Lattice calculations of exclusive $b ightarrow u \ell u$

Oliver Witzel

Challenges in Semileptonic *B* Decays Barolo, Italy · April 20, 2022

Introduction B • OO O	$s \rightarrow K \ell \nu$	$B \to \pi \ell \nu$ 0000	Summary O
Exclusive semilepto	nic $B_{(s)}$ decays		
B_{B_s}		$\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$M_{B_{(s)}}E_P$
pseudoscalar initial state	charged vector current	pseudoscalar final sta	te
	$B o \pi \ell u \ B_s o K \ell u$		
	baryonic decays	(work by Meinel et al vector final state	.)
	$egin{array}{lll} B_s ightarrow K^* \ell u \ B ightarrow ho \ell u \end{array}$	(ongoing challenge) (future challenge)	

Introduction	$B_S \rightarrow K \ell \nu$	$B \rightarrow \pi \ell \nu$	Summary
•00	000000	0000	0

Exclusive semileptonic $B_{(s)}$ decays

• Conventionally parametrized $(B_{(s)} \text{ meson at rest})$

$$\frac{d\Gamma(B_{(s)} \to P\ell\nu)}{dq^2} = \frac{\eta_{EW} G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_P^2 - M_P^2}}{q^4 M_{B_{(s)}}^2}$$

experiment CKM known
$$\times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) M_{B_{(s)}}^2 (E_P^2 - M_P^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (M_{B_{(s)}}^2 - M_P^2)^2 |f_0(q^2)|^2 \right]$$

nonperturbative input

 $B \rightarrow \pi \ell \nu$ 0000

Lattice determination of form factors

▶ Parametrize hadronic matrix element for flavor changing vector current V^{μ} in terms of the form factors $f_{+}(q^2)$ and $f_{0}(q^2)$

$$\langle {\cal P} | V^{\mu} | {\cal B}_{(s)}
angle = {\it f}_+(q^2) \left(p^{\mu}_{{\cal B}_{(s)}} + p^{\mu}_{{\cal P}} - rac{M^2_{{\cal B}_{(s)}} - M^2_{{\cal P}}}{q^2} q^{\mu}
ight) + {\it f}_0(q^2) rac{M^2_{{\cal B}_{(s)}} - M^2_{{\cal P}}}{q^2} q^{\mu}$$

- Calculate the corresponding 3-point function
 - \rightarrow Inserting source for spectator quark at $\mathit{t_{src}}$
 - \rightarrow Allow it to propagate to t_{sink}
 - \rightarrow Turn it into a sequential source for b quark
 - \rightarrow Propagate light daughter quark from t_{src}
 - \rightarrow Contract with *b* quark at *t* with $t_{\rm src} \leq t \leq t_{sink}$

 $B \rightarrow \pi \ell \nu$ 0000

Lattice determination of form factors

▶ Parametrize hadronic matrix element for flavor changing vector current V^{μ} in terms of the form factors $f_{+}(q^2)$ and $f_{0}(q^2)$

$$\langle P|V^{\mu}|B_{(s)}\rangle = f_{+}(q^{2})\left(p_{B_{(s)}}^{\mu} + p_{P}^{\mu} - \frac{M_{B_{(s)}}^{2} - M_{P}^{2}}{q^{2}}q^{\mu}\right) + f_{0}(q^{2})\frac{M_{B_{(s)}}^{2} - M_{P}^{2}}{q^{2}}q^{\mu}$$

Prefer to compute

 $f_{\parallel}(E_P) = \langle P | V^0 | B_{(s)} \rangle / \sqrt{2M_{B_{(s)}}} \quad \text{and} \quad f_{\perp}(E_P) p_P^i = \langle P | V^i | B_{(s)} \rangle / \sqrt{2M_{B_{(s)}}}$

which are directly proportional to 3-point functions

Both are related by

$$egin{aligned} f_{D}(q^{2}) &= rac{\sqrt{2M_{B_{(s)}}}}{M_{B_{(s)}}^{2} - M_{P}^{2}} \left[(M_{B_{(s)}} - E_{P}) f_{\parallel}(E_{P}) + (E_{P}^{2} - M_{P}^{2}) f_{\perp}(E_{P})
ight] \ f_{+}(q^{2}) &= rac{1}{\sqrt{2M_{B_{(s)}}}} \left[f_{\parallel}(E_{P}) + (M_{B_{(s)}} - E_{P}) f_{\perp}(E_{P})
ight] \end{aligned}$$

Oliver Witzel (University Siegen)

 $B \rightarrow \pi \ell \nu$ 0000

Lattice determination of form factors

▶ Parametrize hadronic matrix element for flavor changing vector current V^{μ} in terms of the form factors $f_{+}(q^2)$ and $f_{0}(q^2)$

$$\langle P|V^{\mu}|B_{(s)}\rangle = f_{+}(q^{2})\left(p_{B_{(s)}}^{\mu} + p_{P}^{\mu} - \frac{M_{B_{(s)}}^{2} - M_{P}^{2}}{q^{2}}q^{\mu}\right) + f_{0}(q^{2})\frac{M_{B_{(s)}}^{2} - M_{P}^{2}}{q^{2}}q^{\mu}$$

Prefer to compute

 $f_{\parallel}(E_P) = \langle P | V^0 | B_{(s)} \rangle / \sqrt{2M_{B_{(s)}}} \quad \text{and} \quad f_{\perp}(E_P) p_P^i = \langle P | V^i | B_{(s)} \rangle / \sqrt{2M_{B_{(s)}}}$

which are directly proportional to 3-point functions

Alternatively use f_1 and f_2 with $v^{\mu} = p_B^{\mu}/M_B$ motivated by HQET

$$f_1(\mathbf{v} \cdot \mathbf{p}_{\pi}) + f_2(\mathbf{v} \cdot \mathbf{p}_{\pi}) = f_{\parallel}(E_{\pi})/\sqrt{2}$$
$$f_2(\mathbf{v} \cdot \mathbf{p}_{\pi}) = f_{\perp}(E_{\pi}) \cdot (\mathbf{v} \cdot \mathbf{p}_{\pi}/\sqrt{2})$$

Introduction	$B_S \rightarrow K \ell \nu$	$B \rightarrow \pi \ell \nu$	Summary
00•	000000	0000	0

Challenges for $B_s \to K \ell \nu$ and $B \to \pi \ell \nu$ on the lattice

▶ Kinematics (range in
$$q^2$$
 to cover)
 $B_s \rightarrow K\ell\nu$: $q^2 \approx [m_\ell^2, 24] \text{ GeV}^2$
→ Kinematical *z*-expansion
→ Dispersive bound method

$$B
ightarrow \pi \ell
u$$
: $q^2 \approx [m_\ell^2, 27] \; {
m GeV}^2$

Ratio of quark masses

 \rightarrow Pions need a large box to not feel finite volume effects

---- Simulate heavier than physical pions

- $\rightarrow b$ quarks need fine lattice spacings to control discretization effects
 - --- Use effective *b*-quark action or perform additional extrapolation

 $B \rightarrow \pi \ell \nu$ 0000 Summary O

$B_s \to K \ell \nu$: form factor

► Example: form factor f_{||} on coarse ensemble C1 (RBC-UKQCD)

- Individually fit ratios of 3-point over 2-point functions
 - \rightarrow Each fit has a χ^2/dof or *p*-value
 - \rightarrow Smaller correlation matrix
- ► Combined correlated fit to all states using several 3- and 2-point functions
 - \rightarrow One "global" χ^2/dof or *p*-value
 - \rightarrow Much larger correlation matrix
 - → Use SVD cut or alike
- Vary range of fitted time slices, source-sink separation

$B_s \rightarrow K \ell \nu$: chiral-continuum extrapolation (RBC-UKQCD)

► Chiral-continuum extrapolation using SU(2) hard-kaon χ PT $\rightarrow f_{pole}(M_K, E_K, a^2) = \frac{c_0 \Lambda}{E_K + \Delta} \times \left[1 + \frac{\delta f}{(4\pi f)^2} + c_1 \frac{M_\pi^2}{\Lambda^2} + c_2 \frac{E_K}{\Lambda} + c_3 \frac{E_K^2}{\Lambda^2} + c_4 (a\Lambda)^2\right]$

 $\rightarrow \delta f$ non-analytic logs of the kaon mass and hard-kaon limit is taken by M_K/E_K

Oliver Witzel (University Siegen)

Introduction	$B_s \rightarrow K \ell \nu$
000	000000

$B \rightarrow \pi \ell \nu$ 0000

Kinematical extrapolation (*z*-expansion)

[Boyd, Grinstein, Lebed, PRL 74 (1995) 4603] [Bourrely, Caprini, Lellouch, PRD 79 (2009) 013008] Map complex q^2 plane with cut $q^2 > t_*$ onto the unit disk in z

$$z(q^2,t_*,t_0) = rac{\sqrt{t_*-q^2}-\sqrt{t_*-t_0}}{\sqrt{t_*-q^2}+\sqrt{t_*-t_0}}$$

with

$$egin{aligned} t_* &= (M_B + M_\pi)^2 & (\mbox{two-particle production threshold}) \ t_\pm &= (M_{B_s} \pm M_K)^2 & (\mbox{with } t_- = q_{max}^2) \ t_0 &\equiv t_{
m opt} = t_* - \sqrt{t_*(t_* - t_-)} & (\mbox{symmetrize range of } z) \end{aligned}$$

> BCL express form factor f_+ for $B \to \pi \ell \nu$

$$f_+(q^2) = rac{1}{1-q^2/M_{
m pole}^2}\sum_{k=0}^{K-1}b_k^+(t_0)z^k$$

For other decays use product of factors for subthreshold poles for both f_+ and f_0 paralleling the Blaschke factors for a BGL fit to the same decay

luction	$B_s \rightarrow K \ell \nu$	$B \rightarrow \pi \ell \nu$	Summary
	000000	0000	0

Kinematical extrapolation (RBC-UKQCD)

1.0 BCL z-expansion 0.8 \rightarrow Perform fit in z-space with K parameters 0.6 \rightarrow Then convert back to physical q^2 \rightarrow BCL with pole $M_+ = B^* = 5.33$ GeV for $f_+^{0.4}$ \rightarrow Exploit kinematic constraint $f_+ = f_0 \Big|_{a^2=0}$ 0.2 0.0 \rightarrow Include HQ power counting to constrain -0.2 -0.10.0 size of f_+ coefficients (work in progress) preliminary Alternative: Dispersive Bound Method [Martinelli et al. PRD 104(2021)094512] [PRD 105(2022)034503][arXiv:2202.10285] → See talk by Silvano Compare to other results/combine with LHCb

20

Plots: J. Flynn

0.2

01

10

15

Introduction
000

 $B \rightarrow \pi \ell \nu$ 0000

Ratios testing lepton flavor universality

Traditional R-ratio

Alternative R-ratio

Follow idea proposed for B
ightarrow V [Isidori and Sumensari EPJC80 (2020)1078]

→ Common integration range: $q_{\min}^2 \ge m_{\tau}^2$ [Freytsis et al. PRD92(2015)054018] [Bernlochner and Ligeti PRD95(2017)014022] [Flynn et al. PoS ICHEP2020 436]

 \rightarrow Same weights in integrands for τ and ℓ

$$\omega_l(q^2) = \left(1-rac{m_l^2}{q^2}
ight)^2 \left(1+rac{m_\ell^2}{2q^2}
ight) \quad ext{for } l=e,\mu, au$$

Oliver Witzel (University Siegen)

ction	$B_s \rightarrow K \ell \nu$	$B \rightarrow \pi \ell \nu$
	000000	0000

Ratios testing lepton flavor universality

Traditional *R*-ratio

Alternative R-ratio

▶ Preliminary RBC-UKQCD data for $B_s \rightarrow K \ell \nu$ [Plots: J. Flynn]

Introdu

Summary

Introduction	$B_s \to K \ell \nu$	$B \rightarrow \pi \ell \nu$	Summary
000	00000	0000	0

Overview lattice results $B_s \rightarrow K \ell \nu$ [FLAG 2021]

- HPQCD 14 [Bouchard et al. PRD90(2014)054506] \rightarrow HISQ light/strange, NRQCD *b* quarks $\rightarrow a \approx 0.12$ fm, 0.09 fm (2+1) $\rightarrow M_{\pi} \gtrsim 260$ MeV
- $\begin{array}{l} \mathsf{RBC/UKQCD 15 \ [Flynn \ et \ al. \ PRD91(2015)074510]} \\ \rightarrow \ \mathsf{Domain \ wall \ light/strange, \ RHQ \ b \ quarks} \\ \rightarrow a = 0.11 \ \mathsf{GeV}, 0.08 \ \mathsf{GeV} \ (2+1) \\ \rightarrow M_{\pi} \gtrsim 290 \ \mathsf{MeV} \end{array}$
- ► FNAL/MILC 19 [Bazavov et al. PRD100(2019)034501] → Asqtad light/strange, Fermilab *b* quarks → $a \approx 0.12$ fm, 0.09 fm, 0.06 fm (2+1) → $M_{\pi} \gtrsim 177$ MeV

Introduction	$B_S \rightarrow K \ell \nu$	$B \rightarrow \pi \ell \nu$	Summary
000	000000	●000	0

Overview lattice results $B \to \pi \ell \nu$ [FLAG 2021]

- HPQCD 06 [Dalgic et al. PRD73(2006)074502][PRD75(20 \rightarrow HISQ light/strange, NRQCD *b* quark $\rightarrow a \approx 0.12$ fm, 0.09 fm $\rightarrow M_{\pi} \gtrsim 400$ MeV
- $\begin{array}{l} \mathsf{RBC/UKQCD 15} \ \ [\mathsf{Flynn \ et \ al. \ PRD91(2015)074510}] \\ \rightarrow \mathsf{SDWF \ light/strange, \ RHQ \ b \ quark} \\ \rightarrow a \approx 0.11 \ \mathrm{fm}, \ 0.08 \ \mathrm{fm} \\ \rightarrow M_{\pi} \gtrsim 290 \ \mathrm{MeV} \end{array}$
- FNAL/MILC 15 [Bailey et al. PRD92(2015)014024] \rightarrow Asqtad light/strange, Fermilab *b* quark $\rightarrow a \approx 0.12$ fm, 0.09 fm, 0.06 fm, 0.045 fm $\rightarrow M_{\pi} \gtrsim 177$ MeV

Introduction	$B_s \rightarrow K \ell \nu$	$B \rightarrow \pi \ell \nu$	Summary
000	000000	0000	0

Extracting $|V_{ub}|$

[FLAG 2021]

$$|V_{ub}| = 3.74(17) \cdot 10^{-3}$$

Introduction 000	$B_S \to K \ell \nu$	$B \rightarrow \pi \ell \nu$ 0000	
New: JLQCD	[Colguhoun et al. arXiv:2203.04938]		

- ▶ Unitary setup: MDWF light/strange and heavy quarks with $am_c \le am_Q \le 2.44 \cdot am_c$ → Additional extrapolation in the heavy quark mass to reach m_b
- *a* ≈ 0.044 fm, 0.055 fm, 0.080 fm
 *M*_π ≥ 230 MeV

$$\Rightarrow |V_{ub}| = (3.93 \pm 0.41) \cdot 10^{-3}$$

Summary

 $B_s \rightarrow K \ell \nu$ 000000 $B \rightarrow \pi \ell \nu$ 0000 Summary O

New: JLQCD [Colquhoun et al. arXiv:2203.04938]

▶ $a \approx 0.080$ fm, $am_{u/d} = 0.007$

Introduction	$B_s \rightarrow K \ell \nu$	$B \rightarrow \pi \ell \nu$	Summary
000	000000	0000	0

New: JLQCD [Colquhoun et al. arXiv:2203.04938]

 Comparison to results by Fermilab/MILC and RBC/UKQCD (simulated q² range only)

Introduction 000	$B_{\rm S} \to K\ell\nu$	$\begin{array}{c} B \rightarrow \pi \ell \nu \\ \circ \circ \bullet \circ \end{array}$	Summary O
New: JLQCD	[Colquhoun et al. arXiv:2203	.04938]	

 ▶ Determination of |V_{ub}|
 → Joint fit of experimental and lattice data ► Shape parameters of BCL z-fit → Tension with BaBar 2010 data set

Introduction	$B_S \rightarrow K \ell \nu$	$B \rightarrow \pi \ell \nu$	Summary
000	000000	0000	0

HPQCD: toward $B \rightarrow \text{light}$ [Parrott et al. PRD 103(2021)094506]

▶ " $B_s \rightarrow \eta_s$ "

→ HISQ light/strange/charm quarks, HISQ *b* quarks with $0.2 \lesssim am_H \lesssim 0.8$

 $\rightarrow a \approx 0.044$ fm, 0.060 fm, 0.090 fm (2+1+1)

 $\begin{array}{ccc} \mbox{Introduction} & B_{\rm S} \rightarrow K \ell \nu & B \rightarrow \pi \ell \nu & \mbox{Summary} \\ 000 & 000000 & 0000 & 0 \end{array} \end{array}$

HPQCD: $B
ightarrow \pi \ell
u$ [Colquhoun et al. PRD93(2016)034502]

► Calculation at zero recoil only → HISQ light/strange/charm quark, improved NRQCD *b* quarks → $a \approx 0.09$ fm, 0.12 fm, 0.15 fm (2+1+1) → $M_{\pi} = M_{\pi}^{\text{phys}}$

 $B \rightarrow \pi \ell \nu$ 0000

Challenges (easy and not so easy)

- Include physical light quarks in the calculations (improve chiral limit)
- Include finer lattices for improved control on discretization effects and better continuum limit
- ▶ Increase range in q^2 directly covered in lattice simulations
- More groups studying baryonic decays
- Semileptonic $b
 ightarrow u\ell
 u$ decays with vector final states