

Lucia Grillo

with input from Biljana Mitreska, Greg Ciezarek, Marco Gersabeck, Marcello Rotondo

Challenges in Semileptonic B decays 19-23/04/2022

Angular analyses of semileptonic B decays

- New Physics searches, complementary to Lepton Universality tests
- Hadronic Form Factors measurements
- \blacktriangleright In this talk: ongoing $B^0 \to D^{(*)} \ell \nu\,$ studies at LHCb

Semileptonic decays

$$\frac{d^4(B^0 \to D^*\ell^+\nu_\ell)}{dq^2 d\cos^2\theta_\ell d\cos\theta_{D^*} d^{\chi}} \propto |V_{cb}|^2 \sum_i \mathcal{H}_i(q^2) f_i(\theta_\ell, \theta_{D^*}, \chi)$$

(Electroweak) couplings + QCD encompassed by Form Factors

 Helicity angles distributions (and derived observables) are sensitive to New Physics contributions and hadronic interactions (Form Factors)

Semileptonic decays @LHCb

Non-reconstructable	Non-reconstructable neutrino(s)		
Primary Verter	<i>t</i> decay mode	BR[%]	
(pp collision) Decay Vertex	$ au o \mu \overline{ u} u$	17.39±0.0	
B_0	$\tau \to e \overline{\nu} \nu$	17.82±0.0	
D^{-}	$\tau o 3\pi \nu$	9.31±0.05	
	$ au o 3\pi\pi^0 u$	4.62±0.05	
L	$ au o \pi u$	18.82±0.0	
π^{-} K^+	au o ho u	25.49±0.9	

- Partial reconstruction → unconstrained kinematics: (with a single missing particle we can solve for the missing 3-momentum, with a quadratic ambiguity)
- Partial reconstruction → large backgrounds: need to fully exploit vertex topology information, track isolation, available kinematic information
- Millions of signal candidates already collected
- All b-hadron species you can dream of Not included in this talk: other exclusive decays (baryons: complementary spin-structure) !

Backgrounds

 $B^0 \to D^{(*)} \tau \nu$

- Analyses with taus: background dominated
- Essential use of track isolation and control regions to describe the sample composition

True

 p_{\perp}

 p_{\perp}

Differential measurements

 Helicity angles distributions (and derived observables) are sensitive to New Physics contributions and hadronic interactions (Form Factors)

Differential measurements

- $B^0 \to D^* \mu \nu$ decays
- Solution of quadratic equation (solid) compared to B rest frame approximation (dashed)

ł

 Helicity angles distributions (and derived observables) are sensitive to New Physics contributions and hadronic interactions (Form Factors)

EFT: Modelling New Physics (and hadronic) effects

- HAMMER tool (Bernlochner, Duell, Ligeti, Papucci, Robinson, Eur. Phys. J. C 80, 883 (2020)) to reweight MC events and obtain "dynamic" templates, (for-)folding in the experimental resolution
- Extract Wilson Coefficients and hadronic Form Factor parameters from a fit to data (<u>arXiv:2007.12605</u>)

 $B^0 \to D^{(*)} \mu \nu$

 $\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} V_{cb} \sum_i C_i \mathcal{O}_i$ $= \frac{G_F}{\sqrt{2}} V_{cb} \Big[(1 + g_V) \bar{c} \gamma_\mu b + (-1 + g_A) \bar{c} \gamma_\mu \gamma_5 b \Big]$

19/04/2022

 $\mathcal{R}e(V_{qRlL}) = \{-0.5, -0.2, -0.1, 0.0, 0.1, 0.2, 0.5\}$ 100 - 100 $+g_S i \partial_\mu (\bar{c}b) + g_P i \partial_\mu (\bar{c}\gamma_5 b)$ $\times 10^{\circ}$ Events / (0.4) Events / (0.4) 100 $+g_T i\partial^{\nu}(\bar{c}i\sigma_{\mu\nu}b) + g_{T5}i\partial^{\nu}(\bar{c}i\sigma_{\mu\nu}\gamma_5b)\Big]$ 80 60 60 $\bar{\ell}\gamma^{\mu}(1-\gamma_5)\nu_{\ell}+h.c.$ 40 40 20 20 4-Fermi/ $(i2\sqrt{2}V_{cb}G_F)$ WC LHCb Simulation LHCb Simulation Current WC Tag 0 0 -0.5 0.5 $\left[\bar{c}\gamma^{\mu}P_{L}b\right]\left[\bar{\ell}\gamma_{\mu}P_{L}\nu\right]$ 0 -0.50 0.5 -1 1 SMSM $\cos(\theta_{d})$ $\cos(\theta_1)$ $\chi_L^V \lambda_L^V$ $\left[\bar{c}\chi_{L}^{V}\gamma^{\mu}P_{L}b\right]\left[\bar{\ell}\lambda_{L}^{V}\gamma_{\mu}P_{L}\nu\right]$ V_qLlL $120 \boxed{\times 10^3}$ **~9**0000 $\chi^V_R \lambda^V_L$ $\left[\bar{c} \chi^V_R \gamma^\mu P_R b \right] \left[\bar{\ell} \lambda^V_L \gamma_\mu P_L \nu \right]$ Events / (2.5) 25000 250000 00000 00000 V_qR1L Vector 100 $\chi_L^V \lambda_R^V$ $\left[\bar{c}\chi_{L}^{V}\gamma^{\mu}P_{L}b\right]\left[\bar{\ell}\lambda_{R}^{V}\gamma_{\mu}P_{R}
u\right]$ V_qL1R **_6**0000 80 $\chi^V_R \lambda^V_R$ $\left[\bar{c}\chi_{R}^{V}\gamma^{\mu}P_{R}b\right]\left[\bar{\ell}\lambda_{R}^{V}\gamma_{\mu}P_{R}\nu\right]$ \$0000 V_qR1R 60 $\chi^S_L \lambda^S_L$ $\left[\bar{c}\chi_{L}^{S}P_{L}b\right]\left[\bar{\ell}\lambda_{L}^{S}P_{L}\nu\right]$ 芝 山子30000 S_qL1L Hammer Manual 40 $\chi^S_R \lambda^S_L$ $\left[\bar{c}\chi^{S}_{R}P_{R}b\right]\left[\bar{\ell}\lambda^{S}_{L}P_{L}\nu
ight]$ 20000 S_qR1L 20 Scalar LHCb Simulation LHCb Simulation 10000 $\chi^S_L \lambda^S_R$ $\left[\bar{c}\chi_{L}^{S}P_{L}b\right]\left[\bar{\ell}\lambda_{R}^{S}P_{R}\nu\right]$ S_qL1R 0 2 6 4 8 10 -20 2 $q^2 [GeV^2]$ $\chi^S_R \lambda^S_R$ $\left[\bar{c}\chi_{R}^{S}P_{R}b\right]\left[\bar{\ell}\lambda_{R}^{S}P_{R}\nu\right]$ χ [rad] S_qR1R $\chi_L^T \lambda_L^T$ $\left[ar{c}\chi_{L}^{T}\sigma^{\mu
u}P_{L}b
ight]\left[ar{\ell}\lambda_{L}^{T}\sigma_{\mu
u}P_{L}
u
ight]$ T_qLlL Tensor $\chi_R^T \lambda_R^T$ $\left[\bar{c} \chi_R^T \sigma^{\mu
u} P_R b\right] \left[\bar{\ell} \lambda_R^T \sigma_{\mu
u} P_R \nu\right]$ T_qR1R

$$B^0 \to D^{(*)} \mu \nu$$

- Strategies considered:
- Measure directly Wilson Coefficients
- Measure angular coefficients (depend on amplitudes - q² dependence) which relate to the Wilson Coefficients

$$\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{d}d\cos\theta_{\ell}d\chi} \propto I_{1c}\cos^{2}\theta_{d} + I_{1s}\sin^{2}\theta_{d} \\ + \left[I_{2c}\cos^{2}\theta_{d} + I_{2s}\sin^{2}\theta_{d}\right]\cos2\theta_{\ell} \\ + \left[I_{6c}\cos^{2}\theta_{d} + I_{6s}\sin^{2}\theta_{d}\right]\cos\theta_{\ell} \\ + \left[I_{3}\cos2\chi + I_{9}\sin2\chi\right]\sin^{2}\theta_{\ell}\sin^{2}\theta_{d} \\ + \left[I_{4}\cos\chi + I_{8}\sin\chi\right]\sin2\theta_{\ell}\sin2\theta_{d} \\ + \left[I_{5}\cos\chi + I_{7}\sin\chi\right]\sin\theta_{L}\sin2\theta_{d}$$

 $\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} V_{cb} \sum_i C_i \mathcal{O}_i$ $= \frac{G_F}{\sqrt{2}} V_{cb} \Big[(1 + g_V) \bar{c} \gamma_\mu b + (-1 + g_A) \bar{c} \gamma_\mu \gamma_5 b + g_S i \partial_\mu (\bar{c}b) + g_P i \partial_\mu (\bar{c}\gamma_5 b) + g_T i \partial^\nu (\bar{c}i \sigma_{\mu\nu} b) + g_T 5 i \partial^\nu (\bar{c}i \sigma_{\mu\nu} \gamma_5 b) \Big]$ $= \frac{\bar{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell + h.c.$

Current	WC Tag	WC	$4\text{-}\mathrm{Fermi}/(i2\sqrt{2}V_{cb}G_F)$
SM	M SM 1 [ā		$\left[ar{c}\gamma^{\mu}P_{L}b ight]\left[ar{\ell}\gamma_{\mu}P_{L} u ight]$
Vector	V_qLlL	$\chi^V_L\lambda^V_L$	$\left[ar{c}\chi^V_L\gamma^\mu P_Lb ight]\left[ar{\ell}\lambda^V_L\gamma_\mu P_L u ight]$
	V_qR1L	$\chi^V_R\lambda^V_L$	$\left[ar{c}\chi^V_R\gamma^\mu P_Rb ight]\left[ar{\ell}\lambda^V_L\gamma_\mu P_L u ight]$
	V_qL1R	$\chi^V_L\lambda^V_R$	$\left[ar{c}\chi^V_L\gamma^\mu P_Lb ight]\left[ar{\ell}\lambda^V_R\gamma_\mu P_R u ight]$
	V_qR1R	$\chi^V_R\lambda^V_R$	$\left[ar{c}\chi^V_R\gamma^\mu P_Rb ight]\left[ar{\ell}\lambda^V_R\gamma_\mu P_R u ight]$
	S_qLlL	$\chi^S_L\lambda^S_L$	$ig[ar{c}\chi^S_L P_L big]ig[ar{\ell}\lambda^S_L P_L uig]$
	S_qR1L	$\chi^S_R\lambda^S_L$	$ig[ar{c}\chi^S_R P_R big]ig[ar{\ell}\lambda^S_L P_L uig]$
	S_qL1R	$\chi^S_L \lambda^S_R$	$ig[ar{c}\chi^S_L P_L big]ig[ar{\ell}\lambda^S_R P_R uig]$
	S_qR1R	$\chi^S_R\lambda^S_R$	$ig[ar{c}\chi^S_R P_R big]ig[ar{\ell}\lambda^S_R P_R uig]$
Topgor	T_qL1L	$\chi^T_L\lambda^T_L$	$\left[ar{c}\chi_{L}^{T}\sigma^{\mu u}P_{L}b ight]\left[ar{\ell}\lambda_{L}^{T}\sigma_{\mu u}P_{L} u ight]$
Tensor	T_qR1R	$\chi^T_R\lambda^T_R$	$\left[ar{c}\chi_{R}^{T}\sigma^{\mu u}P_{R}b ight]\left[ar{\ell}\lambda_{R}^{T}\sigma_{\mu u}P_{R} u ight]$

An angular analysis of $B^0 \to D^{(*)} \mu \nu$

- Extract directly Wilson Coefficients and FF parameters from fit to data
- Shape analysis only no attempt to measure $\left|V_{cb}
 ight|$, lose sensitivity to yield changes
- To be considered also as benchmark study/measurement

An angular analysis of $B^0 \to D^{(*)} \mu \nu$

- Extract directly Wilson Coefficients and FF parameters from fit to data
- Shape analysis only no attempt to measure $|V_{cb}|$, lose sensitivity to yield changes
- To be considered also as benchmark study/measurement

- B→D**µv description using BLR parametrisation (<u>arxiv:1711.03110</u>, <u>Phys. Rev. D 95</u>, <u>014022 (2017)</u>) and parameter values from R(D) vs R(D*)
- Despite the small contribution, care needed to choose
 B→D*τν model (and evaluating impact of the choice)
- Data-driven techniques when possible (background from misidentified particles, random track combinations)

 $B^0 \rightarrow D_{\mu}^* \mu \nu$
 $B \rightarrow D^* X$
 $B^0 \rightarrow (D1(H)^+ \rightarrow D^*X) \mu \nu$
 $B^0 \rightarrow (D1(2420)^+ \rightarrow D^*X) \mu \nu$
 $B^0 \rightarrow (D2(2460)^{*+} \rightarrow D^*X) \mu \nu$
 $B^+ \rightarrow (D1(2430)^0 \rightarrow D^*X) \mu \nu$
 $B^+ \rightarrow (D1(2420)^0 \rightarrow D^*X) \mu \nu$
 $B^+ \rightarrow (D2(2460)^{*0} \rightarrow D^*X) \mu \nu$
 $B \rightarrow D^{**}(2S) \mu \nu$
 $B^0 \rightarrow D^* \tau \nu$
 $B \rightarrow D^{**} \tau \nu$
 Combinatorial
 MisID
 $B_s \rightarrow Ds1 \mu \nu$
 $B_s \rightarrow Ds2^* \mu \nu$
 WSOS

Hadronic Form Factors

SM fits: using CLN (<u>Nuclear Physics B 530 (1998) 153-181</u>), BGL (<u>Phys.Rev. D56</u> (1997) 6895-6911) and BLPR parametrisations

Precision comparable (Run1 only) to latest B-factory measurements (Phys. Rev. D 100, 052007 (2019), Phys. Rev. Lett. 123, 091801 (2019)), and increased (as expected) wrt LHCb R(D*) measurement on same dataset

CLN		Expected sensitivity (stat)
	Parameter	with Run1 dataset
	ΔR1	1.42E-02
	ΔR2	1.20E-02
	Δρ^2	1.70E-02

Parameter	with Run1 dataset statistics
Δa0	6E-05
∆a1	4E-03
∆a2	8E-02
∆b1	6E-04
∆b2	1E-02
∆c1	7E-05
Δc2	1E-03
∆d0	9E-04

Expected sensitivity (stat)

19/04/2022

BGL

Hadronic Form Factors

- Using BLPR parametrisation for SM and NP fits
- Incorporates HQET predictions that relate the FFs for NP matrix elements to the SM ones
- Calculations by Bernlochner *et. al.* Phys. Rev. D 95, 115008 (2017), using both the leading and $O(\Lambda_{QCD}/m_b)$ sub-leading Isgur-Wise function starting values for fit parameters from fit in Phys. Rev. D 95, 115008 (2017) without any experimental inputs
- Intended approach (at least from HAMMER) was SM fit to B→D*µv and use FF HQET parameters as input for NP fit to B→D*τv
- High statistics B→D*µv analysis still useful - need for BGL and CLN + NP in HAMMER
- Need to see how to present the results (e.g. NP+Hadr ? etc)

Parameter	Starting value	with Run1 dataset statistics		
$\bar{ ho}_*^2$	1.24+/-0.08	0.02-0.08		
$\hat{\chi_2}(1)$	-0.06+/-0.02	O(0.1)		
$\hat{\chi_2}'(1)$	0.0+/-0.02	0.2-1.0		
$\hat{\chi_3}'(1)$	0.05+/-0.02	fixed *		
$\eta(1)$	0.30+/-0.04	0.1-0.2		
$\eta'(1)$	-0.05+/-0.10	~1		
V_{20}	7.5	1-10		

* depending on different NP scenario

Expected sensitivity (stat)*

* large correlation between $\Delta \chi 3$ and $\Delta \rho ^2$

New Physics Wilson Coefficients

- Ideally no assumption about the NP structure (Eur. Phys. J. C 80, 883 (2020))
- In practice easier searches for specific NP models (e.g. Bhattacharya et. al. JHEP 05 (2019) <u>191</u>)
- Studied different NP scenarios (plan to report fit results for each)

Expected (stat -

	Run1) unce	rtainty			
WC floating i	in fit	VqRIL	VqLlL	SqRIL (SqLIL)	TqLlL
	VqRIL	$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-2}) \\ \mathcal{R}e \ \mathcal{O}(10^{-2}) \end{array}$			
	VqLlL		$\begin{array}{ccc} \mathcal{I}m \ \mathcal{O}(10^{-1}) \\ \mathcal{R}e \ \end{array}$		
	SqRlL (SqLlL)			$\mathcal{I}m \ \mathcal{O}(10^{-1})$ $\mathcal{R}e \ \mathcal{O}(10^{-2})$	
Uncertainties increase,	TqLlL				$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-3}) \\ \mathcal{R}e \ \mathcal{O}(10^{-3}) \end{array}$
generally within same order of magnitude,	VqRlL+VqLlL+ SqRlL+ TqLlL	$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-2}) \\ \mathcal{R}e \ \mathcal{O}(10^{-2}) \end{array}$	$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-1}) \\ \mathcal{R}e \end{array} \end{array}$	$\begin{array}{c} \mathcal{I}m \mathcal{O}(10^{-1}) \\ \mathcal{R}e \mathcal{O}(10^{-1}) \end{array}$	$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-3}) \\ \mathcal{R}e \ \mathcal{O}(10^{-3}) \end{array}$

$B^0 \to D^{(*)} \tau \nu$

- Ideally shape + rate analysis, i.e. R(D) vs R(D*) determination simultaneous to WC
- Sensitivity studies need to include the full set of (at times poorly known) backgrounds
- Additional observables can be used to constrain NP contributions while preparing/in addition to simultaneous R(D) vs R(D*) and angular analyses (e.g. D* polarisation, measured by Belle $F_L^{D^*} = 0.60 \pm 0.08(\text{stat}) \pm 0.04(\text{syst}) \text{ arXiv:1903.03102}, \ldots$)

$B^0 \to D^{(*)} \tau \nu$

- Ideally shape + rate analysis, i.e. R(D) vs R(D*) determination simultaneous to WC
- Sensitivity studies need to include the full set of (at times poorly known) backgrounds
- Better angular resolutions when using 3-prong hadronic tau decays

18

- Angular analyses of SL decays are possible at LHCb ...
- ... with different challenges with respect to the B factories
- Started developing these analyses from the semi-muonic decays
- More leptons, observables, b-hadrons to come!

Back-up

Semileptonic decays

