
DE LA RECHERCHE À L'INDUSTRIE

Research Program for improving SRF cavity performances at CEA

Thomas Proslier

www.cea.fr

Team:

Technician: C. Boulch, P. Carbonnier, E. Fayet, A. Four, G. Jullien, C. Servouin

Scientist: C. Antoine, T. Proslier

Ph.D.: Sarra Bira (IPNO/CEA), Y. Kalboussi (CEA)

Future Post-doctorant.

Internship: R. Dubroeucq, S. Habhab

Collaborations:

KEK: T. Saeki, T. kubo, Marui. (thin films, theory, electropolishing)

IPNO: D. Longuevergne, M. Fouaidy, T. Pépin-donat

LAL: G. Sattonnay (characterization)

DESY: M. Wenskat (characterization, thin films)

CERN: G. Rosaz, S. Calatroni (thin films)

STFC: R. Valizadeh (thin films, Nb3Sn)

INFN: C. Pira (thin films)

JLAB: A-M. Valente, G. Ciovati, D. Patshupati (Bulk Nb, thin films)

FNAL: S. Posen, A. Romanenko, A. Grassellino (Bulk Nb, Nb3Sn)

ANL: A. Glatz – Theory (theory simulations)

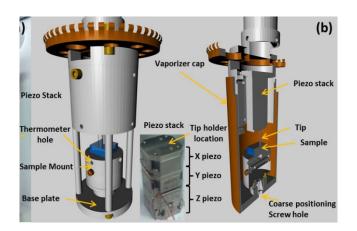
IIT: J. Zasadzinski

TRIUMPH: T. Junginger (characterization)

Cornell: M. Liepe (Nb3Sn)

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Plasma Processing
- Summary and future

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Plasma Processing
- Summary and future

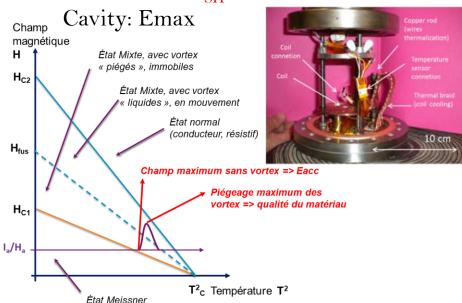

Unique characterization tools at CEA

PCTS

Measure surface superconductivity

Parameters: Δ , T_C , Γ

Cavity: Q0, Q-slope, Emax

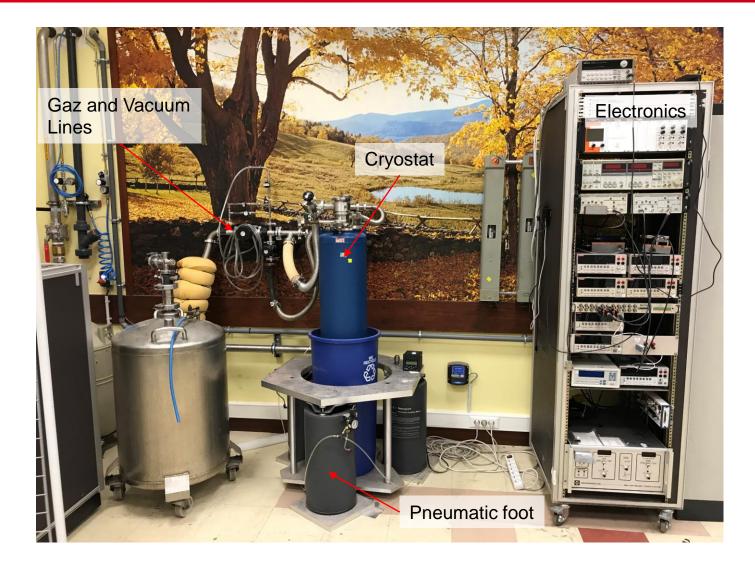


- Temp: 1,4 K Magnetic field: 6 T
- Cartography: 10 µm 1 mm
- Fast measurements: 100-300 jonctions/5hrs
- Sample size: 10x10 mm

Magnetometry

Measure critical penetration field

Parameters: H_{SH}


- Temp: from 4,2 to 300K
- External magnetic field: up to 130 mT
- Sample size: $\emptyset \ge 30 \text{ mm}$

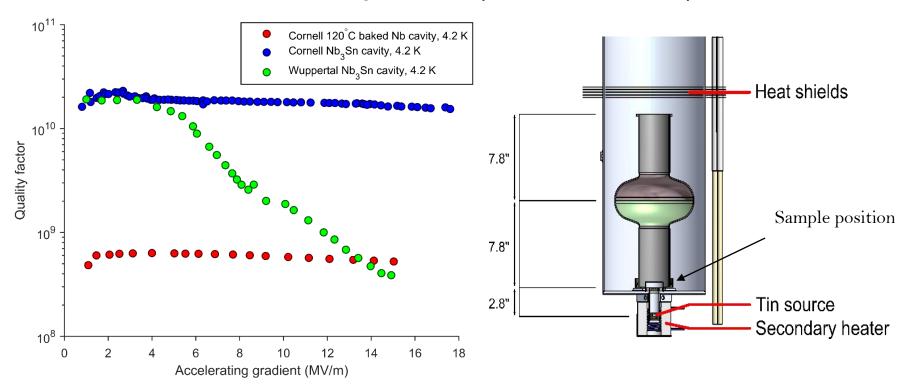
Used for thin films: Nb/Cu, Nb₃Sn, mutlilayers, bulk Nb surface treatments (doping, infusion...)

Future: Improve noise - Faraday Cage

Future: higher magnetic field 200 mT

The Point Contact system at CEA

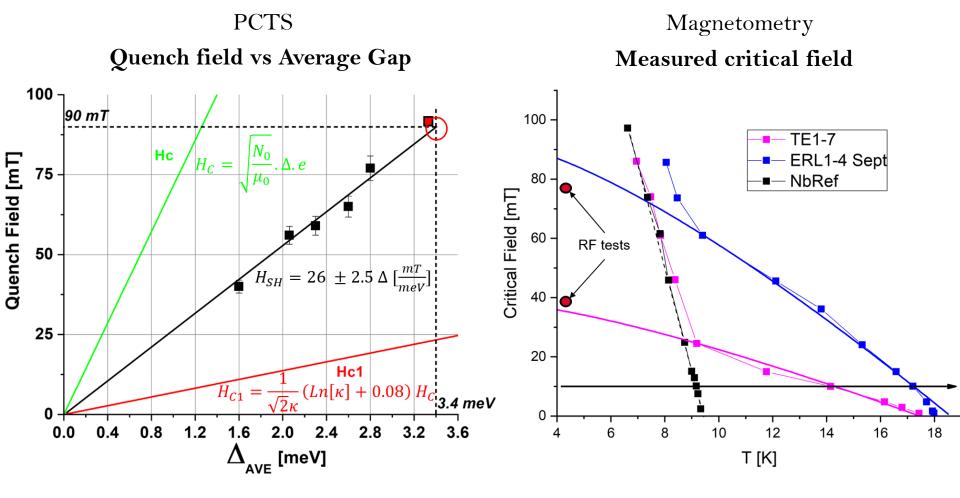
Temp: 1,4 K


Magnetic field: 6 T

Cartography: 10 µm − 1 mm

Sample size: 10x10 mm

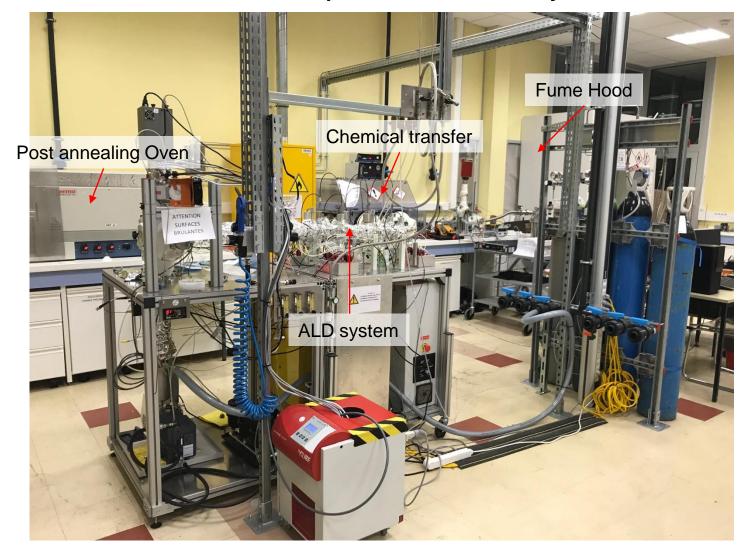
Fast measurements: 100-300 jonctions/5hrs


Nb₃Sn/Nb (Cornell-FNAL)

- Wupperthal method: diffusion of Sn in a Nb cavity
- $Nb_3Sn Q_0$ at $4.2K \sim Nb Q_0$ at 2K
- Moderate increase of Q_0 between 4K to 2K -> Non-BCS
- Q_0 decrease at ~ 6 K

Have we reached the limits of Nb₃Sn?

Nb₃Sn/Nb (Cornell - FNAL) - PCT



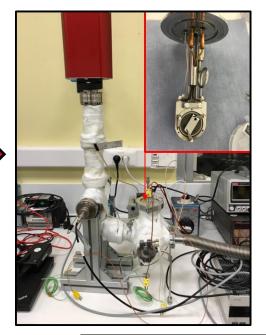
- > Linear dependence of Emax on the average surface gap (~300x300 μm)
- ➤ A15 compounds (V_3Si , Nb_3Sn , $Nb_3Al...$) are good for Q_0 and higher operation temp. (4,2 K)
- \triangleright But what about E_{MAX} ? How to increase E_{MAX} ?

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Plasma Processing
- Summary and future

Thin films developements at CEA

Set up of the ALD laboratory

- 7 chemical precursors
- Temperature up to 500°C
- RGA and QCM in-situ monitoring
- Design to fit 3 and 1,3 GHz cavities
- Fully automated
- Deposition homogeneity < 1%


Thin films developements at CEA

Deposition on BCP, EP bulk Nb samples + Post annealing treatment in High Vacuum

Annealing

3 GHz

- Up 1000°C
- 1 inch samples
- 5.10⁻⁶ mbar at 800°C
- RGA and gaz feedthroughs
- Set for Insitu X-ray studies

Soon on 3GHz and 1,3 GHz cavities

950

- Up 1000°C
- Up 1,3 GHz cavities
- 10⁻⁶ mbar at 800°C
 - RGA and gaz feedthourghs

IRFU/Service

ARIES PoC report 2019

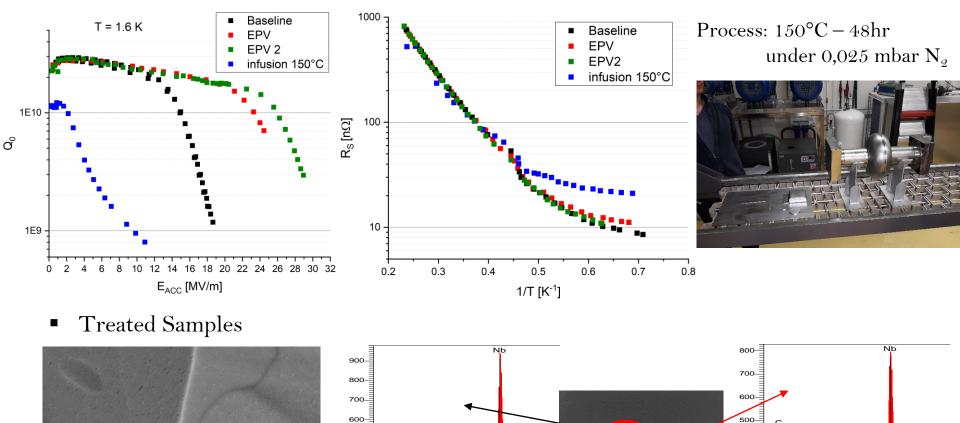
Page 11

Thin films developements at CEA NbO_X Bare Nb EP **XPS** Nb₂O₅ 76 % 1.0x10⁴ -Nb Counts Nb NbO Goal: 16% **ALD** process ALD Multilayer $5.0x10^{3}$ (N₂ 150-450°C) NbO₂ 3% $1x10^{4}$ **ALD Layer** Dépot ALD sur EP Nb 44.3% 250°C - 3 hrs 9x10³ – NbO_X NbO_X $8x10^{3}$ Nb Nb $7x10^{3}$ 8.8% Annealing ALD process (HV 400-1000°C) Recuit 420°C - 8hrs (N₂ 150-450°C) 1.2x10⁴ 74.3% ALD Layer **ALD Layer** NbO_X NbO_X $9.0x10^{3}$ 25.7% Nb Nb 204 202 214 212 210 208 206 200 BE [eV] IRFU/Service Page 12 ARIES PoC report 2019

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Plasma Processing
- Summary and future

Bulk Nb Infusion – (IPNO/CEA)

Diffusion of N in the first nm's of bulk Nb cavities.


400-

300_

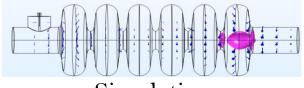
200-

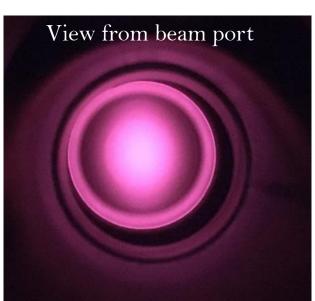
100-

EHT = 20.00 kV

Carbon pollution -> improve process

400-

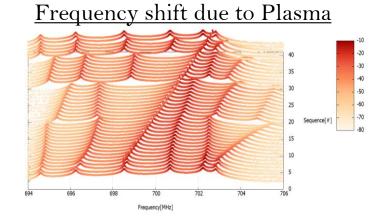

300-


200

100-

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Plasma Processing
- Summary and future

Plasma Processing



Simulation genfrequency=1183.4 MHz Isosurface: Electric energy density time average (I/m³) Arrow Volum

Niobium oxide manipulation? Sub-micron particle removal? Development Cavity recovery: VT, cryomodule....

Effect on Multipactor and Field emission

- Unique Characterizations tools
 - ➤ Point Contact Tunneling spectroscopy
 - Magnetometry
 - Predictive power for RF tests
- Thin films developements
- Bulk Nb infusion
- Plasma Processing
- Summary and future

Summary

Characterization:

- Two unique set of characterization tools with predict power for RF cavity tests
- Enable testing recipes/surface treatments/heterostructure on coupons prior to cavity tests
- Faster turner over and phase space exploration of growth parameters etc...
- ➤ Measurement of Nb3Sn sample from FNAL

Thin film growth:

- Set up ready to deposit on coupons, 3 and 1,3 GHz cavities
- > Study influence of thin dielectric films on Nb oxide/Nb interface
- Post annealing capalities for samples and cavities

Plasma Processing:

> Successful Ar and air plasma lightning in ESS cavity and controlled location in cells.

Future

Characterization:

- Faraday Cage to improve noise (ordered).
- Measure of infusion in bulk Nb and Nb3Sn thin films from DESY, Jlab, STFC.

Thin film growth:

- > Pursue ALD deposition on cavities and coupons of dielectrics layer/optimize performances.
- > Optimization of Nitrides electronic properties on Coupons.
- Construction of the Oven ALD system for high temperature deposition (Oven call fro tender Issued and offer received).
- > Deposition of multilayers on cavities.

Plasma Processing:

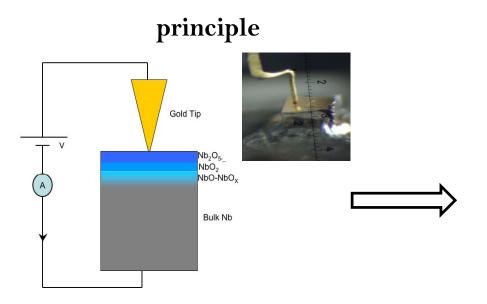
- ➤ Optimize plasma homogeneity in multicells and mono-cell.
- > Oxide engineering (H2-N2 etc...)
- > Future synergy with vapor phase deposition techniques

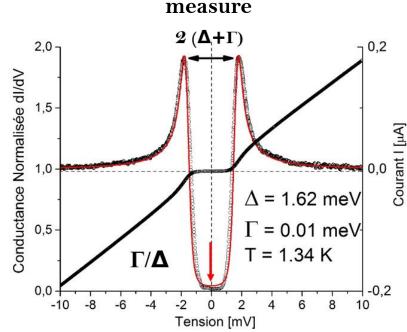
Funding Sources

Building ALD deposition system

Building ALD deposition system for cavities
RF tests
Technical support
Cobotization

Support for Ph.D. Student and Postdoctorant




Support travels, shipping (3 GHz)

Thanks you

The END

Tunneling spectroscopy: what do we measure and why?

Measure the fundamental superconducting parameters:

$$\Delta$$
, T_C , H_{C2}

- Measure non-ideal signature: Γ.
- All of these are directly correlated to SRF cavity performances
- Cartography