Update on Heavy-to-Light $(B \rightarrow p i)$ form factors from the Fermilab Lattice and MILC collaborations

\(\square \begin{aligned} \& Aida X. El-Khadra
\& University of Illinois\end{aligned}\)

Challenges in Semileptonic B meson decays
Barolo, 19-23 April 2022

Fermilab Lattice and MILC collaborations

-Fermilab Lattice and MILC Collaborations (FNAL/MILC):
Bazavov, Bernard, DeTar, AXK, Gámiz, Gottlieb, Heller, Jay, Jeong, Kronfeld, Lahert, Laiho, Lin, Lynch, Lytle, Mackenzie, Petersson, Neil, Simone, Sugar, Toussaint, Van de Water, Vaquero

- all HISQ SL B, D decay analyses leads:

Will Jay (MIT)

Andrew Lytle (UIUC)

- Fermilab-HISQ SL B decay analyses leads:

Hwancheol Jeong (IU)

Introduction: $B \rightarrow \pi$ form factors

FNAL/MILC results obtained on asqtad ensembles using Fermilab approach for the b quarks [arXiv:1503.07839, PRD 2015]
\& dominant contribution to the FLAG 2021 average

Enables determinations of $\left|V_{u b}\right|$ from exp. measurements of exclusive (differential) decay rates with commensurate contributions to total errors from lattice and experiment

Introduction: $B_{s} \rightarrow K$ and $B \rightarrow K$ form factors

\& FNAL/MILC results obtained on asqtad ensembles using Fermilab approach for the b quarks

From the asqtad to the HISQ ensembles

HISQ ensemble set:
\& smaller discretization errors with HISQ action
\& physical mass ensembles at every lattice spacing with $L \sim 5.5-6 \mathrm{fm}$
Inte chiral interpolation

Form factor projects on HISO ensembles:

1. Fermilab approach for b quark (same as on asqtad) Int see Alejandro Vaquero talk
2. HISQ action for heavy and light valence quarks IIII cross check of heavy quark discretization effects

Finding Beauty

b quark

$m_{b} \gg \Lambda$ leading discretization errors $\sim\left(a m_{b}\right)^{2}$ (using same action and matching to cont. QCD as for light quarks)
uncontrolled if $m_{b}>a^{-1}$

use EFT

- relativistic heavy quark approach (Fermilab) matching relativistic lattice action via HOET to continuum OCD nontrivial matching and renormalization
m" (1-3)\% errors
$a^{-1}>m_{b} \gg \Lambda+$ highly improved staggered quark (HISQ) action une same action for all quarks
U"' simple renormalizations (Ward identities)

$$
\begin{gathered}
\text { melt }<1 \% \text { errors } \\
\text { are possible }
\end{gathered}
$$

all HISQ B meson decay constants

SM prediction for rare leptonic decay rate

error ${ }^{2}$

B_{S}

$$
\overline{\mathscr{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=3.660(38) \times 10^{-9}
$$

other

fBs LQCD decay constant now sub dominant source of uncertainty!

all HISQ semileptonic form factors: setup

- Use HISQ action also for valence heavy and light quarks
- heavy quark masses: $0.9 m_{c} \leq m_{h} \lesssim m_{b} \quad$ light quark masses: $m_{l}=m_{u d}, 0.1 m_{s}, 0.2 m_{s}, m_{s}$
- hadronic matrix elements $\langle L| J_{\mu}|H\rangle$ from 3-pt functions:

$$
\begin{aligned}
C_{3 \mathrm{pt}}\left(\vec{p}_{L}, t, T\right) & \sim Z_{L} Z_{H}\langle L| J|H\rangle e^{-E_{L} t} e^{-E_{H}(T-t)} \\
& + \text { excited states }
\end{aligned}
$$

Combine information from $2 \& 3$ pt-functions to obtain desired hadronic matrix element

+ H meson at rest, L meson with recoil momentum $\left|\vec{p}_{L}\right| \geq 0$
+ currents: $J=S, V_{0}, V_{i}, T_{i 4}$
+ use Ward-Takashi identity to obtain renormalized vector current matrix elements $q^{\mu}\left\langle V_{\mu}\right\rangle=\left(m_{h}-m_{l}\right)\langle S\rangle$

Tests and correlator fits

- Dispersion relation tests from pion two-point functions

+ Stability of fit to obtain $f_{0}^{D \rightarrow \pi}$ from 3\&2-pt functions under variations of fit parameters (\# of states, $t_{\text {min }}$)

+ Test of Ward identity for $\langle\pi| J|D\rangle$

U" small statistical uncertainties
Int small discretization effects
nill renormalizations $Z_{V_{\mu}} \simeq 1$

form factors for $B \rightarrow \pi \ell \nu$

$$
\begin{aligned}
\langle\pi| V^{\mu}|B\rangle & =f_{+}\left(q^{2}\right)\left[p_{B}^{\mu}+p_{\pi}^{\mu}-\frac{M_{B}^{2}-M_{\pi}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{M_{B}^{2}-M_{\pi}^{2}}{q^{2}} q^{\mu} \\
\langle\pi| S|B\rangle & =\frac{M_{B}^{2}-M_{\pi}^{2}}{m_{b}-m_{u}} f_{0}\left(q^{2}\right) \\
\langle\pi| T^{\mu \nu}|B\rangle & =2 \frac{p_{B}^{\mu} p_{\pi}^{\nu}-p_{B}^{\nu} p_{\pi}^{\mu}}{M_{B}+M_{\pi}} f_{T}\left(q^{2}\right)
\end{aligned}
$$

Convenient for chiral-continuum expansion:

$$
\begin{array}{rlrl}
\langle\pi| V^{\mu}|B\rangle & =\sqrt{2 M_{B}}\left[v^{\mu} f_{\|}\left(E_{\pi}\right)+p_{\perp}^{\mu} f_{\perp}\left(E_{\pi}\right)\right] & v=p / M_{B} \\
f_{\|}\left(E_{\pi}\right) & =\frac{\langle\pi| V^{4}|B\rangle}{\sqrt{2 M_{B}}}, & p_{\perp}^{\mu}=p^{\mu}-(p \cdot v) v^{\mu} \\
f_{\perp}\left(E_{\pi}\right) & =\frac{\langle\pi| V^{i}|B\rangle}{\sqrt{2 M_{B}}} \frac{1}{p^{i}} & &
\end{array}
$$

\& combined chiral-continuum interpolation/extrapolation in progress

SU(3) ratios

Du et al [arXiv:1510.02349] using FNAL/MILC form factors from [arXiv:1503.07839, 1507.01618, 1509.06235]

$$
\begin{aligned}
& \tilde{R}_{i}(|\boldsymbol{v}|)=\frac{f_{i}^{B K}(|\boldsymbol{v}|) P_{i}^{B K}}{f_{i}^{B \pi}(|\boldsymbol{v}|) P_{i}^{B \pi}}-1 \\
& P_{+, T}^{B \pi}=1-q^{2} / M_{B^{*}}^{2} \\
& \text { observed effects } \\
& \tilde{R}_{+, T}(|\mathbf{v}|) \lesssim 20 \% \\
& \tilde{R}_{0}(|\mathbf{v}|) \lesssim 35 \%
\end{aligned}
$$

$$
R_{i}(E)=\frac{f_{i}^{B K}(E)}{f_{i}^{B \pi}(E)}-1
$$

A. El-Khadra
$R_{i}\left(q^{2}\right)=\frac{f_{i}^{B K}\left(q^{2}\right)}{f_{i}^{B \pi}\left(q^{2}\right)}-1$

corresponding ratios for $B_{s} \rightarrow K / B \rightarrow \pi$ can be obtained from [arXiv:1503.07839, 1901.02561]

$\mathrm{SU}(3)$ ratios

Bazavov et al [arXiv:1901.02561] using FNAL/MILC form factors from [arXiv:1202.6346] (obtained on a subset of the asqtad ensembles)

Conclusions

© work in progress by FNAL/MILC to compute the complete set of semi-leptonic B (and D) meson form factors on the HISO ensembles using the HISQ action for the valence light and heavy quarks (all HISQ approach) for the following channels:
$B \rightarrow \pi, B_{s} \rightarrow K, B \rightarrow K$, and $B \rightarrow D, B_{s} \rightarrow D_{s}$ and $B \rightarrow D^{*}, B_{s} \rightarrow D_{s}^{*}$
\& all analyses are BLINDED until systematic error analysis is finalized
available range of lattice spacings $a \sim 0.03-0.15 \mathrm{fm}$:
lu* reach $m_{h}=m_{b}$ with small discretization errors
\& ensembles with physical light-quarks in the sea:
milt chiral interpolation with significantly reduced uncertainties
\% analyses set-up to easily obtain correlations and form ratios
(SU(3), $B_{s} \rightarrow K / B_{s} \rightarrow D_{s^{\prime}}$ etc...)
© comparison with form factors calculated in the Fermilab-HISO project (see Alejandro's talk) will provide cross checks of heavy quark discretization effects.
\& goal is to obtain all form factors with percent level precision

Thank you!

Appendix

z-expansion coefficients: LQCD vs Exp

FNAL/MILC [arXiv:1503.07839]

$B \rightarrow \pi \ell \nu$

Table XV. The results of fits to experimental data only.

Fit	$\chi^{2} /$ dof	dof	p	b_{1} / b_{0}	b_{2} / b_{0}	$b_{0}\left\|V_{u b}\right\| \times 10^{-3}$
All exp.	1.5	48	0.02	$-0.93(22)$	$-1.54(65)$	$1.53(4)$
BaBar11 [7]	2	3	0.12	$-0.89(47)$	$0.5(1.5)$	$1.36(7)$
BaBar12 [8]	1.2	9	$0.31-0.48(59)$	$-3.2(1.7)$	$1.54(9)$	
Belle11 [9]	1.1	10	$0.36-1.21(33)$	$-1.18(95)$	$1.63(7)$	
Belle13 [10]	1.2	17	$0.23-1.89(50)$	$1.4(1.6)$	$1.56(8)$	

