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Content

Back in 2020, from LHCb [PRD 101 (2020) 072004] just released, 
was perfect timing for Barolo! No longer “new” today: presented several 
times, discussed/exploited in a number of phenological analyses.   

Will refresh key experimental aspects of the LHCb measurement.    

Disclaimer: might not be updated with latest @LHCb (I’m in Belle 2 now!)
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 at LHCb, really?|Vcb |

• Could provide new information using  
other  hadron than . Different 
system, different uncertainties.    

• Had hundred thousands of SL  
decays in Run I. 

• We just need a good normalisation 
to measure a precise branching 
fraction and do it differential. 

b B0/+

B0
s

3

Lattice QCD calculation of the B(s) ! D⇤
(s)`⌫ form factors at zero recoil and

implications for |Vcb|
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We present results of a lattice QCD calculation of B ! D
⇤ and Bs ! D

⇤
s axial vector matrix

elements with both states at rest. These zero recoil matrix elements provide the normalization
necessary to infer a value for the CKM matrix element |Vcb| from experimental measurements of
B̄

0
! D

⇤+
`
�

⌫̄ and B̄
0
s ! D

⇤+
s `

�
⌫̄ decay. Results are derived from correlation functions computed

with highly improved staggered quarks (HISQ) for light, strange, and charm quark propagators,
and nonrelativistic QCD for the bottom quark propagator. The calculation of correlation functions
employs MILC Collaboration ensembles over a range of three lattice spacings. These gauge field
configurations include sea quark e↵ects of charm, strange, and equal-mass up and down quarks.
We use ensembles with physically light up and down quarks, as well as heavier values. Our main
results are F

B!D⇤
(1) = 0.895± 0.010stat ± 0.024sys and F

Bs!D⇤
s (1) = 0.883± 0.012stat ± 0.028sys.

We discuss the consequences for |Vcb| in light of recent investigations into the extrapolation of
experimental data to zero recoil.

I. INTRODUCTION

Precise measurements of quark flavour-changing inter-
actions o↵er one way to uncover physics beyond the Stan-
dard Model. As successful as the Standard Model ap-
pears to be so far, there will continue to be progress
reducing experimental and theoretical uncertainties, as
well as making new measurements. Existing tensions in
the global fits to the Cabibbo-Kobyashi-Maskawa (CKM)
parameters may become outright inconsistencies, or new
measurements of rare decays may di↵er significantly from
Standard Model predictions.

Measurements of the exclusive semileptonic decay
B̄0

! D⇤+`�⌫̄ provided the first estimations of the mag-
nitude of CKM matrix element Vcb [1–16]. This channel
still provides one of three precise methods of determin-
ing |Vcb|. Measurements for the di↵erential branching
fraction are fit to a function of q2, the lepton invariant
mass-squared, and extrapolated to the zero-recoil point
(maximum q2). Then lattice QCD results for the rel-
evant hadronic matrix element are used to infer |Vcb|.
The most recent HFLAV experimental average [17] com-
bined with the Fermilab/MILC lattice result [18] gives
|Vcb| = (38.71 ± 0.47exp ± 0.59th) ⇥ 10�3.

Measurements of the inclusive b ! c decays B !

Xc`⌫, combined with an operator product expansion of-
fer a complementary method. The latest estimate is
|Vcb| = (42.21±0.78)⇥10�3 [19, 20]. The discrepancy be-
tween the inclusive and exclusive result described above
is at the 3� level.

Recently it has been suggested that the inclu-
sive/exclusive di↵erence could be due to model-

ajgihh2@cam.ac.uk
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dependence implicit in extrapolating experimental data
for B ! D⇤`⌫ to the zero recoil point. The CLN
parametrization [21] has been used in recent analyses
since it takes advantage of heavy quark symmetries to
improve unitarity constraints in the form factor shape
function. This had several advantages for some time, but
with increased precision in the experimental data, it is
possible that uncertainties arising from these constraints
are no longer negligible. In fact, recent work [22–27] has
shown that replacing the CLN parametrization by the
BGL parametrization [28] yields a determination of |Vcb|

which is as much as 10% higher, in much better agree-
ment with the |Vcb| from inclusive decays.

One can also use the exclusive decay B ! D`⌫ to es-
timate |Vcb|. Historically this has not given as precise
a determination due to having to contend with back-
ground from B ! D⇤`⌫. Recent progress has come
from new measurements and joint fits to experimental
and lattice [29, 30] data over a range of q2 using so-
called z-parametrizations [31, 32]. The latest result using
B ! D`⌫ results is |Vcb| = (40.85 ± 0.98) ⇥ 10�3 [33],
in acceptable agreement with either the B ! D⇤`⌫ or
B ! Xc`⌫ determinations.

It is worth noting that a determination of |Vcb| is im-
portant beyond semileptonic b ! c decays. Due to in-
su�cient direct knowledge of the top-strange coupling,
Standard Model predictions which depend on Vts rely on
CKM unitarity, and therefore on Vcb. For example the
K0-K̄0 mixing parameter ✏K depends sensitively on Vcb;
taking sin 2� as an input, then ✏K / |Vcb|

4 at leading
order [34].

In this article we present the details and results of a
lattice calculation of the zero-recoil form factor needed
to extract |Vcb| from experimental measurements of the
B ! D⇤`⌫ and Bs ! D⇤

s`⌫ decay rates. This work
di↵ers from the Fermilab/MILC calculation [18] in the
following respects: (1) the gauge field configurations are
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II, after which the the precision of |Vcb| from B ! D⇤`⌫
is likely to be much improved. Lattice QCD data away
from zero recoil will also help reduce the uncertainties.
Preliminary results from the Fermilab/MILC collabora-
tion were presented at the Lattice 2017 conference [69].

Our result for the Bs ! D⇤
s form factor is the first

complete calculation of hs
A1

(1). In the future, measure-
ments of the exclusive decays with a strange specta-

tor, Bs ! D(⇤)
s `⌫, could also provide a constraint on

|Vcb|. LHCb has reconstructed B0

s ! D⇤�
s µ+⌫µ decays

[70]. Eventually, with properly normalized branching
fractions, these will also provide a method of constraining
|Vcb|.

Spectator quark mass e↵ects are bounded by our cal-
culation of the ratio hs

A1
(1)/hA1

(1) and its consistency
with unity. We find deviations from d $ s symmetry in
the zero recoil B(s) ! D⇤

(s) form factors to be no more

than 2-3%.
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Signal and normalisation

- Decays : 

 signal and  normalisation. 

- Trigger on displaced  with pT> 1.8 GeV. 

-  good-quality vertex, displaced from PV.  

- Project back the  to cross the  and form 
a good-quality displaced vertex.  

-  20 MeV around .

B0
(s) → D−

(s)( → K+K−π−) μ+ νμ X
B0

s B0

μ

D−
(s)

D−
(s) μ

m(K+K−) ϕ

μ

K ν

Primary  
Vertex

B(s)   
vertex 

O(1cm)

O(2mm)

D(s)   
vertex

π

K

4
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Sample composition
Table 8: Expected approximate composition of the inclusive
B

0
s ! D

�
s (! K

+
K

�
⇡
�)µ+

⌫µX and B
0 ! D

�(! K
+
K

�
⇡
�)µ+

⌫µX samples in terms of
the two signal modes and of the dominant background components. Together with the
expected fraction, the total selection e�ciency of each component is also reported.

Sample components E�ciency Fraction
[10�3] [%]

B
0
s ! D

�
s (! K

+
K

�
⇡
�)µ+

⌫µX

B
0
s ! D

�
s µ

+
⌫µ signal 0.481 ± 0.002 30

B
0
s ! D

⇤�
s µ

+
⌫µ signal 0.429 ± 0.001 60

B
0
s feed-down 0.282 ± 0.002 O(5)

B
0
s semitauonic decays 0.070 ± 0.002 < 1

doubly charmed final states 0.067 ± 0.001 2
B cross-feed 0.130 ± 0.001 2

B
0 ! D

�(! K
+
K

�
⇡
�)µ+

⌫µX

B
0 ! D

�
µ
+
⌫µ signal 0.307 ± 0.001 50

B
0 ! D

⇤�
µ
+
⌫µ signal 0.293 ± 0.001 30

B
0 feed-down 0.104 ± 0.001 9

B
0 semitauonic decays 0.030 ± 0.001 < 1

B
+ decays 0.054 ± 0.001 9

a non-resonant combination of a D
(⇤)�
(s) with pions that are considered in the analysis.347

In the B
0 case, such backgrounds are expected to contribute about 9% of the inclusive348

sample. Their composition reflects what considered in several other LHCb analyses (e.g.,349

Ref. [25]) when modelling the inclusive sample of semileptonic B
0 decays, and it is mostly350

based on experimental measurements as discussed in Ref. [26]. As for the signal modes,351

the D
⇤� is forced to decay to a D

� with either a ⇡
0 (about 95% of the times) or a � (for352

the remaining 5%) and the D� is forced to decay to either the K+
K

�
⇡
� or K+

⇡
�
⇡
� final353

state with the full Dalitz structure for both cases.354

Less experimental information is available for B0
s decays of the same type that contribute355

to the B0
s sample. An overview of the observed and predicted D

⇤⇤�
s states is shown in Fig. 8.356

The thresholds above which D
⇤⇤�
s states decay strongly to DK or D⇤

K final states are357

also reported. The backgrounds considered in the analysis are limited to the semimuonic358

decays of the B
0
s meson to the two lightest states, D⇤�

s0 (2317) and D
�
s1(2460), and to359

the D
�
s1(2536) state, which, despite being above the DK

⇤ threshold, has been observed360

to decay to D
�
s ⇡

+
⇡
� and D

�
s � [28]. The D

⇤�
s0 (2317) is required to decay to D

�
s ⇡

0; the361

D
�
s1(2460) to D

�
s � (branching fraction 0.0337), D⇤�

s ⇡
0 (0.097), D�

s ⇡
+
⇡
� (0.0077), D�

s ⇡
0
⇡
0

362

(0.0038), D�
s �� (0.008), and D

⇤�
s � (0.008).363

The D
⇤�
s is required to decay to a D

�
s with either a ⇡

0 (with ⇠ 6% probability) or a364

� (with ⇠ 94% probability) and the D
�
s is forced to decay to the K

+
K

�
⇡
� final state365

with the full Dalitz structure. Branching fractions of these semimuonic B
0
s decays are not366

20

 
sample
D−

s μ+

 
sample
D−μ+

90%  
signal 
decays

Note:  decays not reconstructedD*(s) 6



Corrected mass
B direction well measured using primary 
and decay vertexes. Can recover the 
missing-mass transverse to the  
B direction.

7

daniele.manuzzi@cern.ch Measurement of with  decays|Vcb| B0
s → D(*)−

s μ+ νμ
Lake Louise WI  
Feb.  11th 2020

• Previous LHCb analyses have shown this 
observable to be able to discriminate 
signal and background components
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The variable p⊥(Ds)
Take the momentum of the Ds transverse to the Bs direction, .  
Fully reconstructed. Good gaussian resolution (about 120 MeV),  
same for  and . 

p⊥(Ds)

B0
s → D−

s B0
s → D*−

s

8
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 correlation with p⊥(D−
s ) w

Highly correlated with recoil , it retains the component of the W* 
momentum invariant with respect to the B boost. Provides sensitivity to FF. 
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External input (theory)

Table 3: External inputs based on experimental measurements.

Parameter Value Reference

fs/fd ⇥ B(D�
s ! K

�
K

+
⇡
�)⇥ ⌧ [ps] 0.0191± 0.0008 [22,48]

B(D� ! K
�
K

+
⇡
�) 0.00993± 0.00024 [37]

B(D⇤� ! D
�
X) 0.323± 0.006 [37]

B(B0 ! D
�
µ
+
⌫µ) 0.0231± 0.0010 [37]

B(B0 ! D
⇤�
µ
+
⌫µ) 0.0505± 0.0014 [37]

B
0
s mass [GeV/c2] 5.36688± 0.00017 [37]

D
�
s mass [GeV/c2] 1.96834± 0.00007 [37]

D
⇤�
s mass [GeV/c2] 2.1122± 0.0004 [37]

Table 4: External inputs based on theory calculations. The values and their correlations are
derived in Appendix A, based on Ref. [21].

Parameter Value Reference

⌘EW 1.0066± 0.0050 [24]
hA1(1) 0.902± 0.013 [16]

CLN parametrization
G(0) 1.07± 0.04 [21]
⇢
2(D�

s ) 1.23± 0.05 [21]

BGL parametrization
G(0) 1.07± 0.04 [21]
d1 �0.012± 0.008 [21]
d2 �0.24± 0.05 [21]

7 Fit to the signal sample

The fit function for the D
�
s µ

+ sample features five components: the two signal de-
cays, B0

s ! D
�
s µ

+
⌫µ and B

0
s ! D

⇤�
s µ

+
⌫µ; a background component made by the sum

of semimuonic B
0
s feed-down decays and b-hadron decays to a doubly charmed final

state; a background component made by the sum of cross-feed semileptonic B
0 decays

and semitauonic B
0
s decays; combinatorial background. The B

0
s ! D

⇤�
s µ

+
⌫µ template

is generated assuming a fraction of approximately 94% for D⇤�
s ! D

�
s � decays and 6%

for D⇤�
s ! D

�
s ⇡

0 decays, according to the measured D
⇤�
s branching fractions [37]. The

physics background components that are merged together in the two templates have very
similar shapes in the mcorr vs. p?(D�

s ) plane and cannot be discriminated by the fit when
considered as separate components. They are therefore merged according to the expected
approximate fractions.

The yields of the five components are free parameters in the fit, with the signal
yields expressed in terms of the parameters of interest according to Eq. (33), when
determining |Vcb|, or Eq. (37), when determining R(⇤). The measurement relies on the
external inputs reported in Tables 3 and 4. Correlations between external inputs, e.g.,
between Nref and N

⇤
ref or between the LQCD inputs, are accounted for in the fit. The
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FIG. 8: Final result for fs

0,+(q2) against q2 at the physical
point .

lattice masses.

As discussed in Section II E an alternative approach to
the fit is to take ratios of the form factors to the Hc de-
cay constant and fit the ratios to the fit form of Eqs. (27)
and (29). This fit is described in Appendix B. It has the
advantage of smaller discretisation e↵ects but the dis-
advantage of larger lattice spacing uncertainties because
the ratios being fit are dimensionful. In the end the ra-
tio method has larger uncertainty for the final physical
form factors. We therefore take the results from the di-
rect method as our final result, and use the ratio method
results as a consistency test. Since the two approaches
have quite di↵erent systematic errors, their comparison
supplies a strong consistency check. In Figure 10, we
plot the form factors from the two methods on top of
each other. As is clear from this plot, the results are in
good agreement. The direct method gives a more accu-
rate result for both form factors and at all q

2.

We compare the coe�cients from our fits to unitarity
bounds in Appendix C as a further test.

In Figure 11, we compare our final form factors to those
determined from the lattice QCD calculation using the
NRQCD approach for the b quark already used as a com-
parison at q

2
max in Figure 4 [35]. The NRQCD calcula-

tion works directly at the b quark mass but on relatively
coarse lattices and hence is unable to obtain results at
large physical momenta for the Ds meson. The results
close to zero-recoil are extrapolated to q

2 = 0 using a z-
space parameterisation. As the Figure shows, our results
are in excellent agreement with the NRQCD calculation
but are more precise for both f

s

0 (q2) and f
s

+(q2) through-
out all q

2. This is because we can avoid the significant
systematic uncertainty that the NRQCD calculation has
from the perturbative matching to continuum QCD of
the NRQCD current that couples to the W .

FIG. 9: Error budget for fs

0,+(q2) as a function of q2 .

Source % Fractional Error

Statistics 1.11

z-space fit 1.05

Quark Mass Mistuning 0.12

Total 1.54

TABLE VII: Error budget for our result for R(Ds) in the
SM. z-space fit refers to the error associated with the fit of
the dependence on heavy quark mass and lattice spacing and
interpolation in q2.

A. R(Ds)

Using our calculated form factors f
s

0,+(q2), we can cal-
culate the di↵erential rate for Bs ! Ds`⌫ decay from
Equation (1). This is a function of the lepton mass and
so di↵ers between the heavy ⌧ and the light e, µ leptons.
The di↵erential rate for µ and ⌧ is compared in Figure 12.
We take the meson and lepton masses needed for Equa-

HPQCD collaboration

Use LQCD data for Bs decays to constraint FF 

- Bs→Ds*μν at w=1 [PRD 99 (2019) 114512]   

- Bs→Dsμν calculations on the full q2 range  
[PRD 101 (2020) 074513] 

- HPQCD data improve statistical precision on     
|Vcb| by 20% (50%) for CLN (BGL) 

- Checked that FF fitted from data w/o 
constraints are compatible with values  
from LQCD
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External input (experimental)

fs/fd measured by LHCb,  
updated in PRD104 (2021) 032005 
with precision improved by ~40%: 

fs/fd ℬ(D−
s → K+K−π−) τ = 0.0199 ± 0.0005 ps
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Table 3: External inputs based on experimental measurements.

Parameter Value Reference

fs/fd ⇥ B(D�
s ! K

�
K

+
⇡
�)⇥ ⌧ [ps] 0.0191± 0.0008 [22,48]

B(D� ! K
�
K

+
⇡
�) 0.00993± 0.00024 [37]

B(D⇤� ! D
�
X) 0.323± 0.006 [37]

B(B0 ! D
�
µ
+
⌫µ) 0.0231± 0.0010 [37]

B(B0 ! D
⇤�
µ
+
⌫µ) 0.0505± 0.0014 [37]

B
0
s mass [GeV/c2] 5.36688± 0.00017 [37]

D
�
s mass [GeV/c2] 1.96834± 0.00007 [37]

D
⇤�
s mass [GeV/c2] 2.1122± 0.0004 [37]

Table 4: External inputs based on theory calculations. The values and their correlations are
derived in Appendix A, based on Ref. [21].

Parameter Value Reference

⌘EW 1.0066± 0.0050 [24]
hA1(1) 0.902± 0.013 [16]

CLN parametrization
G(0) 1.07± 0.04 [21]
⇢
2(D�

s ) 1.23± 0.05 [21]

BGL parametrization
G(0) 1.07± 0.04 [21]
d1 �0.012± 0.008 [21]
d2 �0.24± 0.05 [21]

7 Fit to the signal sample

The fit function for the D
�
s µ

+ sample features five components: the two signal de-
cays, B0

s ! D
�
s µ

+
⌫µ and B

0
s ! D

⇤�
s µ

+
⌫µ; a background component made by the sum

of semimuonic B
0
s feed-down decays and b-hadron decays to a doubly charmed final

state; a background component made by the sum of cross-feed semileptonic B
0 decays

and semitauonic B
0
s decays; combinatorial background. The B

0
s ! D

⇤�
s µ

+
⌫µ template

is generated assuming a fraction of approximately 94% for D⇤�
s ! D

�
s � decays and 6%

for D⇤�
s ! D

�
s ⇡

0 decays, according to the measured D
⇤�
s branching fractions [37]. The

physics background components that are merged together in the two templates have very
similar shapes in the mcorr vs. p?(D�

s ) plane and cannot be discriminated by the fit when
considered as separate components. They are therefore merged according to the expected
approximate fractions.

The yields of the five components are free parameters in the fit, with the signal
yields expressed in terms of the parameters of interest according to Eq. (33), when
determining |Vcb|, or Eq. (37), when determining R(⇤). The measurement relies on the
external inputs reported in Tables 3 and 4. Correlations between external inputs, e.g.,
between Nref and N

⇤
ref or between the LQCD inputs, are accounted for in the fit. The
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To obtain  branching fractions and get from measured signal-to-
normalisation ratio of yields (and efficiencies).

B0
s |Vcb |
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Systematic uncertainty dominated by knowledge of D(s)→KKπ Dalitz structure 
and background contamination. 

Branching-fractions and |Vcb |

ℬ(B0
s → D−

s μ+νμ) = (2.40 ± 0.12(stat) ± 0.15(syst) ± 0.12(ext)) %

ℬ(B0
s → D*−

s μ+νμ) = (5.19 ± 0.24(stat) ± 0.47(syst) ± 0.19(ext)) %

ℬ(B0
s → D−

s μ+νμ)
ℬ(B0

s → D*−
s μ+νμ)

= 0.464 ± 0.013(stat) ± 0.043(syst)

|Vcb |CLN = (40.8 ± 0.6(stat) ± 0.9(syst) ± 1.1(ext)) × 10−3

|Vcb |BGL = (41.7 ± 0.8(stat) ± 0.9(syst) ± 1.1(ext)) × 10−3



Form-factor results
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Figure 5: Distribution of (left) mcorr and (right) p?(D�
s ) for the inclusive sample of signal D�

s µ
+

candidates, with fit projections based on the CLN parametrization overlaid. The projections of
the two physics background components are merged together for displaying purposes.

Table 5: Fit results in the CLN parametrization. The uncertainty is split into two contributions,
statistical (stat) and that due to the external inputs (ext).

Parameter Value

|Vcb| [10�3] 41.4 ± 0.6 (stat)± 1.2 (ext)
G(0) 1.102± 0.034 (stat)± 0.004 (ext)
⇢
2(D�

s ) 1.27 ± 0.05 (stat)± 0.00 (ext)
⇢
2(D⇤�

s ) 1.23 ± 0.17 (stat)± 0.01 (ext)
R1(1) 1.34 ± 0.25 (stat)± 0.02 (ext)
R2(1) 0.83 ± 0.16 (stat)± 0.01 (ext)

to the values obtained in Appendix A using Ref. [21], with d0 expressed in terms of the
parameter G(0) using Eq. (32). No constraints from the unitarity bounds of Eqs. (23) and
(31) are imposed, to avoid potential biases on the parameters or fit instabilities due to
convergence at the boundary of the parameter space.

The fit has minimum �
2/ndf of 276/284, corresponding to a p-value of 63%. Figure 6

shows a comparison of the p?(D�
s ) background-subtracted distributions obtained with

the CLN and BGL fits. No significant di↵erences are found between the two fits for
both B

0
s ! D

�
s µ

+
⌫µ and B

0
s ! D

⇤�
s µ

+
⌫µ decays. The fit results for the parameters of

interest are reported in Table 6. Detailed fit results for all parameters, including their
correlations, are reported in Appendix B. The values found for the form-factor coe�cients
satisfy the unitarity bounds of Eqs. (23) and (31). The value of |Vcb| is found to be
(42.3± 0.8 (stat)± 1.2 (ext))⇥ 10�3, in agreement with the CLN analysis. The correlation
between the BGL and CLN results is 34.0%. When only G(0) is constrained and d1 and d2

are left free, |Vcb| is found to be (42.2± 1.5 (stat)± 1.2 (ext))⇥ 10�3. The constraints on
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s ) for the inclusive sample of signal D�

s µ
+

candidates, with fit projections based on the CLN parametrization overlaid. The projections of
the two physics background components are merged together for displaying purposes.

Table 5: Fit results in the CLN parametrization. The uncertainty is split into two contributions,
statistical (stat) and that due to the external inputs (ext).

Parameter Value

|Vcb| [10�3] 41.4 ± 0.6 (stat)± 1.2 (ext)
G(0) 1.102± 0.034 (stat)± 0.004 (ext)
⇢
2(D�

s ) 1.27 ± 0.05 (stat)± 0.00 (ext)
⇢
2(D⇤�

s ) 1.23 ± 0.17 (stat)± 0.01 (ext)
R1(1) 1.34 ± 0.25 (stat)± 0.02 (ext)
R2(1) 0.83 ± 0.16 (stat)± 0.01 (ext)

to the values obtained in Appendix A using Ref. [21], with d0 expressed in terms of the
parameter G(0) using Eq. (32). No constraints from the unitarity bounds of Eqs. (23) and
(31) are imposed, to avoid potential biases on the parameters or fit instabilities due to
convergence at the boundary of the parameter space.

The fit has minimum �
2/ndf of 276/284, corresponding to a p-value of 63%. Figure 6

shows a comparison of the p?(D�
s ) background-subtracted distributions obtained with

the CLN and BGL fits. No significant di↵erences are found between the two fits for
both B

0
s ! D

�
s µ

+
⌫µ and B

0
s ! D

⇤�
s µ

+
⌫µ decays. The fit results for the parameters of

interest are reported in Table 6. Detailed fit results for all parameters, including their
correlations, are reported in Appendix B. The values found for the form-factor coe�cients
satisfy the unitarity bounds of Eqs. (23) and (31). The value of |Vcb| is found to be
(42.3± 0.8 (stat)± 1.2 (ext))⇥ 10�3, in agreement with the CLN analysis. The correlation
between the BGL and CLN results is 34.0%. When only G(0) is constrained and d1 and d2

are left free, |Vcb| is found to be (42.2± 1.5 (stat)± 1.2 (ext))⇥ 10�3. The constraints on
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Figure 6: Background-subtracted distribution of p?(D�
s ) for (left) B

0
s ! D�

s µ
+⌫µ and (right)

B0
s ! D⇤�

s µ+⌫µ decays obtained from the fit based on the (red closed points, dashed line) CLN
and (blue open points, solid line) BGL parametrizations, with corresponding fit projections
overlaid.

Table 6: Fit results in the BGL parametrization. The uncertainty is split into two contributions,
statistical (stat) and that due to the uncertainty on the external inputs (ext).

Parameter Value

|Vcb| [10�3] 42.3 ± 0.8 (stat)± 1.2 (ext)
G(0) 1.097 ± 0.034 (stat)± 0.001 (ext)
d1 �0.017 ± 0.007 (stat)± 0.001 (ext)
d2 �0.26 ± 0.05 (stat)± 0.00 (ext)
b1 �0.06 ± 0.07 (stat)± 0.01 (ext)
a0 0.037 ± 0.009 (stat)± 0.001 (ext)
a1 0.28 ± 0.26 (stat)± 0.08 (ext)
c1 0.0031± 0.0022 (stat)± 0.0006 (ext)

d1 and d2 improve the statistical precision on |Vcb| by about 50% and that on G(0) by 10%.
Without such constraints, the fit returns d1 = 0.02± 0.05 (stat) and d2 = �0.9± 0.8 (stat),
both in agreement with the LQCD estimations, and within the unitarity bound of Eq. (31).

Variations of the orders of the form-factor expansions have been probed for the
B

0
s ! D

⇤�
s µ

+
⌫µ decay, while for the B

0
s ! D

�
s µ

+
⌫µ decay the expansion is kept at or-

der z
2 to exploit the constraints on d1 and d2. A first alternative fit, where only the

order zero of the g series is considered by fixing a1 to zero, returns a p-value of 62%
and |Vcb| = (41.7± 0.6 (ext)± 1.2 (ext))⇥ 10�3, in agreement with the nominal result
of Table 6. The shift in the central value of |Vcb| is consistent with that observed in
pseudoexperiments where data are generated by using the nominal truncation and fit
with the zero-order expansion of g. In a second alternative fit, g is kept at order zero
and f is expanded at order z

2, by adding the coe�cient b2 as a free parameter. The
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s ! D�

s µ
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B0
s ! D⇤�

s µ+⌫µ decays obtained from the fit based on the (red closed points, dashed line) CLN
and (blue open points, solid line) BGL parametrizations, with corresponding fit projections
overlaid.

Table 6: Fit results in the BGL parametrization. The uncertainty is split into two contributions,
statistical (stat) and that due to the uncertainty on the external inputs (ext).

Parameter Value

|Vcb| [10�3] 42.3 ± 0.8 (stat)± 1.2 (ext)
G(0) 1.097 ± 0.034 (stat)± 0.001 (ext)
d1 �0.017 ± 0.007 (stat)± 0.001 (ext)
d2 �0.26 ± 0.05 (stat)± 0.00 (ext)
b1 �0.06 ± 0.07 (stat)± 0.01 (ext)
a0 0.037 ± 0.009 (stat)± 0.001 (ext)
a1 0.28 ± 0.26 (stat)± 0.08 (ext)
c1 0.0031± 0.0022 (stat)± 0.0006 (ext)

d1 and d2 improve the statistical precision on |Vcb| by about 50% and that on G(0) by 10%.
Without such constraints, the fit returns d1 = 0.02± 0.05 (stat) and d2 = �0.9± 0.8 (stat),
both in agreement with the LQCD estimations, and within the unitarity bound of Eq. (31).

Variations of the orders of the form-factor expansions have been probed for the
B
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s µ

+
⌫µ decay, while for the B

0
s ! D
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s µ

+
⌫µ decay the expansion is kept at or-

der z
2 to exploit the constraints on d1 and d2. A first alternative fit, where only the

order zero of the g series is considered by fixing a1 to zero, returns a p-value of 62%
and |Vcb| = (41.7± 0.6 (ext)± 1.2 (ext))⇥ 10�3, in agreement with the nominal result
of Table 6. The shift in the central value of |Vcb| is consistent with that observed in
pseudoexperiments where data are generated by using the nominal truncation and fit
with the zero-order expansion of g. In a second alternative fit, g is kept at order zero
and f is expanded at order z

2, by adding the coe�cient b2 as a free parameter. The
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- Measure the  distribution for  decays.  

- Independent data set (Run II). Fully reconstruct the  by selecting 
the soft photon in a cone around the Ds flight direction.     

w B0
s → D*−

s μ+νμ

D*−
s → D−

s γ
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Supporting the form factors
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https://link.springer.com/article/10.1007/JHEP12(2020)144
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- Use a MVA based algorithm  
to approximate   
[JHEP 02 (2017) 021].  

- Fit the corrected mass  
in bins of the approximate . 

- Unfold efficiency and resolution.  

- Good agreement of the measured 
distribution w.r.t. form factors 
measured in the |Vcb| analysis

w
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 distribution for w B0
s → D*−

s μ+νμ
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JHEP 12 (2020) 144

https://link.springer.com/article/10.1007/JHEP02(2017)021
https://arxiv.org/abs/2003.08453
https://link.springer.com/article/10.1007/JHEP12(2020)144
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- Several phenomenological analyses 
generate  from fit results. 

- Could  data be directly used? 

- LHCb provides  resolutions 
and efficiencies. Once a theoretical 
prediction of  is provided, 
can fold in experimental effects and 
compare (or fit) to LHCb data.* 

dΓ/dw

p⊥(Ds)

p⊥(Ds)

p⊥(Ds)
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*all provided by LHCb as root macros at https://cds.cern.ch/record/2706102/files/

B0
s → D*s μνμ

B0
s → Dsμνμ

18

https://arxiv.org/abs/2003.08453
https://cds.cern.ch/record/2706102/files/
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- Consider . In the  rest 
frame, define an arbitrary direction  

  

- Consider  along  momentum in the lab 
frame,  is invariant. 

- Angle  is not measured, integrate over all 
possible value (  uniform in  
since  is spin 0)  

- Can obtain  distribution from  

B0
s → D−

s μ+νμ B0
s
̂z

̂z B0
s

p⊥(Ds)

α
cos α [−1,1]

B0
s

p⊥(Ds) dΓ/dw

Determining the  distributionsp⊥(Ds)

p⊥(Ds) = mDs
w2 − 1 sin α

0 0.5 1 1.5 2 2.5
]c) [GeV/s

−D  (p
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035)) s−
D

  (p
/d

Γ
) (

d
Γ

(1
/

IMSAPIDR
Prediction

Figure 1: Distribution of p?(D�
s ) obtained using the method described in the text (black points)

and from a simulation of B0
s ! D�

s µ
+⌫µ decays generated with B0

s mesons having momentum

distribution in the laboratory frame as expected at LHCb (red line). The same arbitrary model

of the decay form-factors is used in both cases.

when ẑ is aligned with the B
0

s momentum in the laboratory frame. Eq. (32) provides

the relation between p?(D
�
s ) and wDs (or q

2
). By definition, p?(D

�
s ) is independent on

the B
0

s flight direction, i.e. its relation with wDs and its distribution are invariant with

respect to the B
0

s boost. It follows that there is no need to know the distribution of the

B
0

s momentum in the laboratory frame to derive the p?(D
�
s ) distribution.

It should be noted that there is no one-to-one correspondence between p?(D
�
s ) and

the recoil variable, as for the same value of wDs , di↵erent p?(D
�
s ) values can be obtained

depending on the value of sin↵. Hence, for a fixed value of the recoil variable there will be

a range of values available for p?(D
�
s ) depending on the orientation of the D

�
s momentum

with respect to ẑ. From the kinematic boundary on wDs it follows that the maximum

allowed value for p?(D
�
s ) is obtained for wDs = w

max

Ds
and sin↵ = 1 and corresponds to

about 2322MeV/c for B
0

s ! D
�
s µ

+
⌫µ decays.

The B
0

s meson is a pseudoscalar which decays isotropically. Hence, the distribution of

cos↵ is uniform between �1 and 1. Thus, within the physically allowed range of wDs , the

distribution of p?(D
�
s ) can be derived using Eqs. (25) and (32). The di↵erential decay

rate d�/dp?(D
�
s ) can be derived as

d�(B
0

s ! D
�
s µ

+
⌫µ)

dp?(D�
s )

=

Z
+1

�1

d�(B
0

s ! D
�
s µ

+
⌫µ)

dwDs

����
dwDs

dp?(D�
s )

����dcos↵ , (33)

with ����
dwDs

dp?(D�
s )

���� =
1

m
2

D�
s

p?(D
�
s )

wDs sin
2
↵
. (34)

Although an analytical computation of Eq. (33) could be attempted, a numerical integration

it is su�cient to derive the decay rate as a function of p?(D
�
s ). For a given a model of

the form-factor function G(z), the distribution of p?(D
�
s ) can be computed after sampling

the value of wDs from the di↵erential decay rate d�/dwDs and the value of cos↵ from an

uniform distribution in [�1, 1].

As an example, Fig. 1 shows the so-obtained p?(D
�
s ) distribution in comparison with

that resulting from simulated B
0

s ! D
�
s µ

+
⌫µ decays using the RapidSim package [33],

8
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- Similar calculations for   
decays, but  depends also on helicity 
angle  when the  decays is not 
reconstructed.  

- Work in progress (A. Di Canto, M.D., F. 
Ferrari, S. Jaiswal, N. Soumitra, S. Patra)  
to reanalyse  data (together with  
LHCb  measurement and new lattice data). 

B0
s → D*−

s μ+νμ
p⊥(Ds)

cos θDs
D*s

p⊥(Ds)
w

In preparation

20
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- Proved that  could be accessed also in hadron collisions.  
Need synergies with B-factories (to get precise normalisation). 
Measurement systematically limited: need to improve on , BR and Dalitz 
model of  decays, knowledge of …  

- On the other hand, form-factor studies (  distribution, helicity angles?) 
statistically limited. Could improve with Run 3 data and provide excellent 
testbeds for calculations (not only for  decays). 

- Could study baryons too.  analyses ongoing.  

|Vcb |

fs/fd
D(s) → KKπ D**s

w

B0
s

Λb

Conclusion

21
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Backup



23CLN reminder
- Reminder of the signal parameters, along with |Vcb|, in the CLN model

 
B→D*μν

B→Dμν

Table 1: Functions describing the di↵erential decay rate of B ! D⇤µ⌫ decays, separately for
the cases in which the D⇤ meson decays to D� or D⇡0.

i Hi(w)
ki(✓µ, ✓D,�)

D
⇤ ! D� D

⇤ ! D⇡
0

1 H
2
+

1
2(1 + cos2 ✓D)(1� cos ✓µ)2 sin2

✓D(1� cos ✓µ)2

2 H
2
�

1
2(1 + cos2 ✓D)(1 + cos ✓µ)2 sin2

✓D(1 + cos ✓µ)2

3 H
2
0 2 sin2

✓D sin2
✓µ 4 cos2 ✓D sin2

✓µ

4 H+H� 4 sin2
✓D sin2

✓µ cos 2� �2 sin 2✓D sin2
✓µ cos 2�

5 H+H0 sin 2✓D sin ✓µ(1� cos ✓µ) cos� �2 sin 2✓D sin ✓µ(1� cos ✓µ) cos�
6 H�H0 � sin 2✓D sin ✓µ(1 + cos ✓µ) cos� 2 sin 2✓D sin ✓µ(1 + cos ✓µ) cos�

amplitude A can be decomposed in terms of three amplitudes, H±/0(w), corresponding to
the three possible helicity states of the D

⇤ meson, and its squared modulus is written as

|A(w, ✓µ, ✓D,�)|2 =
6X

i

Hi(w)ki(✓µ, ✓D,�) , (5)

with the Hi and ki terms defined in Table 1. The helicity amplitudes are expressed by
three form factors, hA1(w), R1(w), and R2(w), as

H±/0(w) = 2

p
mBmD⇤

mB +mD⇤
(1� r

2)(w + 1)(w2 � 1)1/4hA1(w)H̃±/0(w) , (6)

with r = mD⇤/mB and

H̃±(w) =

p
1� 2wr + r2

1� r

"
1⌥

r
w � 1

w + 1
R1(w)

#
, (7)

H̃0(w) = 1 +
(w � 1)(1�R2(w))

1� r
. (8)

The CLN parametrization uses dispersion relations and reinforced unitarity bounds
based on Heavy Quark E↵ective Theory to derive simplified expressions for the form
factors that are valid within approximately 2% [2]. For the B ! D

⇤
µ⌫ case, the three

form factors are written as [2]

hA1(w) = hA1(1)
⇥
1� 8⇢2z + (53⇢2 � 15)z2 � (231⇢2 � 91)z3

⇤
, (9)

R1(w) = R1(1)� 0.12(w � 1) + 0.05(w � 1)2 , (10)

R2(w) = R2(1)� 0.11(w � 1)� 0.06(w � 1)2 , (11)

where the conformal variable z is defined as

z ⌘
p
w + 1�

p
2p

w + 1 +
p
2
. (12)

The form factors depend only on four parameters: ⇢2, R1(1), R2(1) and hA1(1).

4

Table 2: Pole masses for the B+
c resonances considered in the BGL parameterization of the B0

s

decays, with the �̃JP (0) constants of the outer functions and the CJP constants of the Blaschke
factors [8]. For B0 decays, the Blaschke factors do not include the last 1� resonance and C1±

have both unit value.

J
P Pole mass �̃JP (0) CJP

[ GeV/c2] [10�4GeV�2
c
4]

1�

6.329

5.131 2.52733
6.920
7.020
7.280

1+

6.739

3.894 2.02159
6.750
7.145
7.150

The first coe�cient of f(z), b0, is related to hA1(1) by the expression

b0 = 2
p
mBmD⇤ P1+(0)�f (0)hA1(1) , (24)

while c0 is fixed from b0 through

c0 = (mB �mD⇤)
�F1(0)

�f (0)
b0 . (25)

2.2 B ! Dµ⌫ decays

In the B ! Dµ⌫ case, the decay rate only depends upon the recoil variable w = vB · vD.
In the limit of negligible lepton masses, the di↵erential decay rate can be written as [26]

d�(B ! Dµ⌫)

dw
=

G
2
Fm

3
D

48⇡3
(mB +mD)

2
⌘
2
EW|Vcb|2(w2 � 1)3/2|G(w)|2 . (26)

In the CLN parametrization, using the conformal variable z(w) defined in Eq. (12),
the form factor G(z) is expressed in terms of its value at zero recoil, G(0), and a slope
parameter, ⇢2, as [2]

G(z) = G(0)
⇥
1� 8⇢2z + (51⇢2 � 10)z2 � (252⇢2 � 84)z3

⇤
. (27)

In the BGL parametrization, it is expressed as [3–5]

|G(z)|2 = 4r

(1 + r)2
|f+(z)|2 , (28)

with r = mD/mB and

f+(z) =
1

P1�(z)�(z)

1X

n=0

dnz
n
. (29)

6

3 floating parameters 

3 constrained  
from LQCD 
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Results — CLN
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Figure 5: Distribution of (left) mcorr and (right) p?(D�
s ) for the inclusive sample of signal D�

s µ
+

candidates, with fit projections based on the CLN parametrization overlaid. The projections of
the two physics background components are merged together for displaying purposes.

Table 5: Fit results in the CLN parametrization. The uncertainty is split into two contributions,
statistical (stat) and that due to the external inputs (ext).

Parameter Value

|Vcb| [10�3] 41.4 ± 0.6 (stat)± 1.2 (ext)
G(0) 1.102± 0.034 (stat)± 0.004 (ext)
⇢
2(D�

s ) 1.27 ± 0.05 (stat)± 0.00 (ext)
⇢
2(D⇤�

s ) 1.23 ± 0.17 (stat)± 0.01 (ext)
R1(1) 1.34 ± 0.25 (stat)± 0.02 (ext)
R2(1) 0.83 ± 0.16 (stat)± 0.01 (ext)

to the values obtained in Appendix A using Ref. [21], with d0 expressed in terms of the
parameter G(0) using Eq. (32). No constraints from the unitarity bounds of Eqs. (23) and
(31) are imposed, to avoid potential biases on the parameters or fit instabilities due to
convergence at the boundary of the parameter space.

The fit has minimum �
2/ndf of 276/284, corresponding to a p-value of 63%. Figure 6

shows a comparison of the p?(D�
s ) background-subtracted distributions obtained with

the CLN and BGL fits. No significant di↵erences are found between the two fits for
both B

0
s ! D

�
s µ

+
⌫µ and B

0
s ! D

⇤�
s µ

+
⌫µ decays. The fit results for the parameters of

interest are reported in Table 6. Detailed fit results for all parameters, including their
correlations, are reported in Appendix B. The values found for the form-factor coe�cients
satisfy the unitarity bounds of Eqs. (23) and (31). The value of |Vcb| is found to be
(42.3± 0.8 (stat)± 1.2 (ext))⇥ 10�3, in agreement with the CLN analysis. The correlation
between the BGL and CLN results is 34.0%. When only G(0) is constrained and d1 and d2

are left free, |Vcb| is found to be (42.2± 1.5 (stat)± 1.2 (ext))⇥ 10�3. The constraints on
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- Statistical uncertainties include those on the 
templates (MC sample size).  

- |Vcb| in agreement with both exclusive and 
inclusive determinations from B decays. 

- FF in agreement with those from B decays.



25BGL reminder
The BGL parametrization follows from more general arguments based on dispersion

relations, analyticity, and crossing symmetry [3–5]. In the case of B ! D
⇤
µ⌫ decays, the

form factors are written in terms of three functions, f(w), g(w) and F1(w), as follows

hA1(w) =
f(w)

p
mBmD⇤(1 + w)

, (13)

R1(w) = (w + 1)mBmD⇤
g(w)

f(w)
, (14)

R2(w) =
w � r

w � 1
� F1(w)

mB(w � 1)f(w)
. (15)

These functions are expanded as convergent power series of z as

f(z) =
1

P1+(z)�f (z)

1X

n=0

bnz
n
, (16)

g(z) =
1

P1�(z)�g(z)

1X

n=0

anz
n
, (17)

F1(z) =
1

P1+(z)�F1(z)

1X

n=0

cnz
n
. (18)

Here, the P1±(z) functions are known as Blaschke factors for the J
P = 1± resonances,

and �f,g,F1(z) are the so-called outer functions. Adopting the formalism of Ref. [25], the
Blaschke factors take the form

P1±(z) = C1±

polesY

k=1

z � zk

1� z zk
, (19)

where zk = (
p

t+ �m
2
k�

p
t+ � t�)/(

p
t+ �m

2
k+

p
t+ � t�), t± = (mB±mD⇤)2, and mk

denotes the pole masses of the k-th excited B
+
c states that are below the BD

⇤ threshold
and have the appropriate J

P quantum numbers. The constants C1± are scale factors
calculated to use in B

0
s decays the same Blasckhe factor derived for B0 decays. The outer

functions are defined as

�f (z) =
4r

m
2
B

r
nI

3⇡�̃1+(0)

(1 + z)
p

(1� z)3

[(1 + r)(1� z) + 2
p
r(1 + z)]4

, (20)

�g(z) = 16r2
r

nI

3⇡�̃1�(0)

(1 + z)2p
(1� z)[(1 + r)(1� z) + 2

p
r(1 + z)]4

, (21)

�F1(z) =
4r

m
3
B

r
nI

6⇡�̃1+(0)

(1 + z)
p

(1� z)5

[(1 + r)(1� z) + 2
p
r(1 + z)]5

, (22)

where nI = 2.6 is the number of spectator quarks (three), corrected for SU(3)-breaking
e↵ects [8]. The B+

c resonances used in the computation of the Blaschke factors, the �̃1±(0)
coe�cients of the outer functions, and the constants C1± are reported in Table 2. The
coe�cients of the series in Eqs. (16)–(18) are bound by the unitarity constraints

1X

n=0

a
2
n 6 1 ,

1X

n=0

(b2n + c
2
n) 6 1 . (23)

5

- 4 free parameters and 4 parameters constrained from LQCD 

- Signal parameters, along with |Vcb|, in the BGL model

B→D*μνB→Dμν
1

1

1

Table 2: Pole masses for the B+
c resonances considered in the BGL parameterization of the B0

s

decays, with the �̃JP (0) constants of the outer functions and the CJP constants of the Blaschke
factors [8]. For B0 decays, the Blaschke factors do not include the last 1� resonance and C1±

have both unit value.

J
P Pole mass �̃JP (0) CJP

[ GeV/c2] [10�4GeV�2
c
4]

1�

6.329

5.131 2.52733
6.920
7.020
7.280

1+

6.739

3.894 2.02159
6.750
7.145
7.150

The first coe�cient of f(z), b0, is related to hA1(1) by the expression

b0 = 2
p
mBmD⇤ P1+(0)�f (0)hA1(1) , (24)

while c0 is fixed from b0 through

c0 = (mB �mD⇤)
�F1(0)

�f (0)
b0 . (25)

2.2 B ! Dµ⌫ decays

In the B ! Dµ⌫ case, the decay rate only depends upon the recoil variable w = vB · vD.
In the limit of negligible lepton masses, the di↵erential decay rate can be written as [26]

d�(B ! Dµ⌫)

dw
=

G
2
Fm

3
D

48⇡3
(mB +mD)

2
⌘
2
EW|Vcb|2(w2 � 1)3/2|G(w)|2 . (26)

In the CLN parametrization, using the conformal variable z(w) defined in Eq. (12),
the form factor G(z) is expressed in terms of its value at zero recoil, G(0), and a slope
parameter, ⇢2, as [2]

G(z) = G(0)
⇥
1� 8⇢2z + (51⇢2 � 10)z2 � (252⇢2 � 84)z3

⇤
. (27)

In the BGL parametrization, it is expressed as [3–5]

|G(z)|2 = 4r

(1 + r)2
|f+(z)|2 , (28)

with r = mD/mB and

f+(z) =
1

P1�(z)�(z)

1X

n=0

dnz
n
. (29)

6

2

G(0), d1, d2 constrained  
from LQCD

The outer function �(z) is defined as

�(z) =
8r2

mB

s
8nI

3⇡�̃1�(0)

(1 + z)2
p
1� z

[(1 + r)(1� z) + 2
p
r(1 + z)]5

. (30)

The coe�cients of the series in Eq. (29) are bound by unitarity,

1X

n=0

d
2
n < 1 , (31)

with the coe�cient d0 being related to G(0) through

d0 =
1 + r

2
p
r
G(0)P1�(0)�(0) . (32)

3 Detector and simulation

The LHCb detector [27, 28] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < ⌘ < 5, designed for the study of particles containing b or
c quarks. The detector includes a high-precision tracking system consisting of a silicon-
strip vertex detector surrounding the pp interaction region, a large-area silicon-strip
detector located upstream of a dipole magnet with a bending power of about 4Tm, and
three stations of silicon-strip detectors and straw drift tubes placed downstream of the
magnet. The tracking system provides a measurement of the momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at
200GeV/c. The minimum distance of a track to a primary vertex, the impact parameter,
is measured with a resolution of (15 + 29/pT)µm, where pT is the component of the
momentum transverse to the beam, in GeV/c. Di↵erent types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors. Photons,
electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad
and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and multiwire proportional
chambers.

Simulation is required to model the expected sample composition and develop the
selection requirements, to calculate the reconstruction and selection e�ciencies, and to
build templates describing the distributions of signal and background decays used in
the fit that determines the parameters of interest. In the simulation, pp collisions are
generated using Pythia [29] with a specific LHCb configuration [30]. Decays of unsta-
ble particles are described by EvtGen [31], in which final-state radiation is generated
using Photos [32]. The interaction of the generated particles with the detector, and
its response, are implemented using the Geant4 toolkit [33] as described in Ref. [34].
Simulation is corrected for mismodeling of the reconstruction and selection e�ciency,
of the response of the particle identification algorithms, and of the kinematic proper-
ties of the generated B

0
(s) mesons. The corrections are determined by comparing data

and simulation in large samples of control decays, such as D
⇤+ ! D

0(! K
�
⇡
+)⇡+,

B
+ ! J/ (! µ

+
µ
�)K+, B0

s ! J/ (! µ
+
µ
�)�(! K

+
K

�), B0 ! D
�(! K

+
⇡
�
⇡
�)⇡+,

and B
0
s ! D

�
s (! K

+
K

�
⇡
�)⇡+. Residual small di↵erences between data and the cor-

rected simulation are accounted for in the systematic uncertainties.
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hA1(1) constrained from LQCD 
b1, a0, a1, c1 free parameters 

Table 2: Pole masses for the B+
c resonances considered in the BGL parameterization of the B0

s

decays, with the �̃JP (0) constants of the outer functions and the CJP constants of the Blaschke
factors [8]. For B0 decays, the Blaschke factors do not include the last 1� resonance and C1±

have both unit value.

J
P Pole mass �̃JP (0) CJP

[ GeV/c2] [10�4GeV�2
c
4]

1�

6.329

5.131 2.52733
6.920
7.020
7.280

1+

6.739

3.894 2.02159
6.750
7.145
7.150

The first coe�cient of f(z), b0, is related to hA1(1) by the expression

b0 = 2
p
mBmD⇤ P1+(0)�f (0)hA1(1) , (24)

while c0 is fixed from b0 through

c0 = (mB �mD⇤)
�F1(0)

�f (0)
b0 . (25)

2.2 B ! Dµ⌫ decays

In the B ! Dµ⌫ case, the decay rate only depends upon the recoil variable w = vB · vD.
In the limit of negligible lepton masses, the di↵erential decay rate can be written as [26]

d�(B ! Dµ⌫)

dw
=

G
2
Fm

3
D

48⇡3
(mB +mD)

2
⌘
2
EW|Vcb|2(w2 � 1)3/2|G(w)|2 . (26)

In the CLN parametrization, using the conformal variable z(w) defined in Eq. (12),
the form factor G(z) is expressed in terms of its value at zero recoil, G(0), and a slope
parameter, ⇢2, as [2]

G(z) = G(0)
⇥
1� 8⇢2z + (51⇢2 � 10)z2 � (252⇢2 � 84)z3

⇤
. (27)

In the BGL parametrization, it is expressed as [3–5]

|G(z)|2 = 4r

(1 + r)2
|f+(z)|2 , (28)

with r = mD/mB and

f+(z) =
1

P1�(z)�(z)

1X

n=0

dnz
n
. (29)
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Table 2: Pole masses for the B+
c resonances considered in the BGL parameterization of the B0

s

decays, with the �̃JP (0) constants of the outer functions and the CJP constants of the Blaschke
factors [8]. For B0 decays, the Blaschke factors do not include the last 1� resonance and C1±

have both unit value.

J
P Pole mass �̃JP (0) CJP

[ GeV/c2] [10�4GeV�2
c
4]

1�

6.329

5.131 2.52733
6.920
7.020
7.280

1+

6.739

3.894 2.02159
6.750
7.145
7.150

The first coe�cient of f(z), b0, is related to hA1(1) by the expression

b0 = 2
p
mBmD⇤ P1+(0)�f (0)hA1(1) , (24)

while c0 is fixed from b0 through

c0 = (mB �mD⇤)
�F1(0)

�f (0)
b0 . (25)

2.2 B ! Dµ⌫ decays

In the B ! Dµ⌫ case, the decay rate only depends upon the recoil variable w = vB · vD.
In the limit of negligible lepton masses, the di↵erential decay rate can be written as [26]

d�(B ! Dµ⌫)

dw
=

G
2
Fm

3
D

48⇡3
(mB +mD)

2
⌘
2
EW|Vcb|2(w2 � 1)3/2|G(w)|2 . (26)

In the CLN parametrization, using the conformal variable z(w) defined in Eq. (12),
the form factor G(z) is expressed in terms of its value at zero recoil, G(0), and a slope
parameter, ⇢2, as [2]

G(z) = G(0)
⇥
1� 8⇢2z + (51⇢2 � 10)z2 � (252⇢2 � 84)z3

⇤
. (27)

In the BGL parametrization, it is expressed as [3–5]

|G(z)|2 = 4r

(1 + r)2
|f+(z)|2 , (28)

with r = mD/mB and

f+(z) =
1

P1�(z)�(z)

1X

n=0

dnz
n
. (29)
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Figure 6: Background-subtracted distribution of p?(D�
s ) for (left) B

0
s ! D�

s µ
+⌫µ and (right)

B0
s ! D⇤�

s µ+⌫µ decays obtained from the fit based on the (red closed points, dashed line) CLN
and (blue open points, solid line) BGL parametrizations, with corresponding fit projections
overlaid.

Table 6: Fit results in the BGL parametrization. The uncertainty is split into two contributions,
statistical (stat) and that due to the uncertainty on the external inputs (ext).

Parameter Value

|Vcb| [10�3] 42.3 ± 0.8 (stat)± 1.2 (ext)
G(0) 1.097 ± 0.034 (stat)± 0.001 (ext)
d1 �0.017 ± 0.007 (stat)± 0.001 (ext)
d2 �0.26 ± 0.05 (stat)± 0.00 (ext)
b1 �0.06 ± 0.07 (stat)± 0.01 (ext)
a0 0.037 ± 0.009 (stat)± 0.001 (ext)
a1 0.28 ± 0.26 (stat)± 0.08 (ext)
c1 0.0031± 0.0022 (stat)± 0.0006 (ext)

d1 and d2 improve the statistical precision on |Vcb| by about 50% and that on G(0) by 10%.
Without such constraints, the fit returns d1 = 0.02± 0.05 (stat) and d2 = �0.9± 0.8 (stat),
both in agreement with the LQCD estimations, and within the unitarity bound of Eq. (31).

Variations of the orders of the form-factor expansions have been probed for the
B

0
s ! D

⇤�
s µ

+
⌫µ decay, while for the B

0
s ! D

�
s µ

+
⌫µ decay the expansion is kept at or-

der z
2 to exploit the constraints on d1 and d2. A first alternative fit, where only the

order zero of the g series is considered by fixing a1 to zero, returns a p-value of 62%
and |Vcb| = (41.7± 0.6 (ext)± 1.2 (ext))⇥ 10�3, in agreement with the nominal result
of Table 6. The shift in the central value of |Vcb| is consistent with that observed in
pseudoexperiments where data are generated by using the nominal truncation and fit
with the zero-order expansion of g. In a second alternative fit, g is kept at order zero
and f is expanded at order z

2, by adding the coe�cient b2 as a free parameter. The
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Parameters 

Phase space factors 

The BGL parametrization follows from more general arguments based on dispersion
relations, analyticity, and crossing symmetry [3–5]. In the case of B ! D

⇤
µ⌫ decays, the

form factors are written in terms of three functions, f(w), g(w) and F1(w), as follows

hA1(w) =
f(w)

p
mBmD⇤(1 + w)

, (13)

R1(w) = (w + 1)mBmD⇤
g(w)

f(w)
, (14)

R2(w) =
w � r

w � 1
� F1(w)

mB(w � 1)f(w)
. (15)

These functions are expanded as convergent power series of z as

f(z) =
1

P1+(z)�f (z)

1X

n=0

bnz
n
, (16)

g(z) =
1

P1�(z)�g(z)

1X

n=0

anz
n
, (17)

F1(z) =
1

P1+(z)�F1(z)

1X

n=0

cnz
n
. (18)

Here, the P1±(z) functions are known as Blaschke factors for the J
P = 1± resonances,

and �f,g,F1(z) are the so-called outer functions. Adopting the formalism of Ref. [25], the
Blaschke factors take the form

P1±(z) = C1±

polesY

k=1

z � zk

1� z zk
, (19)

where zk = (
p

t+ �m
2
k�

p
t+ � t�)/(

p
t+ �m

2
k+

p
t+ � t�), t± = (mB±mD⇤)2, and mk

denotes the pole masses of the k-th excited B
+
c states that are below the BD

⇤ threshold
and have the appropriate J

P quantum numbers. The constants C1± are scale factors
calculated to use in B

0
s decays the same Blasckhe factor derived for B0 decays. The outer

functions are defined as

�f (z) =
4r

m
2
B

r
nI

3⇡�̃1+(0)

(1 + z)
p

(1� z)3

[(1 + r)(1� z) + 2
p
r(1 + z)]4

, (20)

�g(z) = 16r2
r

nI

3⇡�̃1�(0)

(1 + z)2p
(1� z)[(1 + r)(1� z) + 2

p
r(1 + z)]4

, (21)

�F1(z) =
4r

m
3
B

r
nI

6⇡�̃1+(0)

(1 + z)
p

(1� z)5

[(1 + r)(1� z) + 2
p
r(1 + z)]5

, (22)

where nI = 2.6 is the number of spectator quarks (three), corrected for SU(3)-breaking
e↵ects [8]. The B+

c resonances used in the computation of the Blaschke factors, the �̃1±(0)
coe�cients of the outer functions, and the constants C1± are reported in Table 2. The
coe�cients of the series in Eqs. (16)–(18) are bound by the unitarity constraints

1X

n=0

a
2
n 6 1 ,

1X

n=0

(b2n + c
2
n) 6 1 . (23)
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Table 2: Pole masses for the B+
c resonances considered in the BGL parameterization of the B0

s

decays, with the �̃JP (0) constants of the outer functions and the CJP constants of the Blaschke
factors [8]. For B0 decays, the Blaschke factors do not include the last 1� resonance and C1±

have both unit value.

J
P Pole mass �̃JP (0) CJP

[ GeV/c2] [10�4GeV�2
c
4]

1�

6.329

5.131 2.52733
6.920
7.020
7.280

1+

6.739

3.894 2.02159
6.750
7.145
7.150

The first coe�cient of f(z), b0, is related to hA1(1) by the expression

b0 = 2
p
mBmD⇤ P1+(0)�f (0)hA1(1) , (24)

while c0 is fixed from b0 through

c0 = (mB �mD⇤)
�F1(0)

�f (0)
b0 . (25)

2.2 B ! Dµ⌫ decays

In the B ! Dµ⌫ case, the decay rate only depends upon the recoil variable w = vB · vD.
In the limit of negligible lepton masses, the di↵erential decay rate can be written as [26]

d�(B ! Dµ⌫)

dw
=

G
2
Fm

3
D

48⇡3
(mB +mD)

2
⌘
2
EW|Vcb|2(w2 � 1)3/2|G(w)|2 . (26)

In the CLN parametrization, using the conformal variable z(w) defined in Eq. (12),
the form factor G(z) is expressed in terms of its value at zero recoil, G(0), and a slope
parameter, ⇢2, as [2]

G(z) = G(0)
⇥
1� 8⇢2z + (51⇢2 � 10)z2 � (252⇢2 � 84)z3

⇤
. (27)

In the BGL parametrization, it is expressed as [3–5]

|G(z)|2 = 4r

(1 + r)2
|f+(z)|2 , (28)

with r = mD/mB and

f+(z) =
1

P1�(z)�(z)

1X

n=0

dnz
n
. (29)
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Blaschke factors 

The BGL parametrization follows from more general arguments based on dispersion
relations, analyticity, and crossing symmetry [3–5]. In the case of B ! D

⇤
µ⌫ decays, the

form factors are written in terms of three functions, f(w), g(w) and F1(w), as follows

hA1(w) =
f(w)

p
mBmD⇤(1 + w)

, (13)

R1(w) = (w + 1)mBmD⇤
g(w)

f(w)
, (14)

R2(w) =
w � r

w � 1
� F1(w)

mB(w � 1)f(w)
. (15)

These functions are expanded as convergent power series of z as

f(z) =
1

P1+(z)�f (z)

1X

n=0

bnz
n
, (16)

g(z) =
1

P1�(z)�g(z)

1X

n=0

anz
n
, (17)

F1(z) =
1

P1+(z)�F1(z)

1X

n=0

cnz
n
. (18)

Here, the P1±(z) functions are known as Blaschke factors for the J
P = 1± resonances,

and �f,g,F1(z) are the so-called outer functions. Adopting the formalism of Ref. [25], the
Blaschke factors take the form

P1±(z) = C1±

polesY

k=1

z � zk

1� z zk
, (19)

where zk = (
p

t+ �m
2
k�

p
t+ � t�)/(

p
t+ �m

2
k+

p
t+ � t�), t± = (mB±mD⇤)2, and mk

denotes the pole masses of the k-th excited B
+
c states that are below the BD

⇤ threshold
and have the appropriate J

P quantum numbers. The constants C1± are scale factors
calculated to use in B

0
s decays the same Blasckhe factor derived for B0 decays. The outer

functions are defined as

�f (z) =
4r

m
2
B

r
nI

3⇡�̃1+(0)

(1 + z)
p

(1� z)3

[(1 + r)(1� z) + 2
p
r(1 + z)]4

, (20)

�g(z) = 16r2
r

nI

3⇡�̃1�(0)

(1 + z)2p
(1� z)[(1 + r)(1� z) + 2

p
r(1 + z)]4

, (21)

�F1(z) =
4r

m
3
B

r
nI

6⇡�̃1+(0)

(1 + z)
p

(1� z)5

[(1 + r)(1� z) + 2
p
r(1 + z)]5

, (22)

where nI = 2.6 is the number of spectator quarks (three), corrected for SU(3)-breaking
e↵ects [8]. The B+

c resonances used in the computation of the Blaschke factors, the �̃1±(0)
coe�cients of the outer functions, and the constants C1± are reported in Table 2. The
coe�cients of the series in Eqs. (16)–(18) are bound by the unitarity constraints
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The outer function �(z) is defined as

�(z) =
8r2

mB

s
8nI

3⇡�̃1�(0)

(1 + z)2
p
1� z

[(1 + r)(1� z) + 2
p
r(1 + z)]5

. (30)

The coe�cients of the series in Eq. (29) are bound by unitarity,

1X

n=0

d
2
n < 1 , (31)

with the coe�cient d0 being related to G(0) through

d0 =
1 + r

2
p
r
G(0)P1�(0)�(0) . (32)

3 Detector and simulation

The LHCb detector [27, 28] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < ⌘ < 5, designed for the study of particles containing b or
c quarks. The detector includes a high-precision tracking system consisting of a silicon-
strip vertex detector surrounding the pp interaction region, a large-area silicon-strip
detector located upstream of a dipole magnet with a bending power of about 4Tm, and
three stations of silicon-strip detectors and straw drift tubes placed downstream of the
magnet. The tracking system provides a measurement of the momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at
200GeV/c. The minimum distance of a track to a primary vertex, the impact parameter,
is measured with a resolution of (15 + 29/pT)µm, where pT is the component of the
momentum transverse to the beam, in GeV/c. Di↵erent types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors. Photons,
electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad
and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and multiwire proportional
chambers.

Simulation is required to model the expected sample composition and develop the
selection requirements, to calculate the reconstruction and selection e�ciencies, and to
build templates describing the distributions of signal and background decays used in
the fit that determines the parameters of interest. In the simulation, pp collisions are
generated using Pythia [29] with a specific LHCb configuration [30]. Decays of unsta-
ble particles are described by EvtGen [31], in which final-state radiation is generated
using Photos [32]. The interaction of the generated particles with the detector, and
its response, are implemented using the Geant4 toolkit [33] as described in Ref. [34].
Simulation is corrected for mismodeling of the reconstruction and selection e�ciency,
of the response of the particle identification algorithms, and of the kinematic proper-
ties of the generated B

0
(s) mesons. The corrections are determined by comparing data

and simulation in large samples of control decays, such as D
⇤+ ! D

0(! K
�
⇡
+)⇡+,

B
+ ! J/ (! µ

+
µ
�)K+, B0

s ! J/ (! µ
+
µ
�)�(! K

+
K

�), B0 ! D
�(! K

+
⇡
�
⇡
�)⇡+,

and B
0
s ! D

�
s (! K

+
K

�
⇡
�)⇡+. Residual small di↵erences between data and the cor-

rected simulation are accounted for in the systematic uncertainties.
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The BGL parametrization follows from more general arguments based on dispersion
relations, analyticity, and crossing symmetry [3–5]. In the case of B ! D

⇤
µ⌫ decays, the

form factors are written in terms of three functions, f(w), g(w) and F1(w), as follows

hA1(w) =
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p
mBmD⇤(1 + w)

, (13)

R1(w) = (w + 1)mBmD⇤
g(w)

f(w)
, (14)
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. (15)

These functions are expanded as convergent power series of z as
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. (18)

Here, the P1±(z) functions are known as Blaschke factors for the J
P = 1± resonances,

and �f,g,F1(z) are the so-called outer functions. Adopting the formalism of Ref. [25], the
Blaschke factors take the form

P1±(z) = C1±
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k=1

z � zk
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, (19)

where zk = (
p

t+ �m
2
k�

p
t+ � t�)/(

p
t+ �m

2
k+

p
t+ � t�), t± = (mB±mD⇤)2, and mk
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+
c states that are below the BD

⇤ threshold
and have the appropriate J

P quantum numbers. The constants C1± are scale factors
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where nI = 2.6 is the number of spectator quarks (three), corrected for SU(3)-breaking
e↵ects [8]. The B+

c resonances used in the computation of the Blaschke factors, the �̃1±(0)
coe�cients of the outer functions, and the constants C1± are reported in Table 2. The
coe�cients of the series in Eqs. (16)–(18) are bound by the unitarity constraints
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The BGL parametrization follows from more general arguments based on dispersion
relations, analyticity, and crossing symmetry [3–5]. In the case of B ! D
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µ⌫ decays, the
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Here, the P1±(z) functions are known as Blaschke factors for the J
P = 1± resonances,

and �f,g,F1(z) are the so-called outer functions. Adopting the formalism of Ref. [25], the
Blaschke factors take the form
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where nI = 2.6 is the number of spectator quarks (three), corrected for SU(3)-breaking
e↵ects [8]. The B+

c resonances used in the computation of the Blaschke factors, the �̃1±(0)
coe�cients of the outer functions, and the constants C1± are reported in Table 2. The
coe�cients of the series in Eqs. (16)–(18) are bound by the unitarity constraints
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The BGL parametrization follows from more general arguments based on dispersion
relations, analyticity, and crossing symmetry [3–5]. In the case of B ! D
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Here, the P1±(z) functions are known as Blaschke factors for the J
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c states that are below the BD

⇤ threshold
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P quantum numbers. The constants C1± are scale factors
calculated to use in B
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s decays the same Blasckhe factor derived for B0 decays. The outer
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p
r(1 + z)]5

, (22)

where nI = 2.6 is the number of spectator quarks (three), corrected for SU(3)-breaking
e↵ects [8]. The B+

c resonances used in the computation of the Blaschke factors, the �̃1±(0)
coe�cients of the outer functions, and the constants C1± are reported in Table 2. The
coe�cients of the series in Eqs. (16)–(18) are bound by the unitarity constraints
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Table 2: Pole masses for the B+
c resonances considered in the BGL parameterization of the B0

s

decays, with the �̃JP (0) constants of the outer functions and the CJP constants of the Blaschke
factors [8]. For B0 decays, the Blaschke factors do not include the last 1� resonance and C1±

have both unit value.

J
P Pole mass �̃JP (0) CJP

[ GeV/c2] [10�4GeV�2
c
4]

1�

6.329

5.131 2.52733
6.920
7.020
7.280

1+

6.739

3.894 2.02159
6.750
7.145
7.150

The first coe�cient of f(z), b0, is related to hA1(1) by the expression

b0 = 2
p
mBmD⇤ P1+(0)�f (0)hA1(1) , (24)

while c0 is fixed from b0 through

c0 = (mB �mD⇤)
�F1(0)

�f (0)
b0 . (25)

2.2 B ! Dµ⌫ decays

In the B ! Dµ⌫ case, the decay rate only depends upon the recoil variable w = vB · vD.
In the limit of negligible lepton masses, the di↵erential decay rate can be written as [26]

d�(B ! Dµ⌫)

dw
=

G
2
Fm

3
D

48⇡3
(mB +mD)

2
⌘
2
EW|Vcb|2(w2 � 1)3/2|G(w)|2 . (26)

In the CLN parametrization, using the conformal variable z(w) defined in Eq. (12),
the form factor G(z) is expressed in terms of its value at zero recoil, G(0), and a slope
parameter, ⇢2, as [2]

G(z) = G(0)
⇥
1� 8⇢2z + (51⇢2 � 10)z2 � (252⇢2 � 84)z3

⇤
. (27)

In the BGL parametrization, it is expressed as [3–5]

|G(z)|2 = 4r

(1 + r)2
|f+(z)|2 , (28)

with r = mD/mB and

f+(z) =
1

P1�(z)�(z)

1X

n=0

dnz
n
. (29)
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The outer function �(z) is defined as

�(z) =
8r2

mB

s
8nI

3⇡�̃1�(0)

(1 + z)2
p
1� z

[(1 + r)(1� z) + 2
p
r(1 + z)]5

. (30)

The coe�cients of the series in Eq. (29) are bound by unitarity,

1X

n=0

d
2
n < 1 , (31)

with the coe�cient d0 being related to G(0) through

d0 =
1 + r

2
p
r
G(0)P1�(0)�(0) . (32)

3 Detector and simulation

The LHCb detector [27, 28] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < ⌘ < 5, designed for the study of particles containing b or
c quarks. The detector includes a high-precision tracking system consisting of a silicon-
strip vertex detector surrounding the pp interaction region, a large-area silicon-strip
detector located upstream of a dipole magnet with a bending power of about 4Tm, and
three stations of silicon-strip detectors and straw drift tubes placed downstream of the
magnet. The tracking system provides a measurement of the momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at
200GeV/c. The minimum distance of a track to a primary vertex, the impact parameter,
is measured with a resolution of (15 + 29/pT)µm, where pT is the component of the
momentum transverse to the beam, in GeV/c. Di↵erent types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors. Photons,
electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad
and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and multiwire proportional
chambers.

Simulation is required to model the expected sample composition and develop the
selection requirements, to calculate the reconstruction and selection e�ciencies, and to
build templates describing the distributions of signal and background decays used in
the fit that determines the parameters of interest. In the simulation, pp collisions are
generated using Pythia [29] with a specific LHCb configuration [30]. Decays of unsta-
ble particles are described by EvtGen [31], in which final-state radiation is generated
using Photos [32]. The interaction of the generated particles with the detector, and
its response, are implemented using the Geant4 toolkit [33] as described in Ref. [34].
Simulation is corrected for mismodeling of the reconstruction and selection e�ciency,
of the response of the particle identification algorithms, and of the kinematic proper-
ties of the generated B

0
(s) mesons. The corrections are determined by comparing data

and simulation in large samples of control decays, such as D
⇤+ ! D

0(! K
�
⇡
+)⇡+,

B
+ ! J/ (! µ

+
µ
�)K+, B0

s ! J/ (! µ
+
µ
�)�(! K

+
K

�), B0 ! D
�(! K

+
⇡
�
⇡
�)⇡+,

and B
0
s ! D

�
s (! K

+
K

�
⇡
�)⇡+. Residual small di↵erences between data and the cor-

rected simulation are accounted for in the systematic uncertainties.
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The BGL parametrization follows from more general arguments based on dispersion
relations, analyticity, and crossing symmetry [3–5]. In the case of B ! D

⇤
µ⌫ decays, the

form factors are written in terms of three functions, f(w), g(w) and F1(w), as follows

hA1(w) =
f(w)

p
mBmD⇤(1 + w)

, (13)

R1(w) = (w + 1)mBmD⇤
g(w)

f(w)
, (14)

R2(w) =
w � r

w � 1
� F1(w)

mB(w � 1)f(w)
. (15)

These functions are expanded as convergent power series of z as

f(z) =
1

P1+(z)�f (z)

1X

n=0
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n
, (16)

g(z) =
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P1�(z)�g(z)

1X

n=0

anz
n
, (17)

F1(z) =
1

P1+(z)�F1(z)

1X

n=0

cnz
n
. (18)

Here, the P1±(z) functions are known as Blaschke factors for the J
P = 1± resonances,

and �f,g,F1(z) are the so-called outer functions. Adopting the formalism of Ref. [25], the
Blaschke factors take the form

P1±(z) = C1±
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k=1
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, (19)
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⇤ threshold
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calculated to use in B
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functions are defined as

�f (z) =
4r

m
2
B

r
nI

3⇡�̃1+(0)

(1 + z)
p

(1� z)3

[(1 + r)(1� z) + 2
p
r(1 + z)]4

, (20)

�g(z) = 16r2
r

nI

3⇡�̃1�(0)

(1 + z)2p
(1� z)[(1 + r)(1� z) + 2

p
r(1 + z)]4

, (21)

�F1(z) =
4r

m
3
B

r
nI

6⇡�̃1+(0)

(1 + z)
p

(1� z)5

[(1 + r)(1� z) + 2
p
r(1 + z)]5
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where nI = 2.6 is the number of spectator quarks (three), corrected for SU(3)-breaking
e↵ects [8]. The B+

c resonances used in the computation of the Blaschke factors, the �̃1±(0)
coe�cients of the outer functions, and the constants C1± are reported in Table 2. The
coe�cients of the series in Eqs. (16)–(18) are bound by the unitarity constraints
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where nI = 2.6 is the number of spectator quarks (three), corrected for SU(3)-breaking
e↵ects [8]. The B+

c resonances used in the computation of the Blaschke factors, the �̃1±(0)
coe�cients of the outer functions, and the constants C1± are reported in Table 2. The
coe�cients of the series in Eqs. (16)–(18) are bound by the unitarity constraints
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CLN vs BGL
- No significant difference found in the results of  

|Vcb| between CLN and BGL. 

- Address correlation by bootstrapping 1K times 
the data and fitting them with both configurations 

- Background-subtracted distributions of p  show  
no significant difference either. 

⊥

5.7 Comparison of the CLN and BGL results650

The |Vcb| determinations in the nominal configurations of the CLN and BGL parametri-651

sations are compared by fitting 1000 samples obtained by bootstrapping the data set.652

A bootstrapped sample of the data set (consisting of N candidates) is obtained by N653

re-samplings of the candidates, allowing for repetition of the same candidate. Each boot-654

strapped sample is fitted twice, once with the CLN parametrisation, and once with the655

BGL parametrisation. The templates are also obtained by bootstrapping the simulation656

samples, in order to have a correct estimate of the uncertainties of the parameters. The657

two-dimensional distribution of the fitted |Vcb|CLN versus |Vcb|BGL results for the CLN658

and BGL 2-110 or CLN and BGL 2-111 parameterisations is shown in Fig. 18, from659

which correlations of 0.378 and 0.358 are determined, respectively. The di↵erence in the660

central values is calculated to be 0.21� and 0.65�, respectively. Figure 19 shows the661

distributions of the |Vcb| results in the three parametrisations and their uncertainties.662

The uncertainty computed in the fit to data agrees with the most probable value of the663

uncertainty distributions. The distributions of the uncertainties of the relevant CLN and664

BGL parameters are shown in Appendix H: also for these parameters the uncertainties665

computed by the fit are the most probable values of the uncertainty distributions.666
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Figure 18: Scatter plot showing the correlation between |Vcb|CLN and |Vcb|BGL for (left)
CLN and BGL 2-110 and (right) CLN and BGL 2-111 parameterisations.

Background-subtracted p? signal distributions with fit projection overlaid are also667

compared for the CLN and BGL nominal fits. They are displayed in Fig. 20. No significant668

di↵erences are observed in these projections.669

45

34% correlation 
(stat+ext)



29BGL variations
- Different BGL configurations tried to assess stability of |Vcb| result.  

- For Bs→Dsμν decays, keep always order z2 (from LQCD constraints). 

- Change the order of the series of Bs→Ds*μν decays. Not shown: discarded configurations which 
led to poor fit quality (lower orders) or degraded sensitivity (higher orders). 

Table 16: Parameters of the fit to the signal sample of B0
s ! D

�
s (! K

+
K

�
⇡
�)µ+

⌫µX

decays to determine |Vcb| with the BGL parametrisation and constraints from lattice data
for the B

0
s ! D

�
s µ

+
⌫µ decay. The upper pane of the table present the free parameters of

the fit; the lower pane those which are Gaussian constrained (the value of the constraint is
the same of Tab. 13). The uncertainty of the free parameters are those of the fit using
the Gaussian constraints for the input parameters (we report also the value of Gaussian-
constrained parameters found in the fit). For the free parameters, the number reported
between parentheses is the uncertainty obtained when fixing all Gaussian-constrained
parameters to their values at the global minimum, i.e. the uncertainty including only the
statistical components due to the limited data and simulation samples size and due to
lattice data.

BGL w/ LQCD(q2)
Parameter 2-110 2-111 2-210

|Vcb| [10�3] 41.67 ± 1.31(0.57) 42.26 ± 1.43(0.80) 42.24 ± 1.41(0.79)
b1 �0.008 ± 0.039(0.038) �0.060 ± 0.069(0.068) �0.153 ± 0.090(0.094)
b2 – – 1.9 ± 1.5(1.4)
a0 0.0380 ± 0.0082(0.0078) 0.0374 ± 0.0086(0.0086) 0.046 ± 0.011(0.011)
a1 – 0.28 ± 0.27(0.26) –
c1 0.0046 ± 0.0016(0.0016) 0.0031 ± 0.0023(0.0022) 0.0029 ± 0.0021(0.0020)
Nbkg�1 5911 ± 2232(2232) 6671 ± 2294(2290) 6628 ± 2271(2270)
Nbkg�2 11329 ± 1077(1072) 11427 ± 1057(1053) 11661 ± 1056(1053)
Ncomb 5686 ± 2329(2329) 5593 ± 2336(2336) 5632 ± 2338(2338)

d1 �0.0176 ± 0.0074 �0.0172 ± 0.0075 �0.0165 ± 0.0075
d2 �0.259 ± 0.047 �0.256 ± 0.047 �0.254 ± 0.047
G(0) 1.102 ± 0.034 1.097 ± 0.034 1.094 ± 0.034
F(1) 0.899 ± 0.013 0.901 ± 0.013 0.900 ± 0.013
⌘EW 1.0066 ± 0.0055 1.0066 ± 0.0055 1.0066 ± 0.0055
Nref 37794 ± 1184 36760 ± 1285 36786 ± 1287
N

⇤
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30Ratio of BR
- Parametrise the signal yields in terms of ratio of branching fraction 

between signal and reference decays (and all other inputs). 

- FF are shape parameters of the templates (found same values as in  
the fit for |Vcb|). CLN used (BGL as a systematic uncertainty).

final state. These decays are normalized to the same B
0 ! D

(⇤)�
µ
+
⌫µ decays, with

D
� ! [K+

K
�]�⇡�, used in the default analysis to measure ratios of branching fractions

between control and reference decays consistent with unity. The control sample is selected
with criteria very similar to those of the reference sample, but the di↵erent D� final state
introduces di↵erences between the e�ciencies of the control and reference decays that are
40% larger than those between signal and reference decays. The control sample features
the same fit components as described in Sec. 6 for the reference sample, with signal
and background decays modeled with simulation and combinatorial background with
same-sign data. External inputs are changed to reflect the replacement of the signal with
the control decays. Fits are performed using both the CLN and the BGL parametrizations.
In both cases, the ratios of branching fractions between control and reference decays are
all measured to be compatible with unity with 5 to 6% relative precision.

9 Final results and conclusions

A study of the B
0
s ! D

�
s µ

+
⌫µ and B

0
s ! D

⇤�
s µ

+
⌫µ decays is performed using proton-

proton collision data collected with the LHCb detector at center-of-mass energies of 7
and 8TeV, corresponding to an integrated luminosity of 3 fb�1. A novel analysis method
is used to identify the two exclusive decay modes from the inclusive sample of selected
D

�
s µ

+ candidates, and measure the CKM matrix element |Vcb| using B
0 ! D

�
µ
+
⌫µ and

B
0 ! D

⇤�
µ
+
⌫µ decays as normalization. The analysis is performed with both the CLN [2]

and BGL [3–5] parametrizations to determine

|Vcb|CLN = (41.4± 0.6 (stat)± 0.9 (syst)± 1.2 (ext))⇥ 10�3
,

|Vcb|BGL = (42.3± 0.8 (stat)± 0.9 (syst)± 1.2 (ext))⇥ 10�3
,

where the first uncertainties are statistical (including contributions from both data and
simulation), the second systematic, and the third due to the limited knowledge of the
external inputs. The two results are compatible, when accounting for their correlation.
These are the first determinations of |Vcb| from exclusive decays at a hadron collider and
the first using B

0
s decays. The results are in agreement with the exclusive measurements

based on B
0 and B

+ decays, and as well with the inclusive determination [1].
The ratios of the branching fractions of the exclusive B

0
s ! D

(⇤)�
s µ

+
⌫µ decays relative

to those of the exclusive B
0 ! D

(⇤)�
µ
+
⌫µ decays are measured to be

R ⌘ B(B0
s ! D

�
s µ

+
⌫µ)

B(B0 ! D
�
µ
+
⌫µ)

= 1.09± 0.05 (stat)± 0.06 (syst)± 0.05 (ext) ,

R⇤ ⌘ B(B0
s ! D

⇤�
s µ

+
⌫µ)

B(B0 ! D
⇤�
µ
+
⌫µ)

= 1.06± 0.05 (stat)± 0.07 (syst)± 0.05 (ext) .

Taking the measured values of B(B0 ! D
�
µ
+
⌫µ) and B(B0 ! D

⇤�
µ
+
⌫µ) as additional

inputs [37], the following exclusive branching fractions are determined for the first time

B(B0
s ! D

�
s µ

+
⌫µ) = (2.49± 0.12 (stat)± 0.14 (syst)± 0.16 (ext))⇥ 10�2

,

B(B0
s ! D

⇤�
s µ

+
⌫µ) = (5.38± 0.25 (stat)± 0.46 (syst)± 0.30 (ext))⇥ 10�2

,

where the third uncertainties also include the contribution due to the limited knowl-
edge of the normalization branching fractions. Finally, the ratio of B0

s ! D
�
s µ

+
⌫µ to
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31Systematics (all)Table 7: Summary of the uncertainties a↵ecting the measured parameters. The upper section reports the systematic uncertainties due to the
external inputs (ext), the middle section those due to the experimental methods (syst), and the lower section the statistical uncertainties (stat).
For the first source of uncertainty the multiplication by ⌧ holds only for the |Vcb| fits.

Source

Uncertainty

CLN parametrization BGL parametrization

|Vcb| ⇢
2(D�

s ) G(0) ⇢
2(D⇤�

s ) R1(1) R2(1) |Vcb| d1 d2 G(0) b1 c1 a0 a1 R R⇤

[10�3] [10�1] [10�2] [10�1] [10�1] [10�1] [10�3] [10�2] [10�1] [10�2] [10�1] [10�3] [10�2] [10�1] [10�1] [10�1]

fs/fd ⇥ B(D�
s ! K

+
K

�
⇡
�)(⇥⌧) 0.8 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.4

B(D� ! K
�
K

+
⇡
�) 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3

B(D⇤� ! D
�
X) 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.2 0.0 0.3 – 0.2

B(B0 ! D
�
µ
+
⌫µ) 0.4 0.0 0.3 0.1 0.2 0.1 0.5 0.1 0.0 0.1 0.1 0.4 0.1 0.7 – –

B(B0 ! D
⇤�
µ
+
⌫µ) 0.3 0.0 0.2 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.1 0.3 0.1 0.4 – –

m(B0
s ), m(D(⇤)�) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 – –

⌘EW 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 – –
hA1(1) 0.3 0.0 0.2 0.1 0.1 0.1 0.3 0.0 0.0 0.1 0.1 0.3 0.1 0.5 – –

External inputs (ext) 1.2 0.0 0.4 0.1 0.2 0.1 1.2 0.1 0.0 0.1 0.1 0.6 0.1 0.8 0.5 0.5

D
�
(s) ! K

+
K

�
⇡
� model 0.8 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.4

Background 0.4 0.3 2.2 0.5 0.9 0.7 0.1 0.5 0.2 2.3 0.7 2.0 0.5 2.0 0.4 0.6
Fit bias 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.4 0.2 0.4 0.0 0.0
Corrections to simulation 0.0 0.0 0.5 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0
Form-factor parametrization – – – – – – – – – – – – – – 0.0 0.1

Experimental (syst) 0.9 0.3 2.2 0.5 0.9 0.7 0.9 0.5 0.2 2.3 0.7 2.1 0.5 2.0 0.6 0.7

Statistical (stat) 0.6 0.5 3.4 1.7 2.5 1.6 0.8 0.7 0.5 3.4 0.7 2.2 0.9 2.6 0.5 0.5
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32m(KK) requirement

7.3 D
�
(s) ! K

+
K

�
⇡

�
decay model819

A requirement on m(K+
K

�) to be around the � mass is applied in the analysis to suppress820

the background under the D�
(s) peaks and make the kinematics of signal and normalisation821

decays more similar to each other. The e�ciency of such requirement is evaluated using822

simulation and is included in the ratios of Eqs. (39) and (40). The simulated model of the823

intermediate amplitudes contributing to the D
�
(s) ! K

+
K

�
⇡
� decays may, however, be824

inaccurate. A systematic uncertainty is thusestimated by comparing the e�ciency of the825

m(K+
K

�) requirement derived from simulation with that derived from data. Since the826

m(K+
K

�) requirement is already applied in the stripping, Run 2 data and simulation827

samples are used instead. Figure 26 shows that some level of disagreement is observed828

between the m(K+
K

�) distributions obtained from background-subtracted data and829

from simulation. The ⇠ and ⇠
⇤ ratios change by a relative �4% when substituting the830

simulation-based e�ciency of the m(K+
K

�) requirement with that determined from data.831

This variation corresponds to systematic uncertainties of 0.84, 0.045 and 0.042 on |Vcb|832

(for both CLN and BGL parametrisations), R and R⇤, respectively. A↵ecting only the833

normalization scale, negligible variations are observed for form-factor parameters, hence834

negligible systematic uncertainties are assigned on these parameters. The correlation of835

this uncertainty between R and R⇤ is assumed to be 100%, while it is zero for all other836

parameters.837
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Figure 26: Normalized distributions of m(K+
K

�) for (left) D�
s ! K

+
K

�
⇡
� and (right)

D
� ! K

+
K

�
⇡
� candidates from (red) background-subtracted data and (blue) simulated

Run 2 samples of B0
(s) ! D

�
(s)µ

+
X decays. The bottom panels show the ratio between the

two distributions.

7.4 Background contamination838

The knowledge on the physics background composition of the B
0
s sample is very limited839

due to the lack of experimental measurements. However, the selection requirement840

p?[ GeV/c] < 1.5+1.1⇥(mcorr[ GeV/c2]�4.5) is expected to greatly suppress this background841
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33Subleading terms
For Bs→Ds*μν decays, p  has some (little) 
sensitivity to cos(D,μ), giving possibility 
to access R1 and R2 form factors. 
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