

MAGNETIC COMPACTIFICATIONS

Based on collaborations with:

W. Buchmuller + M.Dierigl, J. Schweizer and Y. Tatsuta

arXiv:1611.03798 [hep-th], [arXiv:1804.07497 [hep-th]] and

arXiv:1909.03007 [hep-th]

IFT Warsaw oct. 12, 2019, Warsaw

Outline

- 1) Magnetic compactifications
- 2) Effective field theory
- Invisible symmetry and goldstone bosons
- 3) Light scalars?
- 4) Perspectives

1) Magnetic compactifications

Consider a 6-dim. theory : $x_0x_1x_2x_3x_4x_5$

An internal magnetic field $\langle F_{45} \rangle = BH_I = fH_I$

Cartan gauge group generator

- Charged states: turns KK states k_1, k_2 into Landau levels n, mass (Bachas) n

$$\delta M^2 = (2n+1)|qf| + 2qf\Sigma_{45}$$

where Σ_{45} is the internal helicity of particles.

- Uncharged states : standard KK masses

An internal magnetic field is quantized

$$\int_{T^2} F = 2\pi N \Longrightarrow f = \frac{N}{2\pi R_1 R_2} \sim M_{\rm GUT}^2 \; ; \; {\rm N=int.} \label{eq:fitting}$$

- Each Landau level is N times degenerate.
- chiral fermion zero modes (index theorem) :

$$n_L - n_R = \frac{1}{2\pi} \int_{T^2} F = N$$

It breaks SUSY due to the spin-magnetic field coupling

$$H = -\mu \mathbf{B} = -\frac{q}{m} \mathbf{S} \mathbf{B}$$

It adds a vacuum energy (Fayet-Iliopoulos term in SUSY)

$$D=f \rightarrow V=\frac{1}{2}D^2=\frac{1}{2}f^2\sim M_{\mathrm{GUT}}^4$$

More general case: compactification (S)YM theory from 10d to 4d, fluxes in each tori i=1,2,3

 $F^i = f^i_I H_I$ Cartan generator

torus

$$\int_{T_i^2} F = 2\pi N_i$$
 , $f_I^i = rac{N_i}{2\pi R_1 R_2}$ flux integers

Number of 4d chiral fermions is given by an index theorem, determined by the magnetic fluxes

$$n_L - n_R = (\frac{1}{2\pi})^3 \int_{T^6} F \wedge F \wedge F = N_1 N_2 N_3$$

The mass of a charged state given in general by

$$\delta M_{\mathbf{q}}^2 = \sum_{i=1}^3 \left[(2n_i+1) | \sum_I q_I f_I^i| + 2 \sum_I q_I f_I^i \sum_i \right]$$
 the charge
$$f_q^i \qquad \text{internal helicity torus i}$$

Whenever a charged scalar becomes of zero mass, there is some SUSY in the spectrum (Berkooz-Douglas-Leigh, T-dual language).

$$f_q^1 \pm f_q^2 \pm f_q^3 \neq 0 \to \mathcal{N} = 0 \text{ SUSY}$$

 $f_q^1 \pm f_q^2 \pm f_q^3 = 0 \to \mathcal{N} = 1 \text{ SUSY}$
 $f_q^1 \pm f_q^2 = 0 , f_q^3 = 0 \to \mathcal{N} = 2 \text{ SUSY}$

Widely studied in type I/II string theory:

Internal magnetic fields

intersecting branes

Elegant geometrical intepretations:

- chiral fermions live at the intersection of branes
- Number of generations: intersection numbers
- Yukawa couplings : governed by areas

Among the most succesful quasi-realistic Standard Model realizations in String Theory

- Field Theory: anomaly cancelation conditions
- String Theory: RR tadpole conditions. For toroidal comp.:

$$\sum_{a} M_{a} = 16 , \sum_{a} M_{a} N_{2}^{a} N_{3}^{a} = 0 ,$$

$$\sum_{a} M_{a} N_{1}^{a} N_{3}^{a} = 0 , \sum_{a} M_{a} N_{1}^{a} N_{2}^{a} = 0$$

Why effective field theory action?

- If broken SUSY, quantum corrections difficult in string theory (NS-NS tadpoles)
- Chirality, (split) SUSY breaking: different sectors have different SUSY
- Electroweak symmetry breaking (Nielsen-Olesen instability) ?
- Magnetic field breaks spontaneously a global symmetry invisible from four dimensions.
- Subtlety: No mass gap: masses given by the magnetic field of the same order (1/R) as Landau levels one needs an effective theory for the whole tower.

Truncation to « zero modes » inconsistent.

2) Effective field theory (simple ex.)

Consider a 6d Weyl fermion interacting with an abelian gauge field

$$S_6 = \int d^6x \left(-\frac{1}{4} F^{MN} F_{MN} + i \overline{\Psi} \Gamma^M D_M \Psi \right)$$

4d notation, two Weyl fermions of charges q,-q; fermionic part of the action is

$$S_{6f} = \int d^6x \Big(-i\psi\sigma^{\mu}\overline{D}_{\mu}\overline{\psi} - i\chi\sigma^{\mu}D_{\mu}\overline{\chi} - \chi \Big(\partial_z + \sqrt{2}q\phi \Big)\psi - \overline{\chi} \Big(\partial_{\overline{z}} + \sqrt{2}q\overline{\phi} \Big)\overline{\psi} \Big),$$

where $D_{\mu} = \partial_{\mu} + iqA_{\mu}$, $\overline{D}_{\mu} = \partial_{\mu} - iqA_{\mu}$ and

$$\phi = \frac{1}{\sqrt{2}} (A_6 + iA_5) , \quad z = \frac{1}{2} (x_5 + ix_6) , \quad \partial_z = \partial_5 - i\partial_6 .$$

E. Dudas - CNRS and E. Polytechnique

A constant magnetic flux

$$\langle A_5 \rangle = -\frac{1}{2} f x_6, \ \langle A_6 \rangle = \frac{1}{2} f x_5 \qquad \Longleftrightarrow \qquad \langle \phi \rangle = \frac{1}{\sqrt{2}} f \bar{z}$$

is a solution of field eqs.

The effective 4d action can be easily found by using an oscillator algebra

$$a_{+} = \frac{i}{\sqrt{2qf}} \left(\partial_{z} + qf\bar{z} \right) , \quad a_{+}^{\dagger} = \frac{i}{\sqrt{2qf}} \left(\partial_{\bar{z}} - qfz \right)$$
$$a_{-} = \frac{i}{\sqrt{2qf}} \left(\partial_{\bar{z}} + qfz \right) , \quad a_{-}^{\dagger} = \frac{i}{\sqrt{2qf}} \left(\partial_{z} - qf\bar{z} \right)$$

Ground state wavefunctions determined by

$$a_{+}\xi_{0,j} = 0$$
, $a_{-}\overline{\xi}_{0,j} = 0$

 $j=0\cdots,|N|-1$ is the degeneracy of the ground state.

An orthonormal set of higher mode functions is

$$\xi_{n,j} = \frac{i^n}{\sqrt{n!}} \left(a_+^{\dagger} \right)^n \xi_{0,j} , \quad \overline{\xi}_{n,j} = \frac{i^n}{\sqrt{n!}} \left(a_-^{\dagger} \right)^n \overline{\xi}_{0,j}$$

The mode expansion of the fermionic fields of charge +q,-q is

$$\psi = \sum_{n,j} \psi_{n,j} \xi_{n,j}, \quad \chi = \sum_{n,j} \chi_{n,j} \overline{\xi}_{n,j}$$

Gauge fields A_{μ} and φ have no charge, standard Kaluza-Klein modes

One can prove the invariance of the 4d action under a symmetry mixing the whole tower

$$\delta\varphi_{0} = \sqrt{2}\overline{\epsilon}f,$$

$$\delta\psi_{n,j} = \sqrt{2qf}(\epsilon\sqrt{n+1}\,\psi_{n+1,j} - \overline{\epsilon}\sqrt{n}\,\psi_{n-1,j}),$$

$$\delta\chi_{n,j} = \sqrt{2qf}(-\epsilon\sqrt{n}\,\chi_{n-1,j} + \overline{\epsilon}\sqrt{n+1}\,\chi_{n+1,j}),$$

$$\delta\varphi_{l,m} = (\epsilon M_{l,m} - \overline{\epsilon}\overline{M}_{l,m})\varphi_{l,m},$$

$$\delta A_{\mu,l,m} = (\epsilon M_{l,m} - \overline{\epsilon}\overline{M}_{l,m})A_{\mu,l,m}.$$

SUSY 6d example

Abelian 6d SUSY theory compactified on a torus.

N=2 SUSY in 4d before adding the magnetic flux;

4d multiplets: vector $(V,\phi) \\ {\rm charged\ hyper} \qquad (Q,\tilde{Q})$

• 6d effective action in superfields: (Marcus, Sagnotti, Siegel; Arkani-Hamed, Gregoire, Wacker)

$$S_{6} = \int d^{6}x \Big\{ \frac{1}{4} \int d^{2}\theta W^{\alpha}W_{\alpha} + \text{h.c.} + \int d^{4}\theta \left(\partial V \overline{\partial} V + \phi \overline{\phi} + \sqrt{2}V \left(\overline{\partial} \phi + \partial \overline{\phi} \right) \right)$$

$$+ \int d^{2}\theta \tilde{Q}(\partial + \sqrt{2}gq\phi)Q + \text{h.c.} + \int d^{4}\theta \left(\overline{Q}e^{2gqV}Q + \overline{\tilde{Q}}e^{-2gqV}\tilde{Q} \right) \Big\}$$

$$\partial = \partial_{5} - i\partial_{6}, \quad \phi|_{\theta = \overline{\theta} = 0} = \frac{1}{\sqrt{2}}(A_{6} + iA_{5})$$

ϕ are internal components of gauge fields = Wilson lines

Mode expansions with flux:

$$|\phi_0|_{\theta=\overline{\theta}=0} = \frac{f}{2\sqrt{2}} (x_5 - ix_6) + \varphi, \quad \varphi = \frac{1}{\sqrt{2}} (a_6 + ia_5)$$

$$Q(x_M, \theta, \overline{\theta}) = \sum_{n,j} Q_{n,j}(x_\mu, \theta, \overline{\theta}) \, \psi_{n,j}(x_m) \,,$$

$$\tilde{Q}(x_M, \theta, \overline{\theta}) = \sum_{n,j} \tilde{Q}_{n,j}(x_\mu, \theta, \overline{\theta}) \, \overline{\psi}_{n,j}(x_m) \, .$$

The final 4d effective action for Landau levels is

FI term

$$S_4^* = \int d^4x \left[\int d^4\theta \left(\overline{\varphi}\varphi + \sum_{n,j} (\overline{Q}_{n,j} e^{2gqV_0} Q_{n,j} + \overline{\tilde{Q}}_{n,j} e^{-2qgV_0} \tilde{Q}_{n,j}) + 2fV_0 \right) \right]$$

$$+ \int d^2\theta \, \left(\frac{1}{4} \mathcal{W}_0^{\alpha} \mathcal{W}_{\alpha,0} \right)$$

+
$$\sum_{n,j} \left(-i\sqrt{-2qgf(n+1)}\tilde{Q}_{n+1,j}Q_{n,j} + \sqrt{2qg}\tilde{Q}_{n,j}\varphi Q_{n,j} \right) \right)$$
 + h.c.

Coupled mass terms

 SUSY broken like in the FI model, with an infinite number of fields. Truncation to a finite number inconsistent.

The mass formula for charged states is nontrivial in the effective theory (ex. below 10d comp. of SYM theory):

- Physical eigenstates are linear combination of Landau levels. Ex (fluxes in two tori T_2^2 , T_3^2)

$$\phi_{n,n'}^- = \frac{1}{\mu_{n,n'}} \left(\sqrt{2gf_2n} \ \phi_{n-1,n'}^{3-} - \sqrt{2gf_3n'} \ \phi_{n,n'-1}^{2-} \right)$$

- Part of the charged scalar tower is unphysical: Goldstone bosons absorbed by the massive charged gauge bosons

$$\Pi_{n,n'}^- = \frac{1}{\sqrt{2} M_{n,n'}} \left(\mu_{n,n'} \bar{\chi}_{n,n'}^+ + \mu_{n+1,n'+1} \chi_{n,n'}^- \right) \quad \text{, where}$$

$$\chi_{n,n'}^- = \frac{1}{\mu_{n+1,n'+1}} \left(\sqrt{2g f_3(n'+1)} \; \phi_{n,n'+1}^{3-} + \sqrt{2g f_2(n+1)} \; \phi_{n+1,n'}^{2-} \right) \quad \text{, } \chi_{n,n'}^+ = \frac{1}{\mu_{n,n'}} \left(\sqrt{2g f_2 n} \; \phi_{n-1,n'}^{2+} + \sqrt{2g f_3 n'} \; \phi_{n,n'-1}^{3+} \right)$$

E. Dudas – E. Polytechnique

3) Light scalars in magnetic comp?

Masses of elementary particles in the Standard Model have various mysteries:

The smallness of fermion masses is technically natural due to chiral symmetries $\Psi \to e^{i\gamma_5 lpha} \Psi$, which protect quantum corrections

$$\delta m \sim \frac{g^2}{16\pi^2} m \ln \frac{\Lambda}{m}$$

Masses of elementary scalars are a bigger puzzle, UV sensitivity the hierarchy problem

Higher-dim. symmetries can protect quantum corrections in a way invisible from 4d.

Ex: Internal comp. of a gauge field protected by gauge symmetry (gauge-Higgs unification)

$$\delta m^2 \sim ({
m loop}) imes {1 \over R^2}$$
 (Antoniadis, Benakli, Quiros, 2001...)

• Compactification scale $M_c=R^{-1}$ usually defines the GUT/unification scale.

Can one get

$$\delta m^2 << \frac{1}{R^2}$$

Usually, Yukawa and gauge interactions generate scalar masses after quantum corrections. Fermionic loop would generate

$$\delta m_{\varphi_0}^2 = -2q^2 |N| \int \frac{d^4k}{(2\pi)^4} \frac{2k^2}{k^2 (k^2 + 2qf)}$$

$$= -\frac{q^2 |N|}{4\pi^2} \left(\Lambda^2 - 2qf \ln\left(\frac{\Lambda^2}{2qf}\right) + \dots\right)$$

$$\Psi_{n,j}$$

$$\Psi_{n,j}$$

$$\Psi_{n,j}$$

$$\Psi_{n+1,j}$$

However, summing over the whole tower, one gets

$$\delta m_{\varphi_0}^2 = -2q^2 |N| \sum_n \int \frac{d^4k}{(2\pi)^4} \frac{2k^2}{(k^2 + 2qfn)(k^2 + 2qf(n+1))}$$

$$= 4q^2 |N| \sum_n \int \frac{d^4k}{(2\pi)^4} \left(\frac{n}{k^2 + 2qfn} - \frac{n+1}{k^2 + 2qf(n+1)} \right) = 0$$

(subtleties with regularization)

We believe the higher-dimensional, spontaneously broken symmetry, mixing the whole tower, protects the scalar, Goldstone boson. The symmetry is invisible from 4d.

- The symmetry ensures that the cancelation is valid to all orders in perturbation theory.

10d gauge field

4d fields

$$A_N \rightarrow A_\mu, \phi_1, \phi_2, \phi_3$$

Mass of lightest field in the ϕ_1 tower is

$$M_{\phi_1}^2 = -|f_q^1| + |f_q^2| + |f_q^3|$$

 ϕ_1 can be light for specific values of moduli fields: moduli stabilization details or landscape.

$$M_{\phi_1}^2 = 0$$
 SUSY

Magnetic compactifications are generically unstable:
Internal components of charged gauge fields are often tachyonic:
Nielsen-Olesen instabilities. Stable field-theory models possible.

• Tachyons imply condensation of charged scalars. Simplest cases : restoration of full $\mathcal{N}=4~\mathrm{SUSY}$ after condensation. Not clear that always true.

If no tachyon condensation R-symmetry, no gaugino masses. Tachyon condensation therefore needed.

• Flux leading to $\mathcal{N}=1$ or $\mathcal{N}=2$ SUSY assumed to be stable. However, the SUSY flux conditions depend on tori areas (moduli fields). If no additional potential for moduli, dynamics drives the system towards decompactification limit.

Perspectives

 Magnetized compactifications generate chirality and can break SUSY (in some sectors) such that

$$M_{SUSY} \sim M_{GUT} \sim R^{-1}$$

- Magnetic fields breaks spontaneously symmetries invisible from 4d (pseudo) Goldstones from higher-dim. symmetries. Tuning/moduli stabilization close to SUSY point is another way to get light scalars.
- Various open questions: tachyon condensation, stability of SUSY vacua. Quantum corrections?
- Various applications possible: SM/hierarchy problem, moduli stabilization, inflation, orbifold GUT's.