Light-cone sum rules for $b \rightarrow u$ exclusive channels

Alexander Khodjamirian

Challenges in semileptonic B decays, Barolo, Italy, April 19-22, 2022

Exclusive $b \rightarrow u$ channels

- optimal for $\left|V_{u b}\right|$ determination
- $B \rightarrow \pi \ell \nu_{\ell}, B_{s} \rightarrow K \ell \nu_{\ell}$
- $B \rightarrow 2 \pi\left(\rho, f_{0}, f_{2}\right) \ell \nu_{\ell}$,
- $B \rightarrow \eta \ell \nu_{\ell}, B \rightarrow \omega \ell \nu_{\ell}$
- $B_{c} \rightarrow D \ell_{\ell}$
- form factors at large recoil (small q^{2}) accessible with LCSRs:

- Method 1: with light-meson DAs

- Method 2
with B-meson DAs
\square Which LCSR method is better?

LCSR	method 1 (light meson DAs)	method 2 (B DAs)
Correlator	finite m_{b}	HQET
OPE twist expansion	\leq tw 6	\leq tw 6
α_{s} expansion	(N)NLO tw 2, NLO tw3	NLO tw 2
parameters of DAs	sufficiently accurate for π, ρ exp. data	$\lambda_{B}, \lambda_{H, E}$ uncertainty
$B \rightarrow \ell \nu_{\ell} \gamma$		

- Uncertainty estimates:
- "traditional" way: parametric uncertainties in quadrature
- more advanced: statistical (Bayesian) analysis,
[I.S.Imsong, A.K., T. Mannel and D. van Dyk, (2015)]
[N.Gubernari, A.Kokulu, D. van Dyk, (2018)]
- channel-dependent "systematic" error due to quark-hadron duality approximation

Most recent LCSR analysis for $B \rightarrow \pi$ form factors with pion DAs

[D.Leljak, B. Melic, D.van Dyk, 2102.0723]

- Comparison with earlier LCSRS results

$$
f_{B \pi}^{+}(0) \quad f_{B \pi}^{T}(0)
$$

Light-cone sum rules		
Duplancic et al. [15]	$0.26_{-0.03}^{+0.04}$	0.255 ± 0.035
Imsong et al. [20]	0.31 ± 0.02	-
Khodjamirian/Rusov [29]	0.301 ± 0.023	0.273 ± 0.021
Gubernari et al. (B LCDA) [21]	0.21 ± 0.07	0.19 ± 0.06
this work	0.283 ± 0.027	0.282 ± 0.026
Light-cone sum rules + Lattice QCD combination		
this work	0.235 ± 0.019	0.235 ± 0.017

Table 6. Comparison of our results for the form factor normalizations with other QCD-bas results in the literature. The result of ref. [21] is included for completeness, although the auth caution that the threshold setting procedure employed in that work fails for the $\bar{B} \rightarrow \pi$ form facto
\square Recent results and comparison for $B \rightarrow \rho$ form factors
from [N.Gubernari, A.Kokulu, D. van Dyk, ArXiv[1811.00983] (2018)]

form factor at $q^{2}=0$	our result	literature	DAs	[Ref.]
$A_{1}^{B \rightarrow \rho}$	0.22 ± 0.10	0.24 ± 0.08	B	[AK,Mannel,Offen 06']
$A_{2}^{B \rightarrow \rho}$	0.19 ± 0.11	0.21 ± 0.026	ρ	[Bharucha,Straub,Zwicky 14
$V^{B \rightarrow \rho}$	0.27 ± 0.14	0.32 ± 0.10 $T_{1}^{B \rightarrow \rho}$	B	[AK,Mannel,Offen 06']
0.327 ± 0.031	ρ	[AK,Mannel,Offen 06']		
[Bharucha,Straub,Zwicky 1				
$T_{23}^{B \rightarrow \rho}$	0.56 ± 0.12	0.28 ± 0.09 0.272 ± 0.026	B	[AK,Mannel,Offen 06']
[Bharucha,Straub,Zwicky 1				
	0.747 ± 0.076	ρ	[Bharucha,Straub,Zwicky 1	

ρ DAs, neglecting Γ_{ρ}
\square Comparison with lattice QCD results

- LCSRs (the method with pion DAs) predict somewhat larger central values of $f_{B \pi}$ and $f_{B_{s} K}$
green [A.K., A.Rusov, (2017)]
orange [Fermilab-MILC 1503.07839]
using in LCSR the f_{B} FLAG aver. instead of 2point SRs slightly reduces the difference
- a "pure LCSR" observable:

$\Delta \zeta_{B \pi}\left(0,12 G e V^{2}\right)=\frac{1}{\left|V_{u b}\right|^{2}} \int_{0}^{12} \mathrm{GeV}^{2} d q^{2} \frac{d \Gamma}{d q^{2}}\left(B \rightarrow \pi \ell \nu_{\ell}\right) \equiv \frac{G_{F}^{2}}{24 \pi^{3}} \int_{0}^{12} \mathrm{GeV}^{2} d q^{2} p_{\pi}^{3}\left|f_{B \pi}^{+}\left(q^{2}\right)\right|^{2}=\left(5.25_{-0.54}^{+0.68}\right) \mathrm{ps}^{-1}$
[I. S.Imsong, A.K., T. Mannel and D. van Dyk, (2015)]
$\Delta \zeta_{B_{S} K}\left(0,12 \mathrm{GeV}^{2}\right)=6.92_{-0.90}^{+1.09} \mathrm{ps}^{-1}$

$\square b \rightarrow u$ transitions to dipion and resonance states
- Measured are $B \rightarrow 2 \pi \ell \nu_{\ell}$ decays
- a practical problem: to isolate contributions of resonances from "nonresonant" background in $B \rightarrow \pi \pi \ell \nu_{\ell}$
- the recent Belle results (full data sample) $B \rightarrow \pi^{+} \pi^{-} \ell \nu_{\ell}(\ell=e, \mu)$ modeled with four resonances : $\rho, \rho^{\prime}, f_{0}(500), f_{2}(1270)$ [Belle Collab. hep-ex 2005.07766] see the talk by Christoph Schwanda
- in the theory language:
see e.g. [S. Faller, T. Feldmann, A. Khodjamirian, T. Mannel and D. van Dyk, Phy1310.6660]
- define $B \rightarrow \pi \pi$ form factors, e.g.,:

$$
\begin{aligned}
& \left\langle\pi^{+}\left(k_{1}\right) \pi^{0}\left(k_{2}\right)\right| \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) b\left|\bar{B}^{0}(p)\right\rangle=-F_{\perp}\left(q^{2}, k^{2}, \zeta\right) \frac{4}{\sqrt{k^{2} \lambda_{B}}} i \epsilon^{\mu \alpha \beta \gamma} q_{\alpha} k_{1 \beta} k_{2 \gamma}+\ldots \\
& \quad(2 \zeta-1)=\left(1-4 m_{\pi}^{2} / k^{2}\right)^{1 / 2} \cos \theta_{\pi}, \text { in dipion c.m. }
\end{aligned}
$$

- expand in partial waves, isolate dipion S, P, D, \ldots-waves
$F_{\perp}\left(q^{2}, k^{2}, \zeta\right) \Rightarrow F_{\perp}^{(\ell=1)}\left(q^{2}, k^{2}\right)$
- for each partial wave apply hadronic dispersion relation in the dipion invariant mass
\square Dispersion relation for the $B \rightarrow \pi^{+} \pi^{0}$ vector FF
- assuming only P-wave; three-resonance ansatz:

$$
\begin{aligned}
& \frac{\sqrt{3} F_{\perp}^{(\ell=1)}\left(q^{2}, k^{2}\right)}{\sqrt{k^{2}} \sqrt{\lambda_{B}}}=\frac{g_{\rho \pi \pi}}{m_{\rho}^{2}-k^{2}-i m_{\rho} \Gamma_{\rho}\left(k^{2}\right)} \frac{V^{B \rightarrow \rho}\left(q^{2}\right)}{m_{B}+m_{\rho}} \\
& +\frac{g_{\rho^{\prime} \pi \pi}}{m_{\rho^{\prime}}^{2}-k^{2}-i m_{\rho^{\prime}} \Gamma_{\rho^{\prime}}\left(k^{2}\right)} \frac{V^{B \rightarrow \rho^{\prime}}\left(q^{2}\right)}{m_{B}+m_{\rho^{\prime}}}+ \\
& \quad+\frac{g_{\rho^{\prime \prime} \pi \pi}}{m_{\rho^{\prime \prime}}^{2}-k^{2}-i m_{\rho^{\prime \prime}} \Gamma_{\rho^{\prime \prime}}\left(k^{2}\right)} \frac{V^{B \rightarrow \rho^{\prime \prime}}\left(q^{2}\right)}{m_{B}+m_{\rho^{\prime \prime}}}+\ldots
\end{aligned}
$$

- a more refined dispersion analysis possible
[e.g., G. Colangelo, M. Hoferichter and P. Stoffer, 1810.00007].
- calculate $B \rightarrow \pi \pi$ form factors from LCSRs
(not yet accessible in the lattice QCD)
- $\rho, \rho^{\prime}, \ldots$ have to be "embedded" in this calculation
- model-dependence of the input is unavoidable
\square LCSRs for $B \rightarrow \pi \pi$ form factors: Method 1
- applicable for dipion with a small invariant mass and large recoil: $k^{2} \lesssim 1 \mathrm{GeV}^{2}, 0 \leq q^{2} \leq 12-14 \mathrm{GeV}^{2}$.
- nonperturbative input: dipion distribution amplitudes (DAs)
- vacuum \rightarrow on-shell dipion hadronic matrix elements of nonlocal $\bar{u}(x) d(0)$ operators

FSI including the ρ-meson "embedded" in DAs

- considered only $\bar{B}^{0} \rightarrow \pi^{+} \pi^{0} \ell^{-} \nu_{\ell}$, isospin $1, L=1,3,, .$.
- only LO, twist-2 approximation for dipion DAs available
- quark-hadron duality in the B-channel, \Rightarrow effective threshold s_{0}^{B},
\square How dominant is ρ ?
$\frac{\left[F_{\perp}^{(\ell=1)}\left(q^{2}, k_{\text {min }}^{2}\right)\right]^{(\rho)}}{\left[F_{\perp}^{(\ell=1)}\left(q^{2}, k_{\text {min }}^{2}\right)\right]^{(L C S R)}}$

$$
\frac{\left[F_{\|}^{(\ell=1)}\left(q^{2}, k_{\text {min }}^{2}\right)\right]^{(\rho)}}{\left[F_{\|}^{(\ell=1)}\left(q^{2}, k_{\text {min }}^{2}\right)\right]^{(L C S R)}}
$$

Relative contribution of ρ-meson to the $B \rightarrow \pi^{+} \pi^{0} P$-wave form factors $F_{\perp}^{(\ell=1)}\left(q^{2}, k_{\text {min }}^{2}\right)$ (left panel) and $F_{\|}^{(\ell=1)}\left(q^{2}, k_{\text {min }}^{2}\right)$ (right panel) from LCSRs.
Dashed lines - the uncertainty due to the variation of the Borel parameter.

- main problem: the Gegenbauer coefficents of dipion DAs (complex functions of dipion invariant mass)
- to model/extract these coefficients switching the LCSRs to $D \rightarrow \pi^{-} \pi^{0} \ell^{+} \nu_{\ell}$ form factors and fitting to the decay distribution measured by BESS III [R.Kellermann, AK, G.Tetlalmatzi-Xolocotzi, in progress]
- LCSR s with B-meson DA and $\bar{u} \gamma_{\mu} d$ interpolating current
- The correlation function:

- insert a dispersion.relation for $B \rightarrow 2 \pi$ form factors and a (dispersion rel. \oplus experiment) parametrization for F_{π}
- not a direct calculation, given the ansatz of the $B \rightarrow 2 \pi$ form factors, these sum rules provide normalization parameters
\square Probing ρ-resonance models
- ansatz for the $B \rightarrow \pi \pi \mathrm{FF}$:

$$
\begin{array}{r}
\frac{\sqrt{3} F_{\perp}^{(\ell=1)}\left(q^{2}, k^{2}\right)}{\sqrt{k^{2}} \sqrt{\lambda_{B}}}=\frac{g_{\rho \pi \pi}}{m_{\rho}^{2}-k^{2}-i m_{\rho} \Gamma_{\rho}\left(k^{2}\right)} \frac{V^{B \rightarrow \rho}\left(q^{2}\right)}{m_{B}+m_{\rho}} \\
+\frac{g_{\rho^{\prime} \pi \pi}}{m_{\rho^{\prime}}^{2}-k^{2}-i m_{\rho^{\prime}} \Gamma_{\rho^{\prime}}\left(k^{2}\right)} \frac{v^{B \rightarrow \rho^{\prime}}\left(q^{2}\right)}{m_{B}+m_{\rho^{\prime}}}+\frac{g_{\rho^{\prime \prime} \pi \pi}}{m_{\rho^{\prime \prime}}^{2}-k^{2}-i m_{\rho^{\prime \prime}} \Gamma_{\rho^{\prime \prime}}\left(k^{2}\right)} \frac{v^{B \rightarrow \rho^{\prime \prime}}\left(q^{2}\right)}{m_{B}+m_{\rho^{\prime \prime}}}
\end{array}
$$

inspired by experimental fit of timelike $F_{\pi}(s)$

- Model 1:
- $V^{B \rightarrow \rho}\left(q^{2}\right)$ from LCSR with ρ-meson DAs (in which $\Gamma_{\rho}=0$)
taken from A.Bharucha, D.Straub and R.Zwicky, 1503.05534
- neglect $\rho^{\prime \prime}$
\Rightarrow contribution of ρ^{\prime} up to 20% of ρ in residue consistent with the fit
- Model 2 :
- all three resonances taken into account
$\square B \rightarrow 2 \pi(\ell=1)$ FFs: dipion mass dependence

$\square B \rightarrow 2 \pi(\ell=1)$ FFs: q^{2}-dependence at small k^{2}

- wish list (experiment):
- accurate q^{2}-slope measurement in $B \rightarrow \pi \ell \nu_{\ell}, B_{s} \rightarrow K \ell \nu_{\ell}$
- $B \rightarrow \gamma \ell \nu_{\ell}$ partial width and photon energy distribution
- partial wave expansion in $B \rightarrow \pi \pi \ell \nu_{\ell}$
- wish list (theory):
- to assess "intrinsic" $1 / m_{b}$-corrections to the B-DA correlator
- further improvements in $\lambda_{B}, \lambda_{E, H}, \lambda_{B_{s}}$ determination
- Gegenbauer functions for dipon DAs
- B $\rightarrow \pi \pi$ FFs with $J^{P}=0^{+}, 2^{+}$from LCSRs

