$|V_{cb}|$ at LHCb (with B_s^0 decays)

Mirco Dorigo (INFN Trieste)

Challenges in SL B decays, 19-23 April 2022

Content

Back in 2020, $|V_{cb}|$ from LHCb [PRD 101 (2020) 072004] just released, was perfect timing for Barolo! No longer "new" today: presented several times, discussed/exploited in a number of phenological analyses.

Will refresh key experimental aspects of the LHCb measurement.

Disclaimer: might not be updated with latest @LHCb (I'm in Belle 2 now!)

$|V_{ch}|$ at LHCb, really?

- Could provide new information using other *b* hadron than $B^{0/+}$. Different system, different uncertainties.
- Had hundred thousands of SL B_s^0 decays in Run I.
- We just need a good normalisation to measure a precise branching fraction and do it differential.

Phys. Rev. D 97, 054502 (2018)

Lattice QCD calculation of the $B_{(s)} \to D^*_{(s)} \ell \nu$ form factors at zero recoil and implications for $|V_{cb}|$

Judd Harrison,^{1, a} Christine T. H. Davies,² and Matthew Wingate¹ (HPQCD Collaboration), ^b

¹Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK ²SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

Our result for the $B_s \to D_s^*$ form factor is the first complete calculation of $h_{A_1}^s(1)$. In the future, measurements of the exclusive decays with a strange spectator, $B_s \to D_s^{(*)} \ell \nu$, could also provide a constraint on V_{cb} . LHCb has reconstructed $B_s^0 \to D_s^{*-} \mu^+ \nu_{\mu}$ decays 70]. Eventually, with properly normalized branching fractions, these will also provide a method of constraining $V_{cb}|.$

Signal and normalisation

- Decays $B^0_{(s)} \to D^-_{(s)}(\to K^+K^-\pi^-) \mu^+ \nu_{\mu} X$: $B_{\rm s}^0$ signal and B^0 normalisation.
- Trigger on displaced μ with p_T> 1.8 GeV.
- $D_{(s)}^{-}$ good-quality vertex, displaced from PV.
- Project back the $D_{(s)}^-$ to cross the μ and form a good-quality displaced vertex.
- $m(K^+K^-)$ 20 MeV around ϕ .

 $D_{(s)}$ vertex O(2mm) $B_{(s)}$ vertex O(1cm)Primary Vertex

SZK $D^{-}\mu^{+}$ candidates (Normalisation

$272K D_s^-\mu^+$ candidates (Signal)

Sample composition

Sample components

 $D_s^-\mu^+$

$D^{-}\mu^{+}$

$$B_s^0
ightarrow D_s^- (
ightarrow K^+ K^- \pi^-) \mu$$

 $B_s^0
ightarrow D_s^- \mu^+
u_\mu$ signal
 $B_s^0
ightarrow D_s^{*-} \mu^+
u_\mu$ signal
 B_s^0 feed-down
 B_s^0 semitauonic decays
doubly charmed final st
 B cross-feed

$$\begin{array}{l} B^0 \rightarrow D^- (\rightarrow K^+ K^- \pi^-) \mu \\ B^0 \rightarrow D^- \mu^+ \nu_\mu \text{ signal} \\ B^0 \rightarrow D^{*-} \mu^+ \nu_\mu \text{ signal} \\ B^0 \text{ feed-down} \\ B^0 \text{ semitauonic decays} \\ B^+ \text{ decays} \end{array}$$

	Efficiency $[10^{-3}]$	Fraction [%]
$+\nu_{\mu}X$		
an a di kata da pakan kata kata ara ara	0.481 ± 0.002	30
	0.429 ± 0.001	60
	0.282 ± 0.002	$\mathcal{O}(5)$
	0.070 ± 0.002	< 1
tates	0.067 ± 0.001	2
	0.130 ± 0.001	2
$+\nu_{\mu}X$		
•	0.307 ± 0.001	50
	0.293 ± 0.001	30
	0.104 ± 0.001	9
	0.030 ± 0.001	< 1
	0.054 ± 0.001	9

Note: $D^*_{(s)}$ decays not reconstructed

90% signal decays

Corrected mass

 $p_{\perp}(D^-_{(s)}\mu^+)$

The variable $p_{\perp}(D_{s})$

Take the momentum of the D_s transverse to the B_s direction, $p_{\perp}(D_s)$. Fully reconstructed. Good gaussian resolution (about 120 MeV), same for $B_{\rm s}^0 \to D_{\rm s}^-$ and $B_{\rm s}^0 \to D_{\rm s}^{*-}$.

Semilauonic + Cross-feed

 $m_{\rm corr} \, [{\rm GeV}/c^2]$

$p_{\perp}(D_{s}^{-})$ correlation with w

Highly correlated with recoil W, it retains the component of the W^*

momentum invariant with respect to the *B* boost. Provides sensitivity to FF.

10

Sensitivity to form factors

For illustration, dependence on ho^2 in the CLN parametrisation.

External input (theory)

Use LQCD data for B_s decays to constraint FF

- $B_s \rightarrow D_s^* \mu v$ at w=1 [PRD 99 (2019) 114512]
- $B_s \rightarrow D_s \mu v$ calculations on the full q^2 range [PRD 101 (2020) 074513]
- HPQCD data improve statistical precision on V_{cb} by 20% (50%) for CLN (BGL)
- Checked that FF fitted from data w/o constraints are compatible with values from LQCD

Parameter	Value						
$\eta_{ m EW}$	1.0066 ± 0.0050						
$h_{A_1}(1)$	0.902 ± 0.013						
CLN param	etrization						
$\mathcal{G}(0)$	1.07 ± 0.04						
$\rho^2(D_s^-)$	1.23 ± 0.05						
BGL parametrization							
$\mathcal{G}(0)$	1.07 ± 0.04						
d_1	-0.012 ± 0.008						
d_2	-0.24 ± 0.05						

External input (experimental)

To obtain B_{c}^{0} branching fractions and get $|V_{ch}|$ from measured signal-tonormalisation ratio of yields (and efficiencies).

f_s/f_d measured by LHCb, updated in PRD104 (2021) 032005 with precision improved by $\sim 40\%$:

 $f_s/f_d \mathscr{B}(D_s^- \to K^+ K^- \pi^-) \tau = 0.0199 \pm 0.0005 \,\mathrm{ps}$

Branching-fractions and V_{ch}

$$\mathcal{B}(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu}) = (2.40 \pm \mathcal{B}(B_{s}^{0} \to D_{s}^{*-}\mu^{+}\nu_{\mu}) = (5.19 \pm \mathcal{B}(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu}) = 0.464 \pm \mathcal{B}(B_{s}^{0} \to D_{s}^{*-}\mu^{+}\nu_{\mu}) = 0.464 \pm \mathcal{B}(B_{s}^{0} \to D_{s}^{*-}\mu^{+}\nu_{\mu})$$

 $|V_{cb}|_{CLN} = (40.8 \pm 0.6(\text{stat}) \pm 0.9(\text{syst}) \pm 1.1(\text{ext})) \times 10^{-3}$ $|V_{cb}|_{\text{RGL}} = (41.7 \pm 0.8(\text{stat}) \pm 0.9(\text{syst}) \pm 1.1(\text{ext})) \times 10^{-3}$

and background contamination.

- $\pm 0.12(\text{stat}) \pm 0.15(\text{syst}) \pm 0.12(\text{ext}))\%$
- $0.24(stat) \pm 0.47(syst) \pm 0.19(ext))\%$
- $\pm 0.013(\text{stat}) \pm 0.043(\text{syst})$

Systematic uncertainty dominated by knowledge of $D_{(s)} \rightarrow KK\pi$ Dalitz structure

14

Form-factor results

CLN parametrisation

Parameter	Value
$\mathcal{G}(0)$	$1.102 \pm 0.034 (\mathrm{stat}) \pm 0.00$
$ ho^2(D_s^-)$	$1.27 \pm 0.05 \text{ (stat)} \pm 0.00$
$ ho^2(D_s^{*-})$	$1.23 \pm 0.17 \text{ (stat)} \pm 0.01$
$R_1(1)$	$1.34 \pm 0.25 \text{ (stat)} \pm 0.02$
$R_2(1)$	$0.83 \pm 0.16 \text{ (stat)} \pm 0.01$

BGL parametrisation (order 2-111)

Parameter		Ι	Value
$\mathcal{G}(0)$	1.097	± 0.034	$(\text{stat}) \pm 0.001$
d_1	-0.017	± 0.007	$(\text{stat}) \pm 0.001$
d_2	-0.26	± 0.05	$(\text{stat}) \pm 0.00$
b_1	-0.06	± 0.07	$(\text{stat}) \pm 0.01$
a_0	0.037	± 0.009	$(\text{stat}) \pm 0.001$
a_1	0.28	± 0.26	$(\text{stat}) \pm 0.08$
c_1	0.0031	± 0.0022	$2(\mathrm{stat})\pm0.000$

Parameters definition in backup

Supporting the form factors

- Measure the w distribution for $B_s^0 \to D_s^{*-} \mu^+ \nu_{\mu}$ decays.
- Independent data set (Run II). Fully reconstruct the $D_s^{*-} \rightarrow D_s^- \gamma$ by selecting the soft photon in a cone around the D_s flight direction.

w distribution for $B_s^0 \to D_s^{*-} \mu^+ \nu_\mu$

- Use a MVA based algorithm to approximate w[JHEP 02 (2017) 021].
- Fit the corrected mass in bins of the approximate *w*.
- Unfold efficiency and resolution.
- Good agreement of the measured distribution w.r.t. form factors measured in the $|V_{cb}|$ analysis

JHEP 12 (2020) 144

17

Could $p_1(D_s)$ data be used?

- Several phenomenological analyses generate $d\Gamma/dw$ from fit results.
- Could $p_{\perp}(D_{\rm s})$ data be directly used?
- LHCb provides $p_{\perp}(D_s)$ resolutions and efficiencies. Once a theoretical prediction of $p_{\perp}(D_s)$ is provided, can fold in experimental effects and compare (or fit) to LHCb data.*

*all provided by LHCb as root macros at https://cds.cern.ch/record/2706102/files/

Determining the $p_{\perp}(D_s)$ distributions

- Consider $B_s^0 \to D_s^- \mu^+ \nu_\mu$. In the B_s^0 rest frame, define an arbitrary direction \hat{z}

$$p_{\perp}(D_s) = m_{D_s} \sqrt{w^2 - 1} \sin \alpha$$

- Consider \hat{z} along B^0_s momentum in the lab frame, $p_{\perp}(D_s)$ is invariant.
- Angle α is not measured, integrate over all possible value ($\cos \alpha$ uniform in [-1,1] since B_s^0 is spin 0)
- Can obtain $p_{\perp}(D_s)$ distribution from $d\Gamma/dw$

In preparation

- Similar calculations for $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ decays, but $p_{\perp}(D_s)$ depends also on helicity angle $\cos heta_{D_s}$ when the D_s^* decays is not reconstructed.
- Work in progress (A. Di Canto, M.D., F. Ferrari, S. Jaiswal, N. Soumitra, S. Patra) to reanalyse $p_{\perp}(D_s)$ data (together with LHCb w measurement and new lattice data).

Conclusion

- Proved that $|V_{ch}|$ could be accessed also in hadron collisions. Need synergies with B-factories (to get precise normalisation). model of $D_{(s)} \to KK\pi$ decays, knowledge of D_s^{**} ...
- On the other hand, form-factor studies (w distribution, helicity angles?) testbeds for calculations (not only for B_s^0 decays).
- Could study baryons too. Λ_h analyses ongoing.

Measurement systematically limited: need to improve on f_s/f_d , BR and Dalitz

statistically limited. Could improve with Run 3 data and provide excellent

Reminder of the signal parameters, along with $|V_{cb}|$, in the CLN model

$$\begin{array}{l} \textbf{B} \rightarrow \textbf{D}^{*} \mu \textbf{v} &= \underbrace{h_{A_{1}}(1)}_{R_{1}(w)} = \underbrace{h_{A_{1}}(1)}_{R_{1}(w)} \left[1 - 8\rho^{2}z + (53\rho^{2} - 15)z^{2} - (231\rho^{2} - 91)z^{3}\right], \\ R_{1}(w) = \underbrace{R_{1}(1)}_{R_{1}(w)} + 0.12(w - 1) + 0.05(w - 1)^{2}, \\ R_{2}(w) = \underbrace{R_{2}(1)}_{R_{2}(w)} + 0.11(w - 1) - 0.06(w - 1)^{2}, \\ \textbf{B} \rightarrow \textbf{D} \mu \textbf{v} & \mathcal{G}(z) = \underbrace{\mathcal{G}(0)}_{R_{2}(1)} \left[1 - 8\rho^{2}z + (51\rho^{2} - 10)z^{2} - (252\rho^{2} - 84)z^{3}\right] & \begin{array}{c} \textbf{3} \text{ constrained} \\ \textbf{from LQCD} \end{array}$$

CLN reminder

Results - CLN

- Fit $\chi^2/ndf = 279/285$, p-value of 58%.
- Statistical uncertainties include those on the templates (MC sample size).
- $|V_{cb}|$ in agreement with both exclusive and inclusive determinations from B decays.
- FF in agreement with those from B decays.

24

2.5

BGL reminder

Signal parameters, along with $|V_{cb}|$, in the BGL model _

 $B \rightarrow D \mu \nu$

$$f_{+}(z) = \frac{1}{P_{1^{-}}(z)\phi(z)} \sum_{n=0}^{2} d_{n}z^{n}$$
$$d_{0} = \frac{1+r}{2\sqrt{r}} \mathcal{G}(0)P_{1^{-}}(0)\phi(0)$$

G(0), d1, d2 constrained from LQCD

4 free parameters and 4 parameters constrained from LQCD

$$B \to D^* \mu v$$

$$f(z) = \frac{1}{P_{1+}(z)\phi_f(z)} \sum_{n=0}^{1} b_n z^n, \qquad b_0 = 2\sqrt{m_B m_{D^*}} P_{1+}(0) \phi_f(0) h_{AB}$$

$$g(z) = \frac{1}{P_{1-}(z)\phi_g(z)} \sum_{n=0}^{1} a_n z^n,$$

$$\mathcal{F}_1(z) = \frac{1}{P_{1+}(z)\phi_{\mathcal{F}_1}(z)} \sum_{n=0}^{1} c_n z^n. \qquad c_0 = (m_B - m_{D^*}) \frac{\phi_{\mathcal{F}_1}(0)}{\phi_f(0)} b_0$$

$$h_{A_1}(1) \text{ constrained from LQCD}$$

$$b_{1, a_0, a_1, c_1 \text{ free parameters}}$$
1111

Results - BGL

Parameter	Value								
$ V_{cb} [10^{-3}]$ $\mathcal{G}(0)$ d_1 d_2	$42.3 \\ 1.097 \\ -0.017 \\ -0.26 \\ 0.06$	$\pm 0.8 \\ \pm 0.034 \\ \pm 0.007 \\ \pm 0.05 \\ \pm 0.07$	$(\text{stat}) \pm 1.2$ $(\text{stat}) \pm 0.001$ $(\text{stat}) \pm 0.001$ $(\text{stat}) \pm 0.00$						
b_1 a_0 a_1 c_1	-0.06 0.037 0.28 0.0031	± 0.07 ± 0.009 ± 0.26 ± 0.0022	$(\text{stat}) \pm 0.01$ $(\text{stat}) \pm 0.001$ $(\text{stat}) \pm 0.08$ $2 (\text{stat}) \pm 0.000$						

- Configuration BGL 2-111, for D_s up to order z^2 , for D_s * all 3 serie to order z (b_0 and c_0 set by $h_{A_1}(1)$).
- Fit $\chi^2/ndf = 276/284$, p-value of 63%.
- V_{cb} in agreement with both exclusive and inclusive determinations from B decays.

GeV/cper 0.115 Candidates

 GeV/c^2

-

 \mathbf{C}

$$\begin{split} f(z) &= \frac{1}{P_{1+}(z)\phi_{f}(z)} \sum_{n=0}^{\infty} b_{n} z^{n} ,\\ g(z) &= \frac{1}{P_{1-}(z)\phi_{g}(z)} \sum_{n=0}^{\infty} a_{n} z^{n} ,\\ \mathcal{F}_{1}(z) &= \frac{1}{P_{1+}(z)\phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{\infty} c_{n} z^{n} . \end{split} \qquad \begin{array}{l} \mathcal{F} \to \mathcal{D}^{*} \mu \mathcal{V} \\ \mathcal{F}_{2}(z) &= \frac{1}{P_{2}} \sqrt{2} \\ \phi_{\mathcal{F}_{2}}(z) &= \frac{4r}{m_{B}^{3}} \sqrt{2} \\ \phi_{\mathcal{F}_{2}}(z) &= \frac{4r}{m_{B}^{3}} \sqrt{2} \\ \end{array}$$
 $f_{+}(z) = \frac{1}{P_{1-}(z)\phi(z)} \sum_{n=0}^{\infty} d_{n} z^{n} \qquad \mathbf{B} \rightarrow \mathbf{D} \mu \mathbf{V} \qquad \phi(z) = \frac{8r^{2}}{m_{B}} \sqrt{3r}$ Parameters

Blaschke factors	J^P	Pole mass $[\text{GeV}/c^2]$
$P_{1\pm}(z) = C_{1\pm} \prod_{k=1}^{\text{poles}} \frac{z - z_k}{1 - z z_k}$	1-	6.329 6.920 7.020 7.280
$z_k = (\sqrt{t_+ - m_k^2} - \sqrt{t_+ - t}) / (\sqrt{t_+ - m_k^2} + \sqrt{t_+ - t})$	1+	$6.739 \\ 6.750 \\ 7.145$
$t_{\pm} = (m_B \pm m_{D^*})^2$		7.150

BGL details

Phase space factors

$$\begin{split} &\sqrt{\frac{n_I}{3\pi\tilde{\chi}_{1^+}(0)}} \frac{(1+z)\sqrt{(1-z)^3}}{[(1+r)(1-z)+2\sqrt{r}(1+z)]^4}, \\ &\sqrt{\frac{n_I}{3\pi\tilde{\chi}_{1^-}(0)}} \frac{(1+z)^2}{\sqrt{(1-z)}[(1+r)(1-z)+2\sqrt{r}(1+z)]^4} \\ &\sqrt{\frac{n_I}{6\pi\tilde{\chi}_{1^+}(0)}} \frac{(1+z)\sqrt{(1-z)^5}}{[(1+r)(1-z)+2\sqrt{r}(1+z)]^5}, \end{split}$$

$$\sqrt{\frac{8n_I}{3\pi\tilde{\chi}_{1-}(0)}}\frac{(1+z)^2\sqrt{1-z}}{[(1+r)(1-z)+2\sqrt{r}(1+z)]^5}}$$

$$\begin{split} &\sum_{n=0}^{\infty} a_n^2 \leqslant 1 \,, \\ &\sum_{n=0}^{\infty} (b_n^2 + c_n^2) \leqslant 1 \\ &\sum_{n=0}^{\infty} d_n^2 < 1 \\ &n=0 \end{split}$$

$$b_{0} = 2\sqrt{m_{B}m_{D^{*}}} P_{1+}(0) \phi_{f}(0)$$

$$c_{0} = (m_{B} - m_{D^{*}}) \frac{\phi_{\mathcal{F}_{1}}(0)}{\phi_{f}(0)} b_{0}$$

$$c_{0} = (m_{B} - m_{D^{*}}) \frac{\phi_{\mathcal{F}_{1}}(0)}{\phi_{f}(0)} b_{0}$$

$$d_{0} = \frac{1 + r}{2\sqrt{r}} \mathcal{G}(0) P_{1-}(0) \phi(0)$$

$$d_{0} = \frac{1 + r}{2\sqrt{r}} \mathcal{G}(0) P_{1-}(0) \phi(0)$$
Only for B_s, 0 for B⁰
Only for B_s, 1 for B⁰

CLN vs BGL

- No significant difference found in the results of V_{cb} between CLN and BGL.
- Address correlation by bootstrapping 1K times the data and fitting them with both configurations
- Background-subtracted distributions of p_{\perp} show no significant difference either.

BGL variations

- Different BGL configurations tried to assess stability of $|V_{cb}|$ result. _
- For $B_s \rightarrow D_s \mu \nu$ decays, keep always order z^2 (from LQCD constraints). _
- led to poor fit quality (lower orders) or degraded sensitivity (higher orders).

shift in Veb confirmed with toys

Parameter	2-110
$ V_{cb} [10^{-3}]$	$41.67 \pm 1.31(0.57)$
b_1	$-0.008 \pm 0.039(0.038)$
b_2	
a_0	$0.0380 \pm 0.0082(0.0078)$
a_1	
c_1	$0.0046 \pm 0.0016(0.0016)$
d_1	-0.0176 ± 0.0074
d_2	-0.259 ± 0.047
$\mathcal{G}(0)$	1.102 ± 0.034
$\mathcal{F}(1)$	0.899 ± 0.013
χ^2/dof	277/285
Probability	0.62

Change the order of the series of $B_s \rightarrow D_s^* \mu v$ decays. Not shown: discarded configurations which

110 2-111 2-210 (57) $42.24 \pm 1.41(0.79)$ $42.26 \pm 1.43(0.80)$ (38) $-0.060 \pm 0.069(0.068)$ $-0.153 \pm 0.090(0.094)$ $1.9 \pm 1.5(1.4)$ $0.0374 \pm 0.0086(0.0086)$ $0.046 \pm 0.011(0.011)$ (78) $0.28 \pm 0.27(0.26)$ $0.0031 \pm 0.0023(0.0022)$ 16) $0.0029 \pm 0.0021(0.0020)$ 074 -0.0172 ± 0.0075 -0.0165 ± 0.0075 047 -0.256 ± 0.047 -0.254 ± 0.047 034 1.097 ± 0.034 1.094 ± 0.034 013 0.900 ± 0.013 0.901 ± 0.013 275/284276/284'285

0.63

Nominal

0.64

Ratio of BR

- between signal and reference decays (and all other inputs).

$$\mathcal{R} \equiv \frac{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)}{\mathcal{B}(B^0 \to D^- \mu^+ \nu_\mu)}$$
$$\mathcal{R}^* \equiv \frac{\mathcal{B}(B_s^0 \to D_s^{*-} \mu^+ \nu_\mu)}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_\mu)}$$

Parametrise the signal yields in terms of ratio of branching fraction

FF are shape parameters of the templates (found same values as in the fit for $|V_{cb}|$). CLN used (BGL as a systematic uncertainty).

 $= 1.09 \pm 0.05 \,(\text{stat}) \pm 0.05 \,(\text{ext})$

 $= 1.06 \pm 0.05 \,(\text{stat}) \pm 0.05 \,(\text{ext})$

	Uncertainty														
Source	CLN parametrization				BGL parametrization										
	$ V_{cb} $ [10 ⁻³]	$\rho^2(D_s^-) \\ [10^{-1}]$	$\mathcal{G}(0)$ [10 ⁻²]	$ \rho^2(D_s^{*-}) \\ [10^{-1}] $	$R_1(1)$ [10 ⁻¹]	$R_2(1)$ [10 ⁻¹]	$ V_{cb} $ [10 ⁻³]	d_1 [10 ⁻²]	d_2 [10 ⁻¹]	$\mathcal{G}(0)$ [10 ⁻²]	b_1 [10 ⁻¹]	c_1 [10 ⁻³]	a_0 [10 ⁻²]	a_1 [10 ⁻¹]	$\mathcal{R}\\[10^{-1}]$
$f_s/f_d \times \mathcal{B}(D_s^- \to K^+ K^- \pi^-)(\times \tau)$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4
$\mathcal{B}(D^- \to K^- K^+ \pi^-)$	0.5	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3
$\mathcal{B}(D^{*-} \to D^- X)$	0.2	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.2	0.0	0.3	
$\mathcal{B}(B^0 \to D^- \mu^+ \nu_\mu)$	0.4	0.0	0.3	0.1	0.2	0.1	0.5	0.1	0.0	0.1	0.1	0.4	0.1	0.7	
$\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_\mu)$	0.3	0.0	0.2	0.1	0.1	0.1	0.2	0.0	0.0	0.1	0.1	0.3	0.1	0.4	
$m(B^0_s),m(D^{(*)-})$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	—
$\eta_{ m EW}$	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	—
$h_{A_1}(1)$	0.3	0.0	0.2	0.1	0.1	0.1	0.3	0.0	0.0	0.1	0.1	0.3	0.1	0.5	—
External inputs (ext)	1.2	0.0	0.4	0.1	0.2	0.1	1.2	0.1	0.0	0.1	0.1	0.6	0.1	0.8	0.5
$D^{(s)} \to K^+ K^- \pi^- \text{ model}$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5
Background	0.4	0.3	2.2	0.5	0.9	0.7	0.1	0.5	0.2	2.3	0.7	2.0	0.5	2.0	0.4
Fit bias	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.2	0.4	0.2	0.4	0.0
Corrections to simulation	0.0	0.0	0.5	0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0
Form-factor parametrization		_	_	_	—	_		_	_	_	_	_	_	_	0.0
Experimental (syst)	0.9	0.3	2.2	0.5	0.9	0.7	0.9	0.5	0.2	2.3	0.7	2.1	0.5	2.0	0.6
Statistical (stat)	0.6	0.5	3.4	1.7	2.5	1.6	0.8	0.7	0.5	3.4	0.7	2.2	0.9	2.6	0.5

Systematics (all)

MC vs bkg-subtracted data for $D_s \rightarrow KK\pi$ and $D \rightarrow KK\pi$ decays

m(KK) requirement

Subleading terms

For $B_s \rightarrow D_s^* \mu \nu$ decays, p_{\parallel} has some (little) sensitivity to $cos(D,\mu)$, giving possibility to access R_1 and R_2 form factors.

