
Simulation on GPU?
Andrei Gheata

Budget for a simulation step (CMS simulation)

2

1. Sample interaction length:
phys_step = F(Xsec(energy, material))
~12% CPU = table lookup + interpolation
O(102) LOC

3. Sample MSC
~6% CPU = table lookup
O(102) LOC

2. Find next boundary + safety
snext = F(pos, dir, geom)
~12% CPU = branching code (nav)
O(104) branching LOC

4. Propagate with selected step
(x,y,z,P) = F(pos, mom, B, step)
~12% CPU = geometry relocation O(103-4) branching LOC
~15% CPU = field (lookup + RK)* O(103) LOC

6. Continuous processes (ioni)
Eloss, P’
~2% CPU = FP calculation
O(102-3) LOC

5. Post-propagation MSC step correction
~10% CPU = FP calculation*

O(102-3) LOC

7. Sample discrete process + at rest
Nsec = f(process, …)
~10% CPU = FP calc. split between >10 models*

O(103-4) LOC

Do stages 1 to 8 for every track step

%CPU vary depending on many simulation parameters. The
remaining to 100% is management, overheads, …
#LOC is a rough estimate for the “weight” of the module 8. Stepping actions (accounting, user scoring)

CMS Simulation Application μPipe

Geant4 GeantV

Doesn’t look good…
3

GPU considerations

• Architecture very different compared to CPU
• CPU: huge ALU, caches and control units – minimize memory access latency
• GPU: many small ALU and control units w. small caches – latency is an issue

• Good for code independent on data values (small branching)

• Portability: possible, but big issue for large code base
• Can we run full simulation on modern GPUs?
• What is the migration effort?

• Limited pipelines for 64bit operations – using just fraction of the GPU
• Which parts of simulation can be made 32-bit friendly?

• What is the benefit/cost for migrating some FP-intensive module to
GPU?

4

A possible workflow (1)

• A single track stepping cannot fill the GPU, latency hinders throughput gains
In

tL
en

sa
m

p
lin

g

G
eo

m
q

u
er

y

M
SC

sa

m
p

lin
g

Fi
el

d

p
ro

p
ag

.

G
e

o
m

re
lo

ca
ti

o
n

M
SC

co

rr
ec

ti
o

n

C
o

n
t.

p

ro
ce

ss
e

s

D
is

cr
et

e
p

ro
ce

ss
es

A
tR

es
t

p
ro

ce
ss

e
s

St
ep

p
in

g
ac

ti
o

n
s

Stack

track

la
te

n
cyC

P
U

G
P

U

5

A possible workflow (2)

• Buffer tracks for a module, 2 threads copy async, step follow-up from new stack
In

tL
en

sa
m

p
lin

g

G
eo

m
q

u
er

y

M
SC

sa

m
p

lin
g

Fi
el

d

p
ro

p
ag

.

G
e

o
m

re
lo

ca
ti

o
n

M
SC

co

rr
ec

ti
o

n

Stack

track

la
te

n
cy

G
P

U

C
P

U

Buffer
filling

Buffer
copying

Stack

la
te

n
cy

- Copying IS work that has to be taken from
CPU resources (2 threads)

Fi
el

d

p
ro

p
ag

.

- Latency can be hidden by async copy of
data to/from GPU
- If CPU->GPU copying becomes a
bottleneck, tracks can be redirected to the
module running on CPU

…

6

Some prerequisites

• Stateless simulation: all state is embedded in track, tracks are passed
via interfaces
• Issues: interface changes, caching state takes more memory (per track)

• May need supporting “last produced tracked first” policy

• Insertion of a vector particle flow in the stepping loop, using
intermediate stacks
• We know how to do it, but will it be efficient?

• The idea could be prototyped
• Minimal effort: use GeantV as testbed

• Stateless Geant4 + VectorFlow integration ongoing, but will take more time

7

