Simulation on GPU?

Andrei Gheata




Budget for a simulation step (CMS simulation)

4. Propagate with selected step

2. Find next boundary + safety (x,y,2,P) = F(pos, mom, B, step)
snext = F(pos, dir, geom) ~12% CPU = geometry relocation O(103*4) branching LOC

~12% CPU = branching code (nav) " ~15% CPU = field (lookup + RK)"0(10%) LOC
0(10%) branching LOC

T 5. Post-propagation MSC step correction
~10% CPU = FP calculation”

1. Sample interaction length:
phys_step = F(Xsec(energy, material))

< 0(1023) LOC
~12% CPU = table lookup + interpolation \
0(10?) LOC N /\ x 6. Continuous processes (ioni)
3. Sample MSC 4 Eloss, P’
ANS

~6% CPU = table lookup ~2% CPU = FP calculation
0(10?%) LOC 0(10%3) LOC

7. Sample discrete process + at rest
N,.. = f(process, ...)

: : : ~10% CPU = FP calc. split between >10 models”
%CPU vary depending on many simulation parameters. The 0(10(;_4) LOC g

remaining to 100% is management, overheads, ...
#LOC is a rough estimate for the “weight” of the module 8. Stepping actions (accounting, user scoring) ,

Do stages 1 to 8 for every track step



CMS Simulation Application uPipe

Geant4d

Issue: A significant portion
of Pipeline Slots is remaining
empty due to issues in the

5% - Front-End Bounc Front-End.

Tips: Make sure the cor

The metric value is high.
This can indicate that the
significant fraction of

\execul'ion Eieeline slots

20.5% - Memory Bound

33.0% - Retiring

Doesn’t look good...

GeantV

E

The metric value is high.
This can indicate that the
significant fraction of
execution pipeline slots
could be stalled due to
demand memory load 2

34.8% - Memory Bound

30.1% - Retiring

This metric represents how
much Core non-memaory
issues were of a bottleneck.
Shortage in hardware

19.92% - Core Bound

10.8% - Bad Speculation A significant proportion of
pipeline slots containing

MPipe



GPU considerations

* Architecture very different compared to CPU
* CPU: huge ALU, caches and control units — minimize memory access latency

* GPU: many small ALU and control units w. small caches — latency is an issue
* Good for code independent on data values (small branching)

* Portability: possible, but big issue for large code base
e Can we run full simulation on modern GPUs?
 What is the migration effort?

* Limited pipelines for 64bit operations — using just fraction of the GPU
* Which parts of simulation can be made 32-bit friendly?

* What is the benefit/cost for migrating some FP-intensive module to
GPU?



A possible workflow (1)

* A single track stepping cannot fill the GPU, latency hinders throughput gains

suolnoe
duiddalg

s9ssadoud
1S9Y1V

sassasoud
9124281

sassaso.ud
Juo)

U0I1323.4402
ISIN

uol1ed0|a.
Wwoao

Adudie|

durdwes
JSIN

duljdwes

uaau|

‘Sedoud
Pl=l4

NdS




A possible workflow (2)

» Buffer tracks for a module, 2 threads copy async, step follow-up from new stack

IntLen
sampling

sampling

Buffer
filling

Buffer

copying

~

\ 4

Geom
relocation

correction

J

- Latency can be hidden by async copy of
data to/from GPU

- If CPU->GPU copying becomes a
bottleneck, tracks can be redirected to the
module running on CPU

GPU

- Copying IS work that has to be taken from
CPU resources (2 threads)



Some prerequisites

* Stateless simulation: all state is embedded in track, tracks are passed
via interfaces

* Issues: interface changes, caching state takes more memory (per track)
* May need supporting “last produced tracked first” policy

* Insertion of a vector particle flow in the stepping loop, using
intermediate stacks
* We know how to do it, but will it be efficient?

* The idea could be prototyped
* Minimal effort: use GeantV as testbed
» Stateless Geant4 + VectorFlow integration ongoing, but will take more time



