In	tr	0	dı	u	C	ti	0	n	
0									

Newest Belle studies

A_{FB} status

Belle II measurements

Summary

Belle/Belle II measurements of $B ightarrow D^{(*)} \ell u$

Manca Mrvar on behalf of Belle II collaboration

Institute of High Energy Physics (HEPHY), Vienna

manca.mrvar@oeaw.ac.at

19th April 2022

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B \rightarrow D^{(*)} \ell \nu$

Current HFLAV status

Newest Belle studies

 A_{FB} status

Belle II measurements

Summary

Ongoing $b \rightarrow c$ analyses at Belle II

Belle II measurements

Summary O

Ongoing b ightarrow c analyses at Belle II

 A_{FB} status

Belle II measurements

Summary

Branching fractions of $B \rightarrow D^* \ell \nu$

2020

Manca Mrvar (HEPHY)

Newest Belle studies

 A_{FB} status

Belle II measurements

Summary O

Branching fractions of $B \rightarrow D \ell \nu$

Introduction O	Current 00●0	HFLAV status	Newest Belle studies	A _{FB} status 0000	Belle II measurements 000000	Summary O
	Be	elle II Experir	ment & Exclusiv	we $b ightarrow c$ M	ilestones	
Feb 2	2018 - D	etector commissio	ning phase			
Feb 2	2019 - F	irst physics runs				
Aug 2	2020 🔶 F	irst untagged ${\cal B}(ar B)$	$^{0} ightarrow D^{*+}\ell^- ar{ u}_\ell$) measur	ements with 34.6	fb ⁻¹ of data [arXiv:2008.0 arXiv:2008.1	7198, 0299]
Oct 2	2021 - F	irst untagged $\mathcal{B}(B)$	$^- ightarrow D^0 \ell^- ar u_\ell$) measure	ment with 62.8 fb	⁻¹ of data [arXiv:2110.026	48]
Mar 2	2022 - F	irst $ V_{cb} $ measuren	nents from tagged B^0	$ ightarrow D^{*-}\ell^+ u_\ell$ with	189.3fb^{-1} of data [Moric	ond22]
~2024	4/25 🔶 S	urpassing Belle ir	ntegrated luminosity			

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B
ightarrow D^{(*)} \ell
u$ 19th April 2022

duction	Current HFLAV status	Newest Belle s
	0000	00000

Belle II measurements

Summary

Projection of integrated luminosity delivered by SuperKEKB to Belle II

- We start long shutdown I (LSI) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement works of machine and detector.
- We resume physics running from Fall 2023.
- A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.
- An LS2 for machine improvements could happen on the time frame of 2026-2027

Newest Belle studies

 A_{FB} status 0000

Belle II measurements

Summary

[arXiv:1809.03290]

Belle 2018 study: $B^0 ightarrow D^{*-} \ell^+ u_\ell$

Why Belle (II)? $B \rightarrow D^*$ angular analysis needs high-precision measurements!

- Aim to measure $|V_{cb}|$
- Belle sample: 711 fb⁻¹
- Untagged analysis only D^* and ℓ are reconstructed
- Signal extracted in bins of w, θ_{ℓ} , θ_{ν} , χ^2

A_{FB} status 0000 Belle II measurements

Summary

[arXiv:1809.03290]

Belle 2018 study: $B^0 ightarrow D^{*-} \ell^+ u_\ell$

Why Belle (II)? $B \rightarrow D^*$ angular analysis needs high-precision measurements!

A_{FB} status 0000 Belle II measurements

Summary

[arXiv:1809.03290]

Belle 2018 study: $B^0 ightarrow D^{*-} \ell^+ u_\ell$

Why Belle (II)? $B \rightarrow D^*$ angular analysis needs high-precision measurements!

$$q^2 = (p_\ell + p_\nu)^2 = 2(E_\ell E_\nu - \vec{p_\ell} \cdot \vec{p_\nu}); \quad p_\nu = (|p_{\rm miss}|, \vec{p}_{\rm miss})$$

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B \rightarrow D^{(*)} \ell \nu$

Newest Belle studies

 A_{FB} status 0000

Belle II measurements

Summary O

Belle 2018 study: $B^0 \to D^{*-} \ell^+ \nu_{\ell}$ [arXiv:1809.03290]

- 3D-Binned Maximum Likelihood fit:
 - $\diamond \cos \theta_{BY}$
 - $\diamond \Delta M$: mass difference $D^* D^0$
 - ◊ Lepton momentum
- Separates electron and muon channel
- Signal yields: \sim 90000 for each channel
- Signal extracted in bins of w, θ_{ℓ} , θ_{ν} , $\chi^2 \rightarrow$ Statistically correlated samples!

Newest Belle studies

A_{FB} status 0000 Belle II measurements

Summary

Belle 2018 study: $B^0
ightarrow D^{*-} \ell^+
u_\ell$

[arXiv:1809.03290]

- 3D-Binned Maximum Likelihood fit:
 - $\diamond \cos \theta_{BY}$
 - $\diamond \Delta M$: mass difference $D^* D^0$
 - ◊ Lepton momentum
- Separates electron and muon channel
- Signal yields: \sim 90000 for each channel
- Signal extracted in bins of w, θ_{ℓ} , θ_{ν} , $\chi^2 \rightarrow$ Statistically correlated samples!

 θ_{BY} : Angle between directions of the *B*-meson and the $D^*\ell$ (Y) system

$$heta \cos heta_{BY} = rac{2 E_B^* E_Y^* - 2 M_B^2 - m_Y^2}{2 p_B^* p_Y^*}$$

Manca Mrvar (HEPHY)

 A_{FB} status

Belle II measurements

[arXiv:1809.03290]

Belle 2018 study: $B^0 \rightarrow D^{*-} \ell^+ \nu_\ell$

Measurements

- CLN parameterisation:
 - $\diamond \ \mathcal{F}(1)\eta_{EW}|V_{cb}| = (35.06 \pm 0.15 \pm 0.56) imes 10^3$
 - $\diamond \ \rho^2 = 1.106 \pm 0.031 \pm 0.007$
 - $\diamond R_1(1) = 1.229 \pm 0.028 \pm 0.009$
 - $\diamond R_2(1) = 0.852 \pm 0.021 \pm 0.006$
- BGL parameterisation:

 $\diamond ~ \mathcal{F}(1)\eta_{EW} | V_{cb} | = (34.93 \pm 0.23 \pm 0.59) imes 10^3$

- Branching ratio: ${\cal B}(B^0 o D^{*-} \ell^+
 u_\ell) = (4.90 \pm 0.02 \pm 0.16) imes 10^{-3}$
- Lepton flavor universality: $R_{e/\mu} = \frac{B^0 \rightarrow D^{*-}e^+\nu_e}{B^0 \rightarrow D^{*-}\mu^+\nu_{\mu}} = 1.01 \pm 0.01 \pm 0.03$

Current HFLAV status

Newest Belle studies

 A_{FB} status 0000

Belle II measurements

Summary

 $|V_{cb}|$ from $B^0
ightarrow D^{*-} \ell^+
u_\ell$ (2021)

- Preliminary tagged $B^0 \rightarrow D^{*-\ell+}\nu_{\ell}$ study in 2017 [arXiv:1702.01521] indicated that $|V_{cb}|$ measurement depends on parametrisation (CLN/BGL) \rightarrow Motivation for more studies
- Based on 2018 Belle untagged study: fits for $\{H_{\pm}, H_0\}$ defined in both CLN and BGL parameterisations

$$\begin{aligned} \frac{d^4 \Gamma(B^0 \to D^{*-}\ell^+\nu_\ell)}{dw \, d(\cos\theta_\ell) \, d(\cos\theta_V) \, d\chi} &= \frac{6m_B m_{D^*}^2}{8(4\pi)^4} \sqrt{w^2 - 1} \\ (\mathbf{1} - 2wr + r^2) G_F^2 |V_{cb}|^2 \left\{ (\mathbf{1} - \cos\theta_\ell)^2 \sin^2\theta_V H_+^2(w) \right. \\ &+ \left. (\mathbf{1} + \cos\theta_\ell)^2 \sin^2\theta_V H_-^2(w) + 4\sin^2\theta_\ell \cos^2\theta_V H_0^2(w) \right. \\ &- 2\sin^2\theta_\ell \sin^2\theta_V \cos 2\chi H_+(w) H_-(w) \\ &- 4\sin\theta_\ell (\mathbf{1} - \cos\theta_\ell) \sin\theta_V \cos\theta_V \cos\chi H_+(w) H_0(w) \\ &+ 4\sin\theta_\ell (\mathbf{1} + \cos\theta_\ell) \sin\theta_V \cos\theta_V \cos\chi H_-(w) H_0(w) \right\} \end{aligned}$$

Current HFLAV status

Newest Belle studies

 A_{FB} status 0000

Belle II measurements

Summary

 $|V_{cb}|$ from $B^0
ightarrow D^{*-} \ell^+
u_\ell$ (2021)

- Preliminary tagged $B^0 \rightarrow D^{*-\ell+}\nu_{\ell}$ study in 2017 [arXiv:1702.01521] indicated that $|V_{cb}|$ measurement depends on parametrisation (CLN/BGL) \rightarrow Motivation for more studies
- Based on 2018 Belle untagged study: fits for {*H*_±, *H*₀} defined in both CLN and BGL parameterisations
- New LQCD developments provide calculations of form factors at non-zero hadronic recoil:
 - ◊ JLQCD (2020): doi:10.22323/1.363.0139
 - ♦ Fermilab-MILC (2021): arXiv:2105.14019

$$\begin{aligned} \frac{d^{4}\Gamma(B^{\mathbf{0}} \rightarrow D^{*-}\ell^{+}\nu_{\ell})}{dw\,d(\cos\theta_{\ell})\,d(\cos\theta_{V})\,d\chi} &= \frac{6m_{B}m_{D^{*}}^{2}}{\mathbf{8}(4\pi)^{4}}\sqrt{w^{2}-\mathbf{1}}\\ (\mathbf{1}-2wr+r^{2})G_{F}^{2}|V_{cb}|^{2}\left\{(\mathbf{1}-\cos\theta_{\ell})^{2}\sin^{2}\theta_{V}H_{+}^{2}(w)\right.\\ &+ (\mathbf{1}+\cos\theta_{\ell})^{2}\sin^{2}\theta_{V}H_{-}^{2}(w) + 4\sin^{2}\theta_{\ell}\cos^{2}\theta_{V}H_{0}^{2}(w)\\ &- 2\sin^{2}\theta_{\ell}\sin^{2}\theta_{V}\cos2\chi H_{+}(w)H_{-}(w)\\ &- 4\sin\theta_{\ell}(\mathbf{1}-\cos\theta_{\ell})\sin\theta_{V}\cos\theta_{V}\cos\chi H_{+}(w)H_{0}(w)\\ &+ 4\sin\theta_{\ell}(\mathbf{1}+\cos\theta_{\ell})\sin\theta_{V}\cos\theta_{V}\cos\chi H_{-}(w)H_{0}(w) \end{aligned}$$

Current HFLAV status

Newest Belle studies

 A_{FB} status 0000

Belle II measurements

Summar

$$|V_{cb}|$$
 from $B^0
ightarrow D^{*-} \ell^+
u_\ell$ (2021)

- Preliminary tagged $B^0 \rightarrow D^{*-\ell+}\nu_{\ell}$ study in 2017 [arXiv:1702.01521] indicated that $|V_{cb}|$ measurement depends on parametrisation (CLN/BGL) \rightarrow Motivation for more studies
- Based on 2018 Belle untagged study: fits for $\{H_{\pm}, H_0\}$ defined in both CLN and BGL parameterisations
- New LQCD developments provide calculations of form factors at non-zero hadronic recoil:
 - ◊ JLQCD (2020): doi:10.22323/1.363.0139
 - ◊ Fermilab-MILC (2021): arXiv:2105.14019
- Consistency of several models was checked

$$\frac{d^{4}\Gamma(B^{0} \rightarrow D^{*-}\ell^{+}\nu_{\ell})}{dw \, d(\cos\theta_{\ell}) \, d(\cos\theta_{V}) \, d\chi} = \frac{6m_{B}m_{D^{*}}^{2}}{8(4\pi)^{4}} \sqrt{w^{2}-1}$$

$$(1-2wr+r^{2})G_{F}^{2}|V_{cb}|^{2} \left\{(1-\cos\theta_{\ell})^{2}\sin^{2}\theta_{V}H_{+}^{2}(w)\right.$$

$$+ (1+\cos\theta_{\ell})^{2}\sin^{2}\theta_{V}H_{-}^{2}(w) + 4\sin^{2}\theta_{\ell}\cos^{2}\theta_{V}H_{0}^{2}(w)$$

$$- 2\sin^{2}\theta_{\ell}\sin^{2}\theta_{V}\cos2\chi H_{+}(w)H_{-}(w)$$

$$- 4\sin\theta_{\ell}(1-\cos\theta_{\ell})\sin\theta_{V}\cos\theta_{V}\cos\chi H_{+}(w)H_{0}(w)$$

$$+ 4\sin\theta_{\ell}(1+\cos\theta_{\ell})\sin\theta_{V}\cos\theta_{V}\cos\chi H_{-}(w)H_{0}(w)\}$$

Current HFLAV status

Newest Belle studies

A_{FB} status

Belle II measurements

Summary

 $|V_{cb}|$ from $B^0 \rightarrow D^{*-} \ell^+ \nu_\ell$ (2021)

Conclusions

- Model-independent results
- Results using new Fermilab-MILC and JLQCD inputs are consistent

[doi:10.1103/PhysRevD.103.073005]

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B
ightarrow D^{(*)} \ell
u$

Newest Belle studies

 A_{FB} status

Belle II measurements

Summary

 $|V_{cb}|$ from $B^0 \to D^{*-} \ell^+ \nu_{\ell}$ (2021)

Conclusions

- Model-independent results
- Results using new Fermilab-MILC and JLQCD inputs are consistent
- Inclusive-exclusive tension remains with higher confidence

[doi:10.1103/PhysRevD.103.073005]

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B \rightarrow D^{(*)} \ell \nu$

 A_{FB} status

Belle II measurements

Summary

 $|V_{cb}|$ from $B^0 \to D^{*-} \ell^+ \nu_{\ell}$ (2021)

Conclusions

- Model-independent results
- Results using new Fermilab-MILC and JLQCD inputs are consistent
- Inclusive-exclusive tension remains with higher confidence
- Future studies: use these LQCD calculations to tighten systematic uncertainties on exclusive $|V_{cb}|, R(D^{(*)})$ and hadronic factorisation
- Waiting for results from tagged analysis

Theory paper based on Belle 2018 analysis: Calculation of BSM-sensitive angular observables

Theory paper based on Belle 2018 analysis: Calculation of BSM-sensitive angular observables

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B \rightarrow D^{(*)}\ell\nu$

Newest Belle studies

 A_{FB} status 0000

Belle II measurements

Summary O

[arXiv:2104.02094v1]

 A_{FB} from $B^0 \rightarrow D^{*-} \ell^+ \nu_\ell$ (2021)

- Stable with respect to the type of fit and the systematic correlations
- Correlation matrices of the statistical uncertainties are incorrect

- Stable with respect to the type of fit and the systematic correlations
- Correlation matrices of the statistical uncertainties are incorrect
- ? Beyond the Standard Model physics scenario
- ? Wrong assumptions ightarrow But why no discrepancy in other parameters?

- Stable with respect to the type of fit and the systematic correlations
- Correlation matrices of the statistical uncertainties are incorrect
- ? Beyond the Standard Model physics scenario
- ? Wrong assumptions \rightarrow But why no discrepancy in other parameters?
- Further studies are needed
- + e/μ flavours should be studied separately

Current	HFLAV	9
0000		

A_{FB} status 00●0 Belle II measurements

Summary O

A_{FB} at Belle II

- Aim: to analyse tagged and untagged $B \to D^* \ell \nu_\ell$
- Signal extraction via asimov fits in M^2_{miss} in 4 bins of w
- Theory suggests measuring $A_{FB}(q^2)$ [arXiv:2203.07189]
- Results:
 - ◊ Expected for summer conferences
 - $\diamond~$ Calculate average ΔA_{FB} from tagged and untagged analyses

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B \rightarrow D^{(*)}\ell\nu$

Current	HFLAV	status
0000		

A_{FB} status 000● Belle II measurements

Summary O

15 / 22

A_{FB} at Belle II: Asimov fits

duction	Current HFLAV status	Newest Belle studies	A _{FB}
	0000	00000	000

Belle II measurements

 $ar{B}^0 o D^{*+} \ell^- ar{
u}_\ell$ studies at Belle II [arXiv:2008.07198]

- Analysis from summer 2020
- Belle II data sample: 34.6 fb⁻¹
- Signal and background separation in $\cos\theta_{BY}$ in 5 bins of w
- Signal yield: almost 10000 for each lepton mode

on	Current HFLAV status	Newest Belle studies
	0000	00000

 $ar{B}^0 o D^{*+} \ell^- ar{
u}_\ell$ studies at Belle II [arXiv:2008.07198]

- Analysis from summer 2020
- Belle II data sample: 34.6 fb⁻¹
- Signal and background separation in $\cos \theta_{BY}$ in 5 bins of w
- Signal yield: almost 10000 for each lepton mode

Results:

• Distributions of $\cos \theta_{BY}$ and hadronic recoil parameter w

n	Current HFLAV status	Newest	Belle	stuc
	0000	00000		

 $ar{B}^0 o D^{*+} \ell^- ar{
u}_\ell$ studies at Belle II [arXiv:2008.07198]

- Analysis from summer 2020
- Belle II data sample: 34.6 fb⁻¹
- Signal and background separation in $\cos \theta_{BY}$ in 5 bins of w
- Signal yield: almost 10000 for each lepton mode

Results:

- Distributions of $\cos \theta_{BY}$ and hadronic recoil parameter w
- Branching fraction: $\mathcal{B}(\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell) = (4.60 \pm 0.05_{stat} \pm 0.17_{syst} \pm 0.45_{\pi_s})\%$

1	Current HFLAV status	Newest Belle stu
	0000	00000

Belle II measurements

 $ar{B}^0 o D^{*+} \ell^- ar{
u}_\ell$ studies at Belle II [arXiv:2008.07198]

- Analysis from summer 2020
- Belle II data sample: 34.6 fb⁻¹
- Signal and background separation in $\cos \theta_{BY}$ in 5 bins of w
- Signal yield: almost 10000 for each lepton mode

Results:

- Distributions of $\cos \theta_{BY}$ and hadronic recoil parameter w
- Branching fraction: $\mathcal{B}(\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell) = (4.60 \pm 0.05_{stat} \pm 0.17_{syst} \pm 0.45_{\pi_s})\%$

•
$$R_{e/\mu} = \frac{\mathcal{B}(\bar{B}^{0} \to D^{*+}e^{-}\bar{\nu}_{e})}{\mathcal{B}(\bar{B}^{0} \to D^{*+}\mu^{-}\bar{\nu}_{\mu})} = 0.99 \pm 0.03$$

Newest Belle studies

A_{FB} status 0000 Belle II measurements

Summary

$ar{B}^0 ightarrow D^{*+} \ell^- ar{ u}_\ell$ studies at Belle II [arXiv:2008.07198]

Figure: The measured partial decay rates for electrons and muons are compared to the BGL form factor parameters of Refs. [arXiv:1703.08170] and [arXiv:1703.06124].

```
Leading uncertainty: slow pion (\sim 10 %)
```

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B \rightarrow D^{(*)}\ell\nu$ 19th April 2022

Newest Belle studies

A_{FB} status

Belle II measurements

[arXiv:2110.02648]

 $B^-
ightarrow D^0 \ell^- ar{
u}_\ell$ studies at Belle II

- Untagged analysis from summer 2021 (EPS)
- Belle II data sample: $62.8 \, \text{fb}^{-1}$
- Signal and background separation in $\cos \theta_{BY}$
- Signal yield: \sim 19000 for each channel

Newest Belle studies

 A_{FB} status 0000

Belle II measurements

[arXiv:2110.02648]

 $B^-
ightarrow D^0 \ell^- ar{
u}_\ell$ studies at Belle II

- Untagged analysis from summer 2021 (EPS)
- Belle II data sample: 62.8 fb⁻¹
- Signal and background separation in $\cos \theta_{BY}$
- Signal yield: \sim 19000 for each channel
- Branching fractions: $\mathcal{B}(B^- \to D^0 e^- \bar{\nu}_e) = (2.34 \pm 0.08_{stat} \pm 0.07_{syst})\%$ $\mathcal{B}(B^- \to D^0 \mu^- \bar{\nu}_\mu) = (2.24 \pm 0.08_{stat} \pm 0.08_{syst})\%$

Newest Belle studies

ALD status

Belle II measurements 000000

[arXiv:2110.02648]

 $B^- \rightarrow D^0 \ell^- \bar{\nu}_{\ell}$ studies at Belle II

- Untagged analysis from summer 2021 (EPS)
- Belle II data sample: 62.8 fb⁻¹
- Signal and background separation in $\cos \theta_{BY}$
- Signal yield: \sim 19000 for each channel
- Branching fractions: $\mathcal{B}(B^- \to D^0 e^- \bar{\nu}_e) = (2.34 \pm 0.08_{stat} \pm 0.07_{syst})\%$ $\mathcal{B}(B^- \to D^0 \mu^- \bar{\nu}_{\mu}) = (2.24 \pm 0.08_{\text{stat}} \pm 0.08_{\text{syst}})\%$
- Combined: $\mathcal{B}(B^- \to D^0 \ell^- \bar{\nu}_\ell) = (2.29 \pm 0.05_{stat} \pm 0.08_{syst})\%$

Newest Belle studies

 A_{FB} status 0000

Belle II measurements

[arXiv:2110.02648]

 $B^-
ightarrow D^0 \ell^- ar{
u}_\ell$ studies at Belle II

- Untagged analysis from summer 2021 (EPS)
- Belle II data sample: 62.8 fb⁻¹
- Signal and background separation in $\cos \theta_{BY}$
- Signal yield: \sim 19000 for each channel
- Branching fractions: $\mathcal{B}(B^- \to D^0 e^- \bar{\nu}_e) = (2.34 \pm 0.08_{stat} \pm 0.07_{syst})\%$ $\mathcal{B}(B^- \to D^0 \mu^- \bar{\nu}_\mu) = (2.24 \pm 0.08_{stat} \pm 0.08_{syst})\%$
- Combined: $\mathcal{B}(B^- \to D^0 \ell^- \bar{\nu}_\ell) = (2.29 \pm 0.05_{stat} \pm 0.08_{syst})\%$ • $R_{e/\mu} = \frac{\mathcal{B}(B^- \to D^0 e^- \bar{\nu}_e)}{\mathcal{B}(B^- \to D^0 \mu^- \bar{\nu}_e)} = 1.04 \pm 0.05_{stat} \pm 0.03_{syst}$

V status No

Newest Belle studies

A_{FB} status

Belle II measurements

[arXiv:2110.02648]

 $B^-
ightarrow D^0 \ell^- ar{
u}_\ell$ studies at Belle II

- Untagged analysis from summer 2021 (EPS)
- Belle II data sample: 62.8 fb⁻¹
- Signal and background separation in $\cos \theta_{BY}$
- Signal yield: \sim 19000 for each channel
- Branching fractions: $\mathcal{B}(B^- \to D^0 e^- \bar{\nu}_e) = (2.34 \pm 0.08_{stat} \pm 0.07_{syst})\%$ $\mathcal{B}(B^- \to D^0 \mu^- \bar{\nu}_\mu) = (2.24 \pm 0.08_{stat} \pm 0.08_{syst})\%$
- Combined: $\mathcal{B}(B^- \to D^0 \ell^- \bar{\nu}_\ell) = (2.29 \pm 0.05_{stat} \pm 0.08_{syst})\%$

•
$$R_{e/\mu} = \frac{\mathcal{B}(B^- \to D^0 e^- \bar{\nu}_e)}{\mathcal{B}(B^- \to D^0 \mu^- \bar{\nu}_\mu)} = 1.04 \pm 0.05_{stat} \pm 0.03_{syst}$$

• Leading systematic uncertainties: tracking and lepton identification

Current	HFLAV	statu
0000		

A_{FB} status 0000 Belle II measurements

 $|V_{cb}|$ from $B^0 o D^{*-} \ell^+
u_\ell$ studies at Belle II [Moriond22]

- New tagged analysis \rightarrow Results presented at Moriond22
- Belle II data sample of 189.3 fb⁻¹

Figure: The fitted *w* distribution for the electron candidates.

A_{FB} status 0000 Belle II measurements

 $|V_{cb}|$ from $B^0 o D^{*-} \ell^+
u_\ell$ studies at Belle II [Moriond22]

- $\bullet~$ New tagged analysis $\rightarrow~$ Results presented at Moriond22
- Belle II data sample of $189.3 \, \text{fb}^{-1}$
- Differental branching ratio: $\frac{d\Gamma}{dw} = \frac{\eta_{EW}^2 G_F^2}{48\pi^3} m_{D^*}^3 (m_B - m_{D*})^2 g(w) F^2(w) |V_{cb}|$
- CLN paramterization assumed [arXiv:hep-ph/9712417]
- Measured: $\eta_{EW}F(1)|V_{cb}|$
- Looking into *w* distribution to determine signal yields

Figure: The fitted *w* distribution for the electron candidates.

A_{FB} status 0000

$|V_{cb}|$ from $B^0 ightarrow D^{*-} \ell^+ u_\ell$ studies at Belle II [Moriond22]

Figure: Left: Measured $d\Gamma/dw(B^0 \rightarrow D^{*-}\ell^+\nu_\ell)$. Right: Measured $\eta_{EW}F(1)|V_{cb}|$ and ρ^2 . Both results are presented with 1σ contour (solid line), 2σ contour (dashed line) and the best fit function or point.

Manca Mrvar (HEPHY)

A_{FB} status

 $|V_{cb}|$ from $B^0
ightarrow D^{*-} \ell^+
u_\ell$ studies at Belle II [Moriond22]

Figure: Left: Measured $d\Gamma/dw(B^0 \rightarrow D^{*-}\ell^+\nu_\ell)$. Right: Measured $\eta_{EW}F(1)|V_{cb}|$ and ρ^2 . Both results are presented with 1σ contour (solid line), 2σ contour (dashed line) and the best fit function or point.

$$\eta_{EW}F(1)|V_{cb}| = (34.6 \pm 2.5_{(stat.+syst.)}) \times 10^{-3}$$
 $ho^2 = 0.94 \pm 0.21_{(stat.+syst.)}$

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B \rightarrow D^{(*)} \ell \nu$ 19th April 2022 20 / 22

A_{FB} status 0000

 $|V_{cb}|$ from $B^0
ightarrow D^{*-} \ell^+
u_\ell$ studies at Belle II [Moriond22]

Figure: Left: Measured $d\Gamma/dw(B^0 \rightarrow D^{*-}\ell^+\nu_\ell)$. Right: Measured $\eta_{EW}F(1)|V_{cb}|$ and ρ^2 . Both results are presented with 1σ contour (solid line), 2σ contour (dashed line) and the best fit function or point.

$$\begin{aligned} \eta_{EW}F(1)|V_{cb}| &= (34.6 \pm 2.5_{(stat.+syst.)}) \times 10^{-3} \qquad \rho^2 &= 0.94 \pm 0.21_{(stat.+syst.)} \\ |V_{cb}| &= (37.9 \pm 2.7_{(stat.+syst.)}) \times 10^{-3} \end{aligned}$$

Manca Mrvar (HEPHY)

Belle/Belle II measurements of $B \rightarrow D^{(*)} \ell \nu$

A_{FB} status 0000 Belle II measurements

Summary

21 / 22

 $|V_{cb}|$ from $B^0 o D^{*-} \ell^+
u_\ell$ studies at Belle II [Moriond22]

Results

- Branching fraction: $\mathcal{B}(B^0 \to D^{*-}\ell^+\nu_\ell) = (5.27 \pm 0.22_{stat} \pm 0.38_{syst} \pm 0.45_{\pi_s})\%$
- $|V_{cb}| = (37.9 \pm 2.7_{(stat.+syst.)}) \times 10^{-3}$
- The first Belle II tagged determination of $|V_{cb}|$ is statistically limited
- Dominant uncertainties: slow pion and Full Event Interpretation (hadronic tagging) efficiency
- We expect higher precision soon with untagged determinations

In	ıt	r	0	d	u	c	t	io	n	
0										

Newest Belle studies

 A_{FB} status

Belle II measurements

Summary •

Summary and Outlook

- Several $B
 ightarrow D^{(*)} \ell
 u$ analyses are ongoing
- Measurements include determinations of: \mathcal{B} , A_{FB} , $|V_{cb}|$, ...

nt	ro	d	uc	:ti	0	n	
С							

 A_{FB} status

Belle II measurements

Summary •

Summary and Outlook

- Several $B
 ightarrow D^{(*)} \ell
 u$ analyses are ongoing
- Measurements include determinations of: \mathcal{B} , A_{FB} , $|V_{cb}|$, ...
- Branching fractions for $B
 ightarrow D^{(*)} \ell
 u$ were measured
- First measurement of $|V_{cb}|$ from $B
 ightarrow D^* \ell
 u$

d	uc	:ti	on			

Newest Belle studies

 A_{FB} status

Belle II measurements

Summary •

Summary and Outlook

- Several $B
 ightarrow D^{(*)} \ell
 u$ analyses are ongoing
- Measurements include determinations of: \mathcal{B} , A_{FB} , $|V_{cb}|$, ...
- Branching fractions for $B
 ightarrow D^{(*)} \ell
 u$ were measured
- First measurement of $|V_{cb}|$ from $B
 ightarrow D^* \ell
 u$
- Results are in agreement with world averages, but not competitive yet
- Main uncertainty originates from slow pion \rightarrow In latest measurements uncertainty went from $\sim 10\%$ down to $\sim 3\% \rightarrow$ We expect $\sim 2\%$ uncertainty on measured $|V_{cb}|$
- We expect more (competitive) results in summer \rightarrow Stay tuned!