{(1)}$	$rac{1}{16}(Q_{L}^{Y}+5~Q_{R}^{Y})$	$\frac{1}{96}$	<u>3</u> 8
$(Z_{\det^2}^X)_1^{(1)}$	0	0	0

 $Q_{\phi}^{Y}=-Q_{\tilde{\phi}}^{Y}=1/2;\;Q_{\ell_{L}}^{Y}=-1/2,\;Q_{e_{R}}^{Y}=-1,\;Q_{\nu_{R}}^{Y}=0;\;Q_{q_{L}}^{Y}=1/6,\;Q_{u_{R}}^{Y}=+2/3,\;Q_{d_{R}}^{Y}=-1/3$

Luiz Vale Silva (IFIC, UV - CSIC)

30 January, 2019 11 / 13

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Appendix

Channel	Coupling	Bound
$\mu \to e \gamma$	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$<$ 0.63 \times 10 ⁻⁶
$\mu \to 3e$	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$\lesssim 3.1 \times 10^{-5}$
electron $g-2$	$\operatorname{Re}(Y_{e\mu}Y_{\mu e})$	-0.00220.0009
electron EDM	$ \text{Im}(Y_{e\mu}Y_{\mu e}) $	$<$ 0.10 \times 10 ⁻⁸
$\mu \to e$ conversion	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$< 1.2 \times 10^{-5}$
M - \overline{M} oscillations	$ Y_{\mu e} + Y_{e\mu}^* $	< 0.079
$\tau \rightarrow e \gamma$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.014
$\tau \rightarrow 3e$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	$\lesssim 0.12$
electron $g-2$	$\operatorname{Re}(Y_{e\tau}Y_{\tau e})$	$[-0.24 \dots -0.10] \times 10^{-3}$
electron EDM	$ \mathrm{Im}(Y_{e\tau}Y_{\tau e}) $	$<$ 0.01 \times 10 ⁻⁸
$\tau \to \mu \gamma$	$\sqrt{ Y_{\tau\mu} ^2 + Y_{\mu\tau} ^2}$	0.016
$\tau \to 3 \mu$	$\sqrt{ Y_{\tau\mu}^2 + Y_{\mu\tau} ^2}$	$\lesssim 0.25$
muon $g - 2$	$\operatorname{Re}(Y_{\mu\tau}Y_{\tau\mu})$	$(2.5 \pm 0.71) \times 10^{-3}$
muon EDM	$\operatorname{Im}(Y_{\mu\tau}Y_{\tau\mu})$	-0.81.0
$\mu \to e \gamma$	$\left(Y_{\tau\mu}Y_{e\tau} ^2 + Y_{\mu\tau}Y_{\tau e} ^2\right)^{1/4}$	< <u>0.60</u> × 10 ⁻⁴
neutron EDM [37,	52] $ \operatorname{Im}(Y_{ut}Y_{tu}) $	$<$ 4.4 $\times 10^{-7}$
	$ \mathrm{Im}(Y_{ct}Y_{tc}) $	$<$ 5.2 $\times 10^{-4}$

[Table adapted from Harnik, Kopp, Zupan '12]

$$\begin{split} \mathcal{B}(h \to \ell \ell') & @ 95\% \text{ CL:} \\ \sqrt{|\tilde{C}_{eH}^{e\mu}|^2 + |\tilde{C}_{eH}^{\mu e}|^2} < 5.2 \times 10^{-3} \text{ TeV}^{-2} \\ \sqrt{|\tilde{C}_{eH}^{e\mu}|^2 + |\tilde{C}_{eH}^{\tau e}|^2} < 4.6 \times 10^{-2} \text{ TeV}^{-2} \\ \sqrt{|\tilde{C}_{eH}^{\mu\tau}|^2 + |\tilde{C}_{eH}^{\tau\mu}|^2} < 3.6 \times 10^{-2} \text{ TeV}^{-2} \end{split}$$

$$Y^{HKZ}_{ij}
ightarrow -rac{v^2_{
m EW}}{\sqrt{2}}[ilde{C}^\dagger]_{ij}$$

うかん 正面 (川田) (日) (日) (日)

$$\begin{split} \mathcal{B}(h \to e\mu) &< 6.1 \times 10^{-5} \; (95\% \; \text{CL}) \quad \text{[Aad:20190jw]} \\ \mathcal{B}(h \to e\tau) &< 4.7 \times 10^{-3} \; (95\% \; \text{CL}) \quad \text{[Aad:20190gc]} \\ \mathcal{B}(h \to \mu\tau) &< 2.8 \times 10^{-3} \; (95\% \; \text{CL}) \quad \text{[Aad:20190gc]} \\ \mathcal{B}(\mu \to e\gamma) &< 4.2 \times 10^{-13} \; (90\% \; \text{CL}) \quad \text{[Aad:20190gc]} \\ \mathcal{B}(\tau \to e\gamma) &< 3.3 \times 10^{-8} \; (90\% \; \text{CL}) \quad \text{[Aubert:2009ag]} \\ \mathcal{B}(\tau \to \mu\gamma) &< 4.4 \times 10^{-8} \; (90\% \; \text{CL}) \quad \text{[Aubert:2009ag]} \\ \Delta a_e &= a_e^{\exp} - a_e^{\text{SM}} = -0.88(0.36) \times 10^{-12} \; @ \; 1\sigma \quad \text{[Parker:2018]} \\ \Delta a_\mu &= a_\mu^{\exp} - a_\mu^{\text{SM}} = 268(63)(43) \times 10^{-11} \; @ \; 1\sigma \quad \text{[Tanabashi:2018oca]} \\ &|d_e|/e < 1.1 \times 10^{-29} \; \text{cm} \; (90\% \; \text{CL}) \quad \text{[Andreev:2018ayy]} \\ &|d_\mu|/e < 1.9 \times 10^{-19} \; \text{cm} \; (95\% \; \text{CL}) \quad \text{[Bennett:2008dy]} \\ d_\tau/e \in [-2.2, 4.5] \times 10^{-17} \; \text{cm} \; (95\% \; \text{CL}) \quad \text{[Inami:2002ah]} \\ &|d_{\text{Hg}}| < 7.4 \times 10^{-30} \; e \; \text{cm} \; (95\% \; \text{CL}) \quad \text{[Graner:2015sja]} \end{aligned}$$

Luiz Vale Silva (IFIC, UV - CSIC)

30 January, 2019 13 / 13