An ultra-low mass Tracking Chamber with Particle Identification capabilities for SCTF at BINP

F. Grancagnolo

INFN – Lecce

Joint Workshop on future tau-charm factory

Orsay Dec. 4-7, 2018

The evolution

from KLOE ...

Cremlin+: Super charm-tau factory

... to SCTF

Sept. 26, 2019

l,	Wire configuration fully stereo (no axial layers)		Using cluster timing for improved spatial resolution
II.	new light Aluminum wires	II.	Using cluster counting for particle identification
III.	Very light gas mixture 90% He – 10% iC ₄ H ₁₀	III.	Separating gas containment from wire support functions
IV.	Mechanical structure entirely in Carbon Fiber	IV.	New concepts for wire tension compensation
V.	Largest volume drift chamber ever built (45 m³)	V.	Using a larger number of thinner (and lighter wires)
		VI.	No feed-through wiring

2

"Wire Cage" and "Gas Envelope"

Wire support:

Wire cage structure not subject to differential pressure can be light and feed-through-less.

Cremlin+: Super charm-tau factory

Gas containment:

Gas envelope can freely deform without affecting the internal wire position and tension.

The Mu2e I-Tracker proposal

Wire cage

turn all bending moments into traction or compression!

- feed-through-less chamber allows for reducing wire spacing, thus increasing cell granularity:
 - o smaller cells
 - larger ratios of field to sense wires
- larger ratios of field to sense wires allows for thinner field wires, thus reducing
 - wire contribution to multiple scattering
 - total wire tension

Instrumented end-plate:

wire PCB, spacers, HV distrib. and cables, limiting R, decoupling C and signal cables

0.28 g/cm²

1×10⁻² X₀

Cremlin+: Super charm-tau factory

C wire metal coating **HiPIMS: High-power impulse magnetron sputtering**

BINP A. Popov V. Logashenko

Time (sec)

physical vapor deposition (PVD) of thin films based on magnetron sputter deposition (extremely high power densities of the order of kW/cm² in short pulses of tens of microseconds at low duty cycle <10%)

5

C wire metal coating

Considerations:

- Cu coating test of 35 µm carbon monofilament very successful on short samples with HiPIMS at BINP, Novosibirsk
- Investigation of magnetron sputtering facilities elsewhere (INFN LNL?)
- Industrialization of process for coating continuous spooled monofilament under study
- Alternatives?

C wire metal coating: BINP proposal

from A. Popov BINP

Sept. 26, 2019

Cremlin+: Super charm-tau factory

C wire Ag gluing

drawbacks

- curing time 1 hr at 150°C
- dispensing expensive dispensers
- cost
 Epo-TEK H20E
 12.5 €/g

 ABLEBOND 84-1LMI
 54.0 €/cc

FOR TAX Address, 52 FOR TAX A

solution (?)

curing time pulsed infrared laser (from MEG2 wiring robot)?

Sept. 26, 2019

Cremlin+: Super charm-tau factory

C wire soldering without metal coating

Soldering of Carbon Materials Using Transition Metal Rich Alloys

Marek Burda, *,† Agnieszka Lekawa-Raus,† Andrzej Gruszczyk,‡ and Krzysztof K. K. Koziol*,†

†Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS, Cambridge, U.K. and ‡Welding Department, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland

ABSTRACT Joining of carbon materials *via* soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent (2.5—5%) of transition metal such an chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and electrically conductive joints between carbon materials and, when supported by a simple two-step technique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray

diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon—solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon—alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials.

Published online August 09, 2015 10.1021/acsnano.5b02176

C wire soldering without metal coating

Up to now it has not been possible to apply soldering to graphitic materials as they are not wetted by the commercially available alloys.

C-SOLDER is a trade name for a group of new tinbased lead-free low-temperature soldering alloys which enable joining of various carbon materials including carbon fibres or carbon nanotube fibres in both carbon-carbon and carbon-metal arrangements.

The use of these alloys allows fast formation of mechanically strong bonds which are electrically conductive simultaneously.

C-SOLDER Type: SAC-1B:

- Excellent wetting of carbon materials: graphite, carbon fibres, carbon nanotube fibres, graphene, etc.
- Suitability for bonding in carbon-carbon and carbonmetal systems.
- Soldering temperatures below 450°C.
- Good mechanical and electrical properties.
- Lead free.
- Flux free.

C wire without metal coating: hand soldering

Sept. 26, 2019

Cremlin+: Super charm-tau factory

12

Sept. 26, 2019

Cremlin+: Super charm-tau factory

The MEG2 feed-through-less wiring

The IDEA Drift Chamber at CEPC and FCC-ee

The **IDEA** Detector at

FCC-ee at CERN

CEPC at IHEP-China

thickness [mm]

X₀ [%]

# of layers	112	min 11.8 mm - max 14.9 mm
# of cells	56448	192 at first layer – 816 at last layer
average cell size	13.9 mm	min 11.8 mm - max 14.9 mm
average stereo angle	134 mrad	min 43 mrad – max 223 mrad
transverse resolution	100 μm	80 µm with cluster timing
longitudinal resolution	750 µm	600 µm with cluster timing

z [mm]

±2000

±(2000÷2250)

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
active volume	50 m ³	0.9 He- 0.1 iC₄H ₁₀
readout channel	112,896	r.o. from both ends
max drift time	400 ns	800 × 8 bit at 2 GHz

20

1.2

gas

1000

0.07

0.2

0.08

wires

1000

0.13

service area

250

4.5

Cremlin+: Super charm-tau factory

14

drift chamber

service

area

R_{in} [mm]

350

350

R_{out} [mm]

2000

2000

The IDEA Drift Chamber Performance

$$\Delta p_t/p_t = (0.7p_t \oplus 8.3) \times 10^{-4}$$

$$\Delta \vartheta = (1.1 \oplus 9.4/p) \times 10^{-4} \text{ rad}$$

$$\Delta \phi = (0.33 \oplus 9.4/p) \times 10^{-4} \text{ rad}$$

$$dE/dx = 4.3 \%$$

$$dN/dx = 2.2 \%$$
 (at $\epsilon_N = 80 \%$)

TraPld: A proposal for SCTF

R_{in} –	R _{out} [mm]	200 – 800		
active L – se	ervice area [mm]	1800 – 200		
inner cylindrical wall				
C-fiber/C-foam sandwich 2×80 µm / 5 mm		0.036 g/cm ² – 8×10 ⁻⁴ X/X ₀		
outer cylindrical wall				
C-fiber/C-foam sandwich 2×5 mm / 10 mm		0.512 g/cm ² – 1.2×10 ⁻² X/X ₀		
end plate				
gas envelope	160 μm C-fiber	0.021 g/cm ² – 6×10 ⁻⁴ X/X ₀		
instrumented wire cage	wire PCB, spacers, HV distr. and cables, limiting R, decoupling C and signal cables	0.833 g/cm ² – 3.0×10 ⁻² X/X ₀		

cell			
shape	square		
size [mm]	7.265 – 9.135		
layer			
8 super-layers	8 layer each		
64 layer total			
stereo angles	66 – 220 mrad		
n. sense wires [20µm W]	23,040		
n. field wires [40/50µm Al]	116,640		
n. total (incl. guard)	141,120		
gas + wires [600 mm]			
90%He – 10%iC₄H ₁₀	4.6×10 ⁻⁴		
W + 5 Al → Ti + 5 C	(13.1 → 2.5)×10 ⁻⁴		

Cremlin+: Super charm-tau factory

16

TraPld: Tracking Performance

Expected Performance: Track parameters resolutions

n = 64, B = 1.5 T, R_{out} = 0.8 m, L = 2.0 m, $(0.8+1.8)x10^{-3} X/X_0$, σ_{xy} = 100 μ m, σ_z = 0.8 mm

measurement

multiple scattering (gas + wires + inner wall)

$$\frac{\Delta p}{p} = \frac{8\sqrt{5}\sigma}{\Delta p_{\perp}} = 2.0 \times 10^{-3}, \ \Delta \phi = 0.70 \ mrad, \ \Delta \theta = 0.78 \ mrad$$

at
$$p = 1 GeV/c$$

$$R_{out}\sqrt{n}$$
 $\tan^2\theta$

$$\beta p \qquad \qquad \sqrt{X_0}$$

$$\frac{\Delta p_{\perp}}{p_{\perp}} = 7.8 \times 10^{-4} \, p_{\perp} \oplus 1.8 \times 10^{-3}$$

$$(7.8 \rightarrow 6.6 \text{ with cluster timing})$$

$$\Delta \phi = 1.1 \times 10^{-4} \oplus \frac{6.9 \times 10^{-4}}{p}$$

$$\Delta \theta = 3.8 \times 10^{-4} \oplus \frac{6.9 \times 10^{-4}}{p}$$

 βp

Cremlin+: Super charm-tau factory

17

TraPld: Pld Performance

$$\frac{\sigma_{dE/dx}}{\left(dE/dx\right)} = 0.41 \cdot n^{-0.43} \cdot \left(L_{track}[m] \cdot P[atm]\right)^{-0.32}$$
from Walenta parameterization (1980)
$$L_{track} = 0.6 \text{ m}$$

$$P = 1 \text{ atm}$$

$$n = 64$$

$$0 \cdot dE/dx$$

$$P = 1 \text{ atm}$$

$$n = 64$$

from Walenta parameterization (1980)

$$L_{track} = 0.6 m$$
 $P = 1 atm$
 $n = 64$

$$\frac{\sigma_{dE/dx}}{(dE/dx)} = 8.1\%$$

6.9% for
$$L_{track} = 1 m$$

$$\frac{\sigma_{dN_{cl}/dx}}{\left(dN_{cl}/dx\right)} = \left(\delta_{cl} \cdot L_{track}\right)^{-1/2}$$

$$L_{track} = 0.6 m$$

 $\delta_{cl} = 12.5/cm$

$$\frac{\left[\frac{\sigma_{dN_{cl}/dx}}{(dN_{cl}/dx)} = \left(\delta_{cl} \cdot L_{track}\right)^{-1/2}\right]}{\left(\frac{dN_{cl}/dx}{dx}\right)} = \frac{\left(\delta_{cl} \cdot L_{track}\right)^{-1/2}}{\delta_{cl}} = \frac{L_{track}}{\delta_{cl}} = 0.6 \text{ m}$$
from Poisson distribution
$$\frac{\sigma_{dN_{cl}/dx}}{\delta_{cl}} = \frac{3.6\%}{2.5\%}$$

2.8% for
$$L_{track} = 1 \ m$$

Summary of performance

	$\frac{\Delta p_t}{p_t} \times 10^3$	at $p_t = 1GeV$	$\left \frac{dE}{dx} \middle/ \frac{dN}{dx} \right $	
KLOE	$0.5p_{\scriptscriptstyle t} \oplus 2.6$	2.6×10^{-3}	5%	still best world performance
BaBar	$1.3p_{\scriptscriptstyle t} \oplus 4.5$	4.7×10^{-3}	7.5%	
Belle	$2.8p_{\scriptscriptstyle t} \oplus 3.5$	4.5×10^{-3}	6.9%	
BelleII	$1.9p_{t} \oplus 2.9$	3.5×10^{-3}	6.4%	
BESIII	$2.7p_{\scriptscriptstyle t} \oplus 4.7$	5.1×10^{-3}	6-7%	
Cleo3	$1.0p_{t} \oplus 9.0$	9.1×10 ⁻³	5%	
SCTF (Todyshev)	$2.6p_{t} \oplus 5.1$	5.7×10^{-3}	7%	
TraPId (this proposal)	$0.78p_t \oplus 1.8$	2.0×10^{-3}	8.1/3.6%	
TraPId (this proposal)	$0.66p_t \oplus 1.4$	1.6×10^{-3}	6.9 / 2.8%	C wires + cluster timing 1 m track length

Cremlin+: Super charm-tau factory

19

CONCLUSIONS

- An ultra-low mass drift chamber for SCTF with a material budget <1.5x10⁻² X/X₀ in the radial direction and <5x10⁻² X/X₀ in the forward and backward directions (including HV and FEE services) can be built with the novel technique adopted for the successful construction of the MEG2 drift chamber
- II. $\Delta p_t/p_t = 2.0 \times 10^{-3}$, $\Delta \theta = 0.70$ mrad, $\Delta \phi = 0.78$ mrad at p = 1 GeV/c.
- III. Particle identification at the level of 3.6% with cluster counting allowing for π/K separation $\geq 3\sigma$ over a wide range of momenta.
- IV. Further gain in momentum and angular resolutions and in particle identification, will be obtained by
 - applying cluster timing techniques,
 - exploiting the possibilities of large scale implementation of **C** wires
 - operating the chamber at lower than atmospheric pressures, with moderate degradation of particle identification performance

Cremlin+: CMD-3 drift chamber as a prototype for TraPld

 $\Delta p_t/p_t = (1.5 \div 4.5) \%$ p = 100-1000 MeV/C $\Delta \vartheta = 20 \text{ mrad}$

 $\Delta \phi = 3.5-8 \text{ mrad}$ $\Delta (dE/dx)/(dE/dx) = (10-13)\%$

CMD-3
CMD-3 TraPId proposal

 $43p_t \oplus 12$

 $9.0p_{t} \oplus 3.3$

 45×10^{-3} | 10 - 13%

 9.6×10^{-3}

5.8%

Cremlin+: Super charm-tau factory

21