A Realistic U(2) Model of Flavor

Robert Ziegler (KIT)

mainly based on arXiv: 1805.07341 with M. Linster & work in progress with M. Linster & J. Lopez-Pavon

arXiv:1308.1090 with E. Dudas, G. v.Gersdorff, S. Pokorski arXiv:1509.01249 with A. Falkowksi, M. Nardecchia arXiv:1904.04121 with R. Barbieri B-anomalies

Outline

Realistic extension of U(2) models by Barbieri & al.

(viable CKM, neutrinos included, no SUSY)

CL Sector

R. Barbieri, G. Dvali, L. Hall '96 R. Barbieri, L. Hall, A. Romanino '97....

of B-Anomalies

Sector

Axiflavon

The SM Flavor Puzzle

Explain large hierarchies in fermion masses and mixings

Here: Approximate Flavor Symmetries

Flavor Symmetries

SM fields charged under flavor symmetry group G, spontaneously broken by VEVs of "flavon" fields Φ_A

Effective Yukawa Lagrangian requires flavon insertions in order to be invariant under G

Yukawas given by powers of small parameters $\epsilon_A = \langle \Phi_A \rangle / \Lambda_F$

Prototype Example: U(1)

Froggatt, Nielsen '79

(same as in Partial Compositeness)

Can easily reproduce all Yukawa hierarchies, e.g.

$$q_{i} = (3, 2, 0)$$

$$y_{u} \sim \begin{pmatrix} \epsilon^{3+4} & \epsilon^{3+2} & \epsilon^{3+0} \\ \epsilon^{2+4} & \epsilon^{2+2} & \epsilon^{2+0} \\ \epsilon^{0+4} & \epsilon^{0+2} & \epsilon^{0+0} \end{pmatrix}$$

Diagonalized by $V_{ij} \sim \epsilon^{|f_i - f_j|} \longrightarrow V_{us} \sim \epsilon^{|q_1 - q_2|} \sim \epsilon$ not so small order parameter: charge assignment not unique

2 charge diff's for 3 CKM angles: postdict $V_{ub} \sim V_{us}V_{cb}$

A U(2) Model of Flavor

	10_{a}	$\overline{5}_{a}$	10_3	$\overline{5}_3$	Н	ϕ_a	χ
$SU(2)_F$	2	2	1	1	1	2	1
$U(1)_F$	1	1	0	1	0	-1	-1

Linster, RZ '18 [old models: SO(10)]

Up-Quark Sector

Invariant Yukawa Lagrangian needs Flavon insertions

$$\begin{aligned} \mathcal{L}_{u} &= \frac{\lambda_{11}^{u}}{\Lambda^{6}} \chi^{4}(\phi_{a}^{*}Q_{a})(\phi_{b}^{*}U_{b})H + \frac{\lambda_{12}^{u}}{\Lambda^{2}} \chi^{2} \epsilon_{ab}Q_{a}U_{b}H + \frac{\lambda_{13}^{u}}{\Lambda^{3}} \chi^{2}(\phi_{a}^{*}Q_{a})U_{3}H \\ &+ \frac{\lambda_{22}^{u}}{\Lambda^{2}} (\epsilon_{ab}\phi_{a}Q_{b})(\epsilon_{cd}\phi_{c}U_{d})H + \frac{\lambda_{23}^{u}}{\Lambda} (\epsilon_{ab}\phi_{a}Q_{b})U_{3}H + \frac{\lambda_{31}^{u}}{\Lambda^{3}} \chi^{2}Q_{3}(\phi_{a}^{*}U_{a})H \\ &+ \frac{\lambda_{32}^{u}}{\Lambda}Q_{3}(\epsilon_{ab}\phi_{a}U_{b})H + \lambda_{33}^{u}Q_{3}U_{3}H \,, \end{aligned}$$

Flavon vevs generate hierarchical Yukawa structure

$$Y_{u} \approx \begin{pmatrix} \lambda_{11}^{u} \varepsilon_{\phi}^{2} \varepsilon_{\chi}^{4} & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{13}^{u} \varepsilon_{\phi} \varepsilon_{\chi}^{2} \\ -\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\ \lambda_{31}^{u} \varepsilon_{\phi} \varepsilon_{\chi}^{2} & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u} \end{pmatrix} \approx \begin{pmatrix} 0 & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\ 0 & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u} \end{pmatrix}$$

drop sub-leading corrections $\mathcal{O}(\epsilon_{\phi}^2) \sim 10^{-4}$

reproduce holomorphic 0's in SUSY models

Quarks and Charged Leptons

$$\begin{split} Y_u \approx \begin{pmatrix} 0 & \lambda_{12}^u \varepsilon_{\chi}^2 & 0 \\ -\lambda_{12}^u \varepsilon_{\chi}^2 & \lambda_{22}^u \varepsilon_{\phi}^2 \\ 0 & \lambda_{32}^u \varepsilon_{\phi} & \lambda_{33}^u \end{pmatrix}, \quad Y_d \approx \begin{pmatrix} 0 & \lambda_{12}^d \varepsilon_{\chi}^2 & 0 \\ -\lambda_{12}^d \varepsilon_{\chi}^2 & \lambda_{22}^d \varepsilon_{\phi}^2 \\ 0 & \lambda_{32}^d \varepsilon_{\phi} & \lambda_{33}^d \\ \end{pmatrix} \\ Y_e \approx \begin{pmatrix} 0 & \lambda_{12}^e \varepsilon_{\chi}^2 & \lambda_{22}^e \varepsilon_{\phi}^2 \\ -\lambda_{12}^e \varepsilon_{\chi}^2 & \lambda_{22}^e \varepsilon_{\phi}^2 \\ -\lambda_{12}^e \varepsilon_{\chi}^2 & \lambda_{22}^e \varepsilon_{\phi}^2 \\ 0 & \lambda_{32}^e \varepsilon_{\phi} & \lambda_{33}^e \varepsilon_{\chi} \end{pmatrix}. \end{split}$$

1-2 mixing angles smallish, related to light masses

 $\theta_{12} \sim \epsilon_{\chi}^2 / \epsilon_{\phi}^2 \sim \sqrt{m_1/m_2}$

$$Y_{u} \approx \begin{pmatrix} 0 & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\ 0 & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u} \end{pmatrix}, \qquad Y_{d} \approx \begin{pmatrix} 0 & \lambda_{12}^{d} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{d} \varepsilon_{\chi}^{2} & \lambda_{22}^{d} \varepsilon_{\phi}^{2} & \lambda_{23}^{d} \varepsilon_{\phi} \varepsilon_{\chi} \\ 0 & \lambda_{32}^{d} \varepsilon_{\phi} & \lambda_{33}^{d} \varepsilon_{\chi} \end{pmatrix}$$
$$Y_{e} \approx \begin{pmatrix} 0 & \lambda_{12}^{e} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{e} \varepsilon_{\chi}^{2} & \lambda_{22}^{e} \varepsilon_{\phi}^{2} \\ 0 & \lambda_{32}^{e} \varepsilon_{\phi} \varepsilon_{\chi} \end{pmatrix}.$$

1-2 mixing angles **smallish**, related to light masses

$$\theta_{12} \sim \epsilon_{\chi}^2 / \epsilon_{\phi}^2 \sim \sqrt{m_1/m_2}$$

2-3 angles large for RH d-quarks and LH leptons

$$\theta_{23}^{DR} \sim \theta_{23}^{EL} \sim \epsilon_{\phi}/\epsilon_{\chi} \sim \mathcal{O}(1)$$

$$Y_{u} \approx \begin{pmatrix} 0 & \lambda_{12}^{u} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{u} \varepsilon_{\chi}^{2} & \lambda_{22}^{u} \varepsilon_{\phi}^{2} & \lambda_{23}^{u} \varepsilon_{\phi} \\ 0 & \lambda_{32}^{u} \varepsilon_{\phi} & \lambda_{33}^{u} \end{pmatrix}, \quad Y_{d} \approx \begin{pmatrix} 0 & \lambda_{12}^{d} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{d} \varepsilon_{\chi}^{2} & \lambda_{22}^{d} \varepsilon_{\phi}^{2} \\ 0 & \lambda_{32}^{d} \varepsilon_{\phi} & \lambda_{33}^{u} \end{pmatrix}, \quad Y_{d} \approx \begin{pmatrix} 0 & \lambda_{12}^{d} \varepsilon_{\chi}^{2} & \lambda_{23}^{d} \varepsilon_{\phi} \\ -\lambda_{12}^{d} \varepsilon_{\chi}^{2} & \lambda_{22}^{d} \varepsilon_{\phi}^{2} \\ 0 & \lambda_{32}^{d} \varepsilon_{\phi} & \lambda_{33}^{d} \varepsilon_{\chi} \end{pmatrix}, \quad Y_{e} \approx \begin{pmatrix} 0 & \lambda_{12}^{d} \varepsilon_{\chi}^{2} & \lambda_{22}^{d} \varepsilon_{\phi} \\ -\lambda_{12}^{e} \varepsilon_{\chi}^{2} & 0 \\ -\lambda_{12}^{e} \varepsilon_{\chi}^{2} & \lambda_{22}^{e} \varepsilon_{\phi}^{2} & \lambda_{23}^{e} \varepsilon_{\phi} \\ 0 & \lambda_{32}^{d} \varepsilon_{\phi} \varepsilon_{\chi} & \lambda_{33}^{e} \varepsilon_{\phi} \end{pmatrix}.$$

1-2 mixing angles **smallish**, related to light masses

2-3 angles large for RH d-quarks and LH leptons

$$\theta_{12} \sim \epsilon_{\chi}^2 / \epsilon_{\phi}^2 \sim \sqrt{m_1/m_2}$$

$$\theta_{23}^{DR} \sim \theta_{23}^{EL} \sim \epsilon_{\phi}/\epsilon_{\chi} \sim \mathcal{O}(1)$$

$$\theta_{23}^{\rm rest} \sim \epsilon_{\phi} \sim V_{cb}$$

$$\begin{split} Y_u &\approx \begin{pmatrix} 0 & \lambda_{12}^u \varepsilon_{\chi}^2 & 0 \\ -\lambda_{12}^u \varepsilon_{\chi}^2 & \lambda_{22}^u \varepsilon_{\phi}^2 & \lambda_{23}^u \varepsilon_{\phi} \\ 0 & \lambda_{32}^u \varepsilon_{\phi} & \lambda_{33}^u \end{pmatrix}, \quad Y_d \approx \begin{pmatrix} 0 & \lambda_{12}^d \varepsilon_{\chi}^2 & 0 \\ -\lambda_{12}^d \varepsilon_{\chi}^2 & \lambda_{22}^d \varepsilon_{\phi}^2 & \lambda_{23}^d \varepsilon_{\phi} \varepsilon_{\chi} \\ 0 & \lambda_{32}^d \varepsilon_{\phi} & \lambda_{33}^d \varepsilon_{\chi} \end{pmatrix} \\ Y_e &\approx \begin{pmatrix} 0 & \lambda_{12}^e \varepsilon_{\chi}^2 & 0 \\ -\lambda_{12}^e \varepsilon_{\chi}^2 & \lambda_{22}^e \varepsilon_{\phi}^2 & \lambda_{23}^e \varepsilon_{\phi} \\ 0 & \lambda_{32}^e \varepsilon_{\phi} & \lambda_{33}^e \varepsilon_{\chi} \end{pmatrix}. \end{split}$$

1-2 mixing angles **smallish**, related to light masses

2-3 angles large for RH d-quarks and LH leptons

Other 2-3 angles are small

1-3 angles given by 1-2 and 2-3 angles

$$\begin{aligned} \theta_{12} &\sim \epsilon_{\chi}^2 / \epsilon_{\phi}^2 \sim \sqrt{m_1/m_2} \\ \\ \theta_{23}^{DR} &\sim \theta_{23}^{EL} \sim \epsilon_{\phi} / \epsilon_{\chi} \sim \mathcal{O}(1) \end{aligned}$$
$$\begin{aligned} \theta_{23}^{\text{rest}} &\sim \epsilon_{\phi} \sim V_{cb} \end{aligned}$$

$$\theta_{13} \sim \theta_{12} \times \theta_{23}$$

CKM Relations

Texture zeros accurately relate masses and mixing angles

In original U(2) models $s_{23}^{Rd} \sim V_{cb} \longrightarrow |V_{ub}/V_{cb}| \approx \sqrt{m_u/m_c}$

Off by more than 3σ : need $s_{23}^{Rd} \sim 1$

Roberts, Ross, Romanino, Velasco-Sevilla '01

Numerical Fit

Fit parameters $\{\lambda_{ij}^{u,d,e}, \varepsilon_{\phi}, \varepsilon_{\chi}\}$ with SM observables

Use quality measure for "O(1)-ness" of $\lambda_{ij}^{u,d,e}$

$$\chi^2_{\mathcal{O}(1)} = \sum_{\lambda_{ij}^p} \frac{\left(\log(|\lambda_{ij}^p|)\right)^2}{2 \cdot 0.55^2} \longrightarrow \lambda_{ij}^{u,d,e} \text{ with 95\% prob. in [1/3, 3]}$$

e.g. for single parameter $\lambda = \{3, 5, 7, 10, 50, 100\}$ get contribution $\Delta \chi^2_{\mathcal{O}(1)} = \{2, 4, 6, 9, 25, 35\}$ Fit satisfactory if $\chi^2_{\mathcal{O}(1)} \leq \#$ pars $\chi^2 \leq \#$ obs

Fit	ε_{ϕ}	$arepsilon_\chi$	$\min \lambda_{ij}^{u,d,\ell} $	$\max \lambda_{ij}^{u,d,\ell} $	χ^2	$\chi^2_{\mathcal{O}(1)}$
$QL1_{\mathbb{R}}$	0.019	0.008	1/3.1	2.7	1.7	7.8
$QL2_{\mathbb{R}}$	0.023	0.008	1/2.7	2.8	12	5.4

Neutrino Sector

Majorana neutrinos don't work because leading order 1-2 entry in Weinberg operator vanishes due to SU(2) antisymmetrization

Can do Dirac Neutrinos with $N_i = N_a + N_3$ & $X_a^N = X_3^N$

get anarchic structure; smallness from largish U(1) charges

Neutrino Fit & Predictions

Good fit just for Normal Ordering

Fit	X_a^N	X_3^N	$arepsilon_{oldsymbol{\phi}}$	$arepsilon_\chi$	$\min \lambda_{ij}^{u,d,e,\nu} $	$\max \lambda_{ij}^{u,d,e,\nu} $	χ^2	$\chi^2_{\mathcal{O}(1)}$
QL ν_D -1 (NO)	6	6	0.026	0.012	1/2.9	2.6	0.5	10
$ $ QL ν_D -2 (NO) $ $	6	6	0.024	0.013	1/2.6	2.2	18	9
$ $ QL ν_D -3 (NO) $ $	5	5	0.022	0.006	1/3.1	3.8	1.0	13
QL ν_D -4 (NO)	5	5	0.021	0.006	1/2.5	2.4	18	9

Predict overall mass scale from scanning over succesful fits

Quantity	Range [meV]	Preferred values [meV]
$\sum m_i$	58-110	60 - 65
m_{eta}	8 - 26	9 - 10

No chance for KATRIN

PLANCK bound automatically satisfied!

 $m_{\beta} = \sqrt{\sum_{i} m_{i}^{2} |U_{ei}|^{2}}$

Majorana Neutrinos from $D_6 \times U(I)$

Consider dihedral $D_6 = D_3 \times Z_2$ instead of SU(2)

	10_{a}	$\overline{5}_{a}$	10_3	$\overline{5}_3$	Η	ϕ_a	χ	$(\psi \otimes \phi)_{1} = \psi_1 \phi_2 + \psi_2 \phi_1$
$D_3 \times Z_2$	2_{-}	2_{-}	1_+	1_+	1_+	2_{-}	1_+	
$U(1)_F$	1	1	0	1	0	-1	-1	$(\psi \otimes \phi \otimes \chi)_{1} = \psi_1 \phi_1 \chi_1 + \psi_2 \phi_2 \chi_2$

Mimics U(2) structure except for symmetric 1-2: Weinberg operator fixed from charged lepton sector

Majorana Neutrino Fit

Neutrino mass matrix automatically anarchic: better fit with less parameters

Fit	ε_{ϕ}	$arepsilon_\chi$	$\min \lambda_{ij}^{\mathrm{u,d},\ell} $	$\max \lambda_{ij}^{\mathrm{u,d},\ell} $	χ^2	$\chi^2_{\mathcal{O}(1)}$	$M [10^{11} \mathrm{GeV}]$
QL ν_M -1	0.025	0.009	1/2.8	2.1	0.7	7.9	4.1
$ $ QL ν_M -2 $ $	0.024	0.009	1/2.6	1.9	18	6.3	3.3

Predict overall mass scale from scanning over succesful fits

Quantity	Range [meV]	Preferred values [meV]
$\sum m_i$	59 - 78	60, 70
m_eta	8 - 15	$9-10,\ 11-12$
$m_{\beta\beta}^{\max}$	3-16	5,9

Similar to Dirac case, neutrinoless double beta decay hopeless

 $m_{\beta\beta} = \left|\sum U_{ei}^2 m_i\right|$

Neutrino Sector Predictions

Correlation of Dirac phase and absolute mass scale

work in progress with J. Lopez-Pavon & M. Linster

just using neutrino mass textures and $s_{12}^e \approx s_{13}^e \approx 0$

Testability

- Full-fledged SU(5) model? The U(2) Axiflavon

U(I)_F spontaneously broken and has QCD anomaly: Goldstone is QCD axion solving Strong CP ["axiflavon"]

Ema, Hamaguchi, Moroi, Nakayama '16; Calibbi, Goertz, Redigolo, RZ, Zupan '16 Wilczek '82;

Predict flavor-violating axion couplings, fix cutoff by Axion DM

The U(2) Axiflavon

$$\mathcal{L}_{a} = \frac{\partial_{\mu}a}{2f_{a}}\overline{f}_{i}\gamma^{\mu}\left[C_{f_{i}f_{j}}^{V} + C_{f_{i}f_{j}}^{A}\gamma_{5}\right]f_{j} + \frac{E}{N}\frac{a(x)}{f_{a}}\frac{\alpha_{\mathrm{em}}}{8\pi}F_{\mu\nu}\tilde{F}^{\mu\nu}$$

U(1)_F charges give anomaly coefficients

 $N_{\rm DW} = 2N = 9$ E/N = 8/3 [SU(5)]

Flavon breaking scale (-cutoff) sets mass scale

$$f_a \sim \sqrt{\epsilon_{\chi}^2 + \epsilon_{\phi}^2} \Lambda$$
$$m_a = 5.7 \,\mu \text{eV} \left(\frac{10^{12} \,\text{GeV}}{f_a}\right)$$

Yukawa structure gives axion-fermion couplings $C_{f_{i}f_{j}}^{V} = (V_{fL})_{ki}X_{f_{k}}(V_{fL})_{kj}^{*}$ $C_{f_{i}f_{j}}^{A} = (V_{fR})_{ki}^{*}X_{f_{k}^{c}}(V_{fR})_{kj}$

The U(2) Axiflavon

SU(2)/D₆ protects s-d transitions, strongest bound from SN

Coupling	$m_a^{\rm max}/C \; [{\rm eV}]$	$m_a^{\max,\mathrm{U}(2)}$ [eV]	$f_a^{\min,\mathrm{U}(2)}$ [GeV]	Constraint
C_{bs}^V	9.1 · 10 ⁻²	16	$3.6\cdot 10^5$	$B^+ \to K^+ a \ [28]$
C_{sd}^{V}	$1.7 \cdot 10^{-5}$	0.58	$9.8\cdot 10^6$	$K^+ \to \pi^+ a \ [29]$
$C^{\tilde{A}}_{ee}$	$3.1 \cdot 10^{-3}$	0.014	$4.1 \cdot 10^{8}$	WD Cooling $[30]$
C_N	$3.5 \cdot 10^{-3}$	0.0092	$6.2\cdot 10^8$	SN1987A [31]

U(2) Axiflavon Phenomenology

A U(2) Model of Flavor Anomalies

Vector Leptoquark model with U(2) governing all couplings

arxiv:1904.04121 with R. Barbieri

1) Vector Leptoquark couples only to heavy vector-like family

$$\mathcal{L}_{int} = g_V V^a_\mu (\bar{Q}^a_i \gamma_\mu L_i + \bar{D}^a_i \gamma_\mu E_i) + h.c. \qquad V^a_\mu = (\mathbf{3}, 1)_{2/3}$$

2) Heavy vector-like family mixes with chiral fields

 $\mathcal{L}_{\text{mass}} = M_Q \overline{Q}_i Q_i + \overline{Q}_i (m_Q)_{ij} q_j + \overline{q}_i (\lambda_u)_{ij} u_j h + \dots$

3) Get Leptoquark couplings to light fields through mixing; fit CC and NC anomalies & constraints from loop $\Delta F = 2$

Mass Mixing

Take vectorlike quantum numbers $Q_a^c \sim q_a, Q_3^c \sim q_3 \dots$

[and SU(4) compatible charges instead of SU(5): $e^c \leftrightarrow \ell$]

Mixing sizable only for 3rd generation doublets!

$$m_{q} = \begin{pmatrix} \epsilon^{2} \epsilon^{\prime 4} & \epsilon^{\prime 2} & \epsilon \epsilon^{\prime 2} \\ -\epsilon^{\prime 2} & \epsilon^{2} & \epsilon \\ \epsilon \epsilon^{\prime 2} & \epsilon & 1 \end{pmatrix} \qquad m_{d} = \begin{pmatrix} \epsilon^{2} \epsilon^{\prime 4} & \epsilon^{\prime 2} & \epsilon \epsilon^{\prime 3} \\ -\epsilon^{\prime 2} & \epsilon^{2} & \epsilon \epsilon^{\prime} \\ \epsilon \epsilon^{\prime 3} & \epsilon \epsilon^{\prime} & \epsilon^{\prime 2} \end{pmatrix}$$
$$\mathcal{L}_{\mathrm{LQ}} \approx g_{V} s_{q3} s_{\ell 3} V_{\mu}^{a} (\overline{q}_{3}^{a} \gamma^{\mu} \ell_{3})$$

LQ couples only to 3rd generation in gauge basis

Effective Leptoquark Couplings

LQ couplings determined by LH Yukawa sector

$$\mathcal{L}_{int}^{physical} = g_V s_{q3} s_{l3} V^a_\mu (\bar{d}^a_{iL} \gamma_\mu F^D_{ij} e_{jL} + \bar{u}^a_{iL} \gamma_\mu F^U_{ij} \nu_{jL}) + h.c.$$
$$F^D_{ij} = D^{L*}_{3i} E^L_{3j} \qquad F^U_{ij} = U^{L*}_{3i} E^L_{3j}$$

 $V_{ij} = \Sigma_k U_{ki}^{L*} D_{kj}^L$

 $q_V s_{a3} s_{l3} c_{al}$

Good fit to B-anomalies with largish CL rotations only prevented by sign

$$\Delta R_D = 0.06 \left(\frac{\text{TeV}}{M_{\text{eff}}}\right)^2 \left[1 - \mathcal{R}e\left(\frac{D_{23}}{V_{cb}}\right)\right]$$
$$\Delta C_9^{\mu} = -0.04 \left(\frac{\text{TeV}}{M_{\text{eff}}}\right)^2 \left|\frac{E_{23}}{V_{cb}}\right|^2 \mathcal{R}e\left(\frac{D_{23}}{V_{cb}}\right)$$

$$\Delta R_D = (14 \pm 4) \%$$
$$\Delta C_9^{\mu} = -(0.53 \pm 0.09)$$
$$M_{\text{eff}} = -$$

Effective Leptoquark Couplings

$$x_e = |E_{23}/V_{cb}| \sim \mathcal{O}(1)$$

$$\Delta R_D = (14 \pm 4) \%$$

 $\Delta C_9^{\mu} = -(0.53 \pm 0.09)$

Summary

- Simple and realistic model of flavor from U(2); viable CKM, non-SUSY, includes neutrinos
- Majorana Neutrinos are automatically anarchic; can predict absolute neutrino mass scale
- Naturally get QCD Axion as DM from $U(I)_F$; fixes flavor scale; SU(2) strongly suppresses flavor violation
- With leptoquark and vector-like fermions get too predictive model for flavor anomalies