Light-cone sum rules for $b \rightarrow u$ exclusive channels

Alexander Khodjamirian

Challenges in semileptonic B decays, Barolo, Italy, April 19-22 ,2022

\Box Exclusive $b \rightarrow u$ channels

- optimal for $|V_{ub}|$ determination
 - $B \to \pi \ell \nu_{\ell}, B_s \to K \ell \nu_{\ell}$
 - $B \rightarrow 2\pi(\rho, f_0, f_2)\ell\nu_\ell$,
 - $B \to \eta \ell \nu_{\ell}, B \to \omega \ell \nu_{\ell}$
 - $B_c \rightarrow D\ell \nu_\ell$
- ▶ form factors at large recoil (small *q*²) accessible with LCSRs:

• Method 1: with light-meson DAs

• Method 2 with *B*-meson DAs

□ Which LCSR method is better?

LCSR	method 1 (light meson DAs)	method 2 (B DAs)	
Correlator	finite <i>m</i> _b	HQET	
OPE twist expansion	\leq tw 6	\leq tw 6	
α_s expansion	(N)NLO tw 2, NLO tw3	NLO tw 2	
parameters of DAs	sufficiently accurate for π, ρ	$\lambda_{B}, \lambda_{H,E}$ uncertainty	
exp. data	pion FFs	$B o \ell u_\ell \gamma$	
duality threshold	s_0^B from <i>B</i> -mass fixing	s_0^π from 2point SR	
validity check with $D \rightarrow h$	yes	no	
flexibility $B \rightarrow h$	needs a set of DAs for each h	change the inteprol.current	
$B ightarrow 2\pi$ FFs	dipion DAs poorly known	accessible via disp. relation	

• Uncertainty estimates:

- "traditional" way: parametric uncertainties in quadrature
- more advanced: statistical (Bayesian) analysis,

[I.S.Imsong, A.K., T. Mannel and D. van Dyk, (2015)]

[N.Gubernari, A.Kokulu, D. van Dyk, (2018)]

channel-dependent "systematic" error due to quark-hadron duality approximation

\Box Most recent LCSR analysis for $B \rightarrow \pi$ form factors with pion DAs

[D.Leljak, B. Melic, D.van Dyk, 2102.0723]

fT(0)

 $f^{+}(0)$

Comparison with earlier LCSRS results

	$B_{\pi}(0)$	$I_{B\pi}(\mathbf{O})$			
Light-cone sum rules					
Duplancic et al. $[15]$	$0.26\substack{+0.04\\-0.03}$	0.255 ± 0.035			
Imsong et al. [20]	0.31 ± 0.02				
Khodjamirian/Rusov $[29]$	0.301 ± 0.023	0.273 ± 0.021			
Gubernari et al. (B LCDA) [21]	0.21 ± 0.07	0.19 ± 0.06			
this work	0.283 ± 0.027	0.282 ± 0.026			
Light-cone sum rules + Lattice QCD combination					
this work	0.235 ± 0.019	0.235 ± 0.017			

Table 6. Comparison of our results for the form factor normalizations with other QCD-bas results in the literature. The result of ref. [21] is included for completeness, although the author caution that the threshold setting procedure employed in that work fails for the $\bar{B} \to \pi$ form factor

\Box Recent results and comparison for $B \rightarrow \rho$ form factors

from [N.Gubernari, A.Kokulu, D. van Dyk, ArXiv[1811.00983] (2018)]

form factor at $q^2 = 0$	our result	literature	DAs	[Ref.]
$A_1^{B \to \rho}$	$\textbf{0.22}\pm\textbf{0.10}$	0.24 ± 0.08	В	[AK,Mannel,Offen 06']
		0.262 ± 0.026	ρ	[Bharucha,Straub,Zwicky 1
$A_2^{B \to \rho}$	0.19 ± 0.11	0.21 ± 0.09	В	[AK,Mannel,Offen 06']
$V^{B \to \rho}$	0.27 ± 0.14	0.32 ± 0.10	В	[AK,Mannel,Offen 06']
		0.327 ± 0.031	ρ	[Bharucha,Straub,Zwicky 1
$T_1^{B \to \rho}$	$\textbf{0.24} \pm \textbf{0.12}$	0.28 ± 0.09	В	[AK,Mannel,Offen 06']
		0.272 ± 0.026	ρ	[Bharucha,Straub,Zwicky 1
$T_{22}^{B \to \rho}$	0.56 ± 0.15	0.747 ± 0.076	ρ	[Bharucha,Straub,Zwicky 1
20				

 ρ DAs, neglecting Γ_{ρ}

Comparison with lattice QCD results

 LCSRs (the method with pion DAs) predict somewhat larger central values of f_{Bπ} and f_{BsK}

green [A.K., A.Rusov, (2017)] orange [Fermilab-MILC 1503.07839] using in LCSR the f_B FLAG aver. instead of 2point SRs slightly reduces the difference

a "pure LCSR" observable:

$$\Delta\zeta_{B\pi}(0, 12\text{GeV}^2) = \frac{1}{|V_{ub}|^2} \int_{0}^{12} \frac{\text{GeV}^2}{dq^2} dq^2 \frac{d\Gamma}{dq^2} (B \to \pi \ell \nu_\ell) \equiv \frac{G_F^2}{24\pi^3} \int_{0}^{12} \frac{\text{GeV}^2}{dq^2} \rho_\pi^3 |t_{B\pi}^+(q^2)|^2 = (5.25^{+0.68}_{-0.54}) \,\text{ps}^{-1}$$

[I. S.Imsong, A.K., T. Mannel and D. van Dyk, (2015)]

$$\Delta \zeta_{B_{s}K} (0, 12 \,\text{GeV}^2) = 6.92^{+1.09}_{-0.90} \text{ ps}^{-7}$$

[A.K., A.Rusov, (2017)]

 \Box *b* \rightarrow *u* transitions to dipion and resonance states

- Measured are $B \rightarrow 2\pi \ell \nu_{\ell}$ decays
- ► a practical problem: to isolate contributions of resonances from "nonresonant" background in $B \to \pi \pi \ell \nu_{\ell}$
- ► the recent Belle results (full data sample) $B \to \pi^+ \pi^- \ell \nu_\ell$ ($\ell = e, \mu$) modeled with four resonances : $\rho, \rho', f_0(500), f_2(1270)$ [Belle Collab. hep-ex 2005.07766] see the talk by Christoph Schwanda
- in the theory language:

see e.g. [S. Faller, T. Feldmann, A. Khodjamirian, T. Mannel and D. van Dyk, Phy1310.6660] • define $B \rightarrow \pi\pi$ form factors, e.g.,:

$$\langle \pi^+(k_1)\pi^0(k_2)|\bar{u}\gamma^\mu(1-\gamma_5)b|\bar{B}^0(p)\rangle = -F_{\perp}(q^2,k^2,\zeta)\frac{4}{\sqrt{k^2\lambda_B}}\,i\epsilon^{\mu\alpha\beta\gamma}\,q_\alpha\,k_{1\beta}\,k_{2\gamma}+\dots$$

 $(2\zeta - 1) = (1 - 4m_{\pi}^2/k^2)^{1/2}cos\theta_{\pi}$, in dipion c.m.

• expand in partial waves, isolate dipion S, P, D, \dots -waves $F_{\perp}(q^2, k^2, \zeta) \Rightarrow F_{\perp}^{(\ell=1)}(q^2, k^2)$

 for each partial wave apply hadronic dispersion relation in the dipion invariant mass \Box Dispersion relation for the $B \rightarrow \pi^+ \pi^0$ vector FF

assuming only P-wave; three-resonance ansatz:

$$\frac{\sqrt{3}F_{\perp}^{(\ell=1)}(q^{2},k^{2})}{\sqrt{k^{2}}\sqrt{\lambda_{B}}} = \frac{g_{\rho\pi\pi}}{m_{\rho}^{2}-k^{2}-im_{\rho}\Gamma_{\rho}(k^{2})}\frac{V^{B\to\rho}(q^{2})}{m_{B}+m_{\rho}} + \frac{g_{\rho'\pi\pi}}{m_{\rho'}^{2}-k^{2}-im_{\rho'}\Gamma_{\rho'}(k^{2})}\frac{V^{B\to\rho''}(q^{2})}{m_{B}+m_{\rho'}} + \frac{g_{\rho''\pi\pi}}{m_{\rho''}^{2}-k^{2}-im_{\rho''}\Gamma_{\rho''}(k^{2})}\frac{V^{B\to\rho''}(q^{2})}{m_{B}+m_{\rho''}} + \dots$$

a more refined dispersion analysis possible

[e.g., G. Colangelo, M. Hoferichter and P. Stoffer, 1810.00007].

• calculate $B \rightarrow \pi \pi$ form factors from LCSRs

(not yet accessible in the lattice QCD)

- ρ, ρ', \dots have to be "embedded" in this calculation
- model-dependence of the input is unavoidable

 \Box LCSRs for $B \rightarrow \pi\pi$ form factors: Method 1

[Ch. Hambrock, AK, Nucl. Phys. B (2016); 1511.02509 [hep-ph]]

- ► applicable for dipion with a small invariant mass and large recoil: k² ≤ 1 GeV², 0 ≤ q² ≤ 12-14 GeV².
- nonperturbative input: dipion distribution amplitudes (DAs)
- ► vacuum \rightarrow on-shell dipion hadronic matrix elements of nonlocal $\bar{u}(x)d(0)$ operators

FSI including the $\rho\text{-meson}$ "embedded" in DAs

► considered only $\bar{B}^0 \to \pi^+ \pi^0 \ell^- \nu_\ell$, isospin 1, L = 1, 3, ...

- only LO, twist-2 approximation for dipion DAs available
- quark-hadron duality in the *B*-channel, \Rightarrow effective threshold s_0^B ,

\Box How dominant is ρ ?

main problem: the Gegenbauer coefficents of dipion DAs

(complex functions of dipion invariant mass)

• to model/extract these coefficients switching the LCSRs to $D \rightarrow \pi^{-}\pi^{0}\ell^{+}\nu_{\ell}$ form factors and fitting to the decay distribution measured by BESS III [R.Kellermann, AK, G.Tetlalmatzi-Xolocotzi, in progress]

\Box LCSRs for $B \rightarrow \pi\pi$ FFs: Method 2

[S.Cheng, AK, J.Virto, 1701.01633 [hep-ph]]

- ► LCSRs with *B*-meson DA and $\bar{u}\gamma_{\mu}d$ interpolating current
- The correlation function:

- Insert a dispersion.relation for B → 2π form factors and a (dispersion rel. ⊕ experiment) parametrization for F_π
- ▶ not a direct calculation, given the ansatz of the $B \rightarrow 2\pi$ form factors, these sum rules provide normalization parameters

\Box Probing ρ -resonance models

• ansatz for the $B \rightarrow \pi \pi$ FF:

$$\frac{\sqrt{3}F_{\perp}^{(\ell=1)}(q^{2},k^{2})}{\sqrt{k^{2}}\sqrt{\lambda_{B}}} = \frac{g_{\rho\pi\pi}}{m_{\rho}^{2}-k^{2}-im_{\rho}\Gamma_{\rho}(k^{2})}\frac{V^{B\to\rho}(q^{2})}{m_{B}+m_{\rho}}$$
$$+\frac{g_{\rho'\pi\pi}}{m_{\rho'}^{2}-k^{2}-im_{\rho'}\Gamma_{\rho'}(k^{2})}\frac{V^{B\to\rho'}(q^{2})}{m_{B}+m_{\rho'}}+\frac{g_{\rho''\pi\pi}}{m_{\rho''}^{2}-k^{2}-im_{\rho''}\Gamma_{\rho''}(k^{2})}\frac{V^{B\to\rho''}(q^{2})}{m_{B}+m_{\rho''}}$$

inspired by experimental fit of timelike $F_{\pi}(s)$

- Model 1:
 - $V^{B \to \rho}(q^2)$ from LCSR with ρ -meson DAs (in which $\Gamma_{\rho} = 0$)

taken from A.Bharucha, D.Straub and R.Zwicky, 1503.05534

neglect ρ^{''}

 \Rightarrow contribution of ρ' up to 20% of ρ in residue consistent with the fit

- Model 2 :
 - all three resonances taken into account

$\Box B \rightarrow 2\pi \ (\ell = 1)$ FFs: dipion mass dependence

$\square B \rightarrow 2\pi \ (\ell = 1)$ FFs: q^2 -dependence at small k^2

□ Concluding:

- wish list (experiment):
 - accurate q^2 -slope measurement in $B \to \pi \ell \nu_\ell$, $B_s \to K \ell \nu_\ell$
 - $B \rightarrow \gamma \ell \nu_{\ell}$ partial width and photon energy distribution
 - partial wave expansion in $B o \pi \pi \ell
 u_{\ell}$
- wish list (theory):
 - to assess "intrinsic" 1/mb-corrections to the B-DA correlator
 - further improvements in λ_B , $\lambda_{E,H}$, λ_{B_s} determination
 - Gegenbauer functions for dipon DAs
 - $B \rightarrow \pi \pi$ FFs with $J^P = 0^+, 2^+$ from LCSRs