$\left|V_{c b}\right|$ at LHCb (with B_{s}^{0} decays)

Mirco Dorigo (INFN Trieste)
Challenges in SL B decays, 19-23 April 2022

Content

Back in 2020, $\left|V_{c b}\right|$ from LHCb [PRD 101 (2020) 072004] just released, was perfect timing for Barolo! No longer "new" today: presented several times, discussed/exploited in a number of phenological analyses.

Will refresh key experimental aspects of the LHCb measurement.
Disclaimer: might not be updated with latest @LHCb (l'm in Belle 2 now!)

$V_{c b} \mid$ at LHCb, really?

Phys. Rev. D 97, 054502 (ฉ018)

- Could provide new information using other b hadron than $B^{0 /+}$. Different system, different uncertainties.

Lattice QCD calculation of the $B_{(s)} \rightarrow D_{(s)}^{*} \ell \nu$ form factors at zero recoil and implications for $\left|V_{c b}\right|$

Judd Harrison, ${ }^{1, \text { a }}$ Christine T. H. Davies, ${ }^{2}$ and Matthew Wingate ${ }^{1}$ (HPQCD Collaboration), b
${ }^{1}$ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK ${ }^{2}$ SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

Our result for the $B_{s} \rightarrow D_{s}^{*}$ form factor is the first complete calculation of $h_{A_{1}}^{s}(1)$. In the future, measurements of the exclusive decays with a strange spectator, $B_{s} \rightarrow D_{s}^{(*)} \ell \nu$, could also provide a constraint on $\left|V_{c b}\right|$ LHCb has reconstructed $B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}$ decays [70]. Eventually, with properly normalized branching fractions, these will also provide a method of constraining $\left|V_{c b}\right|$.

Signal and normalisation

- Decays $B_{(s)}^{0} \rightarrow D_{(s)}^{-}\left(\rightarrow K^{+} K^{-} \pi^{-}\right) \mu^{+} \nu_{\mu} X$: B_{s}^{0} signal and B^{0} normalisation.
- Trigger on displaced μ with pT> 1.8 GeV .
- $D_{(s)}^{-}$good-quality vertex, displaced from PV.
- Project back the $D_{(s)}^{-}$to cross the μ and form a good-quality displaced vertex.
- $m\left(K^{+} K^{-}\right) 20 \mathrm{MeV}$ around ϕ.

Sample composition

Sample components	Efficiency $\left[10^{-3}\right]$	Fraction $[\%]$
$B_{s}^{0} \rightarrow D_{s}^{-}\left(\rightarrow K^{+} K^{-} \pi^{-}\right) \mu^{+} \nu_{\mu} X$		
$B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$ signal	0.481 ± 0.002	30
$B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}$ signal	0.429 ± 0.001	60
B_{s}^{0} feed-down	0.282 ± 0.002	$\mathcal{O}(5)$
B_{s}^{0} semitauonic decays	0.070 ± 0.002	<1
doubly charmed final states	0.067 ± 0.001	2
B cross-feed	0.130 ± 0.001	2
$B^{0} \rightarrow D^{-}\left(\rightarrow K^{+} K^{-} \pi^{-}\right) \mu^{+} \nu_{\mu} X$		
$B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu}$ signal	0.307 ± 0.001	50
$B^{0} \rightarrow D^{*-} \mu^{+} \nu_{\mu}$ signal	0.293 ± 0.001	30
B^{0} feed-down	0.104 ± 0.001	9
B^{0} semitauonic decays	0.030 ± 0.001	<1
B^{+}decays	0.054 ± 0.001	9

Corrected mass

B direction well measured using primary and decay vertexes. Can recover the missing-mass transverse to the B direction.

$m_{c o r r} \equiv \sqrt{m^{2}\left(D_{s}^{-} \mu^{+}\right)+p_{\perp}^{2}\left(D_{s}^{-} \mu^{+}\right)}+p_{\perp}\left(D_{s}^{-} \mu^{+}\right)$

The variable $p_{\perp}\left(D_{s}\right)$

Take the momentum of the D_{s} transverse to the B_{s} direction, $p_{\perp}\left(D_{s}\right)$. Fully reconstructed. Good gaussian resolution (about 120 MeV), same for $B_{s}^{0} \rightarrow D_{s}^{-}$and $B_{s}^{0} \rightarrow D_{s}^{*-}$.

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mu v$
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mu \mathrm{V}$

Ds**eed-down + double charm

Semitauonic + Cross-feed

$p_{\perp}\left(D_{s}^{-}\right)$correlation with w

Highly correlated with recoil w, it retains the component of the W^{*} momentum invariant with respect to the B boost. Provides sensitivity to FF.

$$
\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{*} \mu v
$$

LHCb Simulation

$$
\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mu \mathrm{~V}
$$

Sensitivity to form factors

LHCb Simulation

For illustration, dependence on ρ^{2} in the CLN parametrisation.

External input (theory)

Use LQCD data for B_{s} decays to constraint FF

- $B_{s} \rightarrow D_{s}{ }^{*} \mu v$ at $w=1$ [PRD 99 (2019) 114512]
- $B_{s} \rightarrow D_{s} \mu v$ calculations on the full q^{2} range [PRD 101 (2020) 074513]

Parameter	Value
$\eta_{\text {EW }}$	1.0066 ± 0.0050
$h_{A_{1}}(1)$	0.902 ± 0.013

CLN parametrization	
$\mathcal{G}(0)$	1.07 ± 0.04
$\rho^{2}\left(D_{s}^{-}\right)$	1.23 ± 0.05

BGL parametrization
$\mathcal{G}(0)$
1.07 ± 0.04
d_{1}
-0.012 ± 0.008
d_{2}
-0.24 ± 0.05

- HPQCD data improve statistical precision on $\left|\mathrm{V}_{\text {cb }}\right|$ by 20% (50\%) for CLN (BGL)
- Checked that FF fitted from data w/o constraints are compatible with values from LQCD

External input (experimental)

To obtain B_{s}^{0} branching fractions and get $\left|V_{c b}\right|$ from measured signal-tonormalisation ratio of yields (and efficiencies).

Branching-fractions and $\left|V_{c b}\right|$

$$
\begin{aligned}
& \mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)=(2.40 \pm 0.12(\text { stat }) \pm 0.15(\text { syst }) \pm 0.12(\mathrm{ext})) \% \\
& \mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}\right)=(5.19 \pm 0.24(\text { stat }) \pm 0.47(\text { syst }) \pm 0.19(\mathrm{ext})) \% \\
& \frac{\mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}{\mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}\right)}=0.464 \pm 0.013(\text { stat }) \pm 0.043(\text { syst }) \\
& \left|V_{c b}\right|_{\mathrm{CLN}}=(40.8 \pm 0.6(\text { stat }) \pm 0.9(\text { syst }) \pm 1.1(\mathrm{ext})) \times 10^{-3} \\
& \left|V_{c b}\right|_{\mathrm{BGL}}=(41.7 \pm 0.8(\text { stat }) \pm 0.9(\text { syst }) \pm 1.1(\mathrm{ext})) \times 10^{-3}
\end{aligned}
$$

Systematic uncertainty dominated by knowledge of $\mathrm{D}_{(\mathrm{s})} \rightarrow \mathrm{KK} \pi$ Dalitz structure and background contamination.

Form-factor results

CLN parametrisation

Parameter	Value		
$\mathcal{G}(0)$	1.102 ± 0.034 (stat) ± 0.004 (ext)		
$\rho^{2}\left(D_{s}^{-}\right)$	1.27	± 0.05	(stat) ± 0.00 (ext)
$\rho^{2}\left(D_{s}^{*-}\right)$	1.23	± 0.17	(stat) ± 0.01 (ext)
$R_{1}(1)$	1.34	± 0.25	(stat) ± 0.02 (ext)
$R_{2}(1)$	0.83	± 0.16	(stat) ± 0.01 (ext)

BGL parametrisation (order 2-111)

Parameter	Value			
$\mathcal{G}(0)$	1.097	± 0.034	(stat) ± 0.001	(ext)
d_{1}	-0.017	± 0.007	(stat) ± 0.001	(ext)
d_{2}	-0.26	± 0.05	(stat) ± 0.00	(ext)
b_{1}	-0.06	± 0.07	(stat) ± 0.01	(ext)
a_{0}	0.037	± 0.009	(stat) ± 0.001	(ext)
a_{1}	0.28	± 0.26	(stat) ± 0.08	(ext)
c_{1}	0.0031 ± 0.0022	(stat) ± 0.0006 (ext)		

Supporting the form factors

- Measure the w distribution for $B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}$ decays.
- Independent data set (Run II). Fully reconstruct the $D_{s}^{*-} \rightarrow D_{s}^{-} \gamma$ by selecting the soft photon in a cone around the D_{s} flight direction.

JHEP $12(2020) 144$

w distribution for $B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}$

- Use a MVA based algorithm to approximate w [JHEP 02 (2017) 021].
- Fit the corrected mass in bins of the approximate w.
- Unfold efficiency and resolution.
- Good agreement of the measured distribution w.r.t. form factors measured in the $\left|V_{c b}\right|$ analysis

JHEP 12 (2020) 144

Could $p_{\perp}\left(D_{s}\right)$ data be used?

- Several phenomenological analyses generate $\mathrm{d} \Gamma / \mathrm{d} w$ from fit results.
- Could $p_{\perp}\left(D_{S}\right)$ data be directly used?
- LHCb provides $p_{\perp}\left(D_{s}\right)$ resolutions and efficiencies. Once a theoretical prediction of $p_{\perp}\left(D_{s}\right)$ is provided, can fold in experimental effects and compare (or fit) to LHCb data.*

Determining the $p_{\perp}\left(D_{S}\right)$ distributions

- Consider $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$. In the B_{s}^{0} rest frame, define an arbitrary direction \hat{z}

$$
p_{\perp}\left(D_{s}\right)=m_{D_{s}} \sqrt{w^{2}-1} \sin \alpha
$$

- Consider \hat{z} along B_{s}^{0} momentum in the lab frame, $p_{\perp}\left(D_{s}\right)$ is invariant.
- Angle α is not measured, integrate over all possible value $(\cos \alpha$ uniform in $[-1,1]$ since B_{s}^{0} is spin 0)
- Can obtain $p_{\perp}\left(D_{s}\right)$ distribution from $\mathrm{d} \Gamma / \mathrm{d} w$

In preparation

- Similar calculations for $B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}$ decays, but $p_{\perp}\left(D_{S}\right)$ depends also on helicity angle $\cos \theta_{D_{s}}$ when the D_{s}^{*} decays is not reconstructed.
- Work in progress (A. Di Canto, M.D., F. Ferrari, S. Jaiswal, N. Soumitra, S. Patra) to reanalyse $p_{\perp}\left(D_{s}\right)$ data (together with
 LHCb w measurement and new lattice data).

Conclusion

- Proved that $\left|V_{c b}\right|$ could be accessed also in hadron collisions. Need synergies with B-factories (to get precise normalisation). Measurement systematically limited: need to improve on f_{s} / f_{d}, BR and Dalitz model of $D_{(s)} \rightarrow K K \pi$ decays, knowledge of $D_{s}^{* *} \ldots$
- On the other hand, form-factor studies (w distribution, helicity angles?) statistically limited. Could improve with Run 3 data and provide excellent testbeds for calculations (not only for B_{s}^{0} decays).
- Could study baryons too. Λ_{b} analyses ongoing.

Backup

CLN reminder

- Reminder of the signal parameters, along with $\left|\mathrm{V}_{\mathrm{cb}}\right|$, in the CLN model

$$
\mathrm{B} \rightarrow \mathrm{D}^{*} \mu \mathrm{HV} \left\lvert\, \begin{aligned}
& h_{A_{1}}(w)=h_{A_{1}(1)}-8\left(1-8 \rho^{2} w+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3}\right], \\
& R_{1}(w)=R_{1}(1)-0.12(w-1)+0.05(w-1)^{2}, \\
& R_{2}(w)=R_{2}(1)-0.11(w-1)-0.06(w-1)^{2}, \\
& 3 \text { floating parameters }
\end{aligned}\right.
$$

$$
\mathrm{B} \rightarrow \mathrm{D} \mu \nu \mid \mathcal{G}(z)=(\mathcal{G}(0)]\left[1-\delta \rho^{2} z+\left(51 \rho^{2}-10\right) z^{2}-\left(252 \rho^{2}-84\right) z^{3}\right]
$$

3 constrained from LQCD

Results - CLN

Parameter	Value		
$\left\|V_{c b}\right\|\left[10^{-3}\right]$	41.4	± 0.6	(stat) $\pm 1.2 \quad$ (ext)
$\mathcal{G}(0)$	1.102 ± 0.034 (stat) ± 0.004 (ext)		
$\rho^{2}\left(D_{s}^{-}\right)$	1.27	± 0.05	(stat) ± 0.00 (ext)
$\rho^{2}\left(D_{s}^{*-}\right)$	1.23	± 0.17	(stat) ± 0.01 (ext)
$R_{1}(1)$	1.34	± 0.25	(stat) ± 0.02 (ext)
$R_{2}(1)$	0.83	± 0.16	(stat) ± 0.01

- Fit $x^{2} /$ ndf = 2r9/285, p-value of 58%.
- Statistical uncertainties include those on the templates (MC sample size).
- $\left|V_{c b}\right|$ in agreement with both exclusive and inclusive determinations from B decays.
- FF in agreement with those from B decays.

BGL reminder

- Signal parameters, along with $\left|V_{c b}\right|$, in the BGL model

$$
\begin{gathered}
\text { B } \rightarrow \text { D } \boldsymbol{N V} \\
f_{+}(z)=\frac{1}{P_{1^{-}}(z) \phi(z)} \sum_{n=0}^{2} d_{n} z^{n} \\
d_{0}=\frac{1+r}{2 \sqrt{r}} \mathcal{G}(0) P_{1^{-}}(0) \phi(0)
\end{gathered}
$$

$G(0), d_{1}, d_{2}$ conserained from LQCD

$$
\begin{aligned}
& B \rightarrow D^{*} \mu V \\
& f(z)=\frac{1}{P_{1}+(z) \phi_{f}(z)} \sum_{n=0} b_{n} z^{n}, \quad b_{0}=2 \sqrt{m_{B} m_{D^{*}}} P_{1+}(0) \phi_{f}(0) h_{A_{1}}(1) \\
& g(z)=\frac{1}{P_{1}(z) \phi_{g}(z)} \sum_{n=0}^{1} a_{n} z^{n}, \\
& \mathcal{F}_{1}(z)=\frac{1}{P_{1+}(z) \phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{1} c_{n} z^{n} . \quad c_{0}=\left(m_{B}-m_{D^{*}} \frac{\phi_{\mathcal{F}_{1}}(0)}{\phi_{f}(0)} b_{0}\right. \\
& \quad h_{\mathrm{A}_{1}}(1) \text { constrained from LQCD } \\
& \quad b_{1}, a_{0}, a_{1}, \text { ci free paramelers }
\end{aligned}
$$

BGL 2-111

- 4 free parameters and 4 parameters constrained from LQCD

Results - BGL

Parameter	Value			
$\left\|V_{c b}\right\|\left[10^{-3}\right]$	42.3	± 0.8	(stat) ± 1.2	(ext)
$\mathcal{G}(0)$	1.097	± 0.034	(stat) ± 0.001	(ext)
d_{1}	-0.017	± 0.007	(stat) ± 0.001	(ext)
d_{2}	-0.26	± 0.05	(stat) ± 0.00	(ext)
b_{1}	-0.06	± 0.07	(stat) ± 0.01	(ext)
a_{0}	0.037	± 0.009	(stat) ± 0.001	(ext)
a_{1}	0.28	± 0.26	(stat) ± 0.08	(ext)
c_{1}	0.0031 ± 0.0022 (stat) ± 0.0006 (ext)			

- Configuration BGL 2-111, for D_{s} up to order z^{2}, for $D_{s}{ }^{*}$ all 3 serie to order $z\left(b_{0}\right.$ and co set by $h_{A_{1}}(1)$).
- Fit $x^{2} / \mathrm{ndf}=276 / 284$, p-value of 63%.
- $\left|\mathrm{V}_{\text {cb }}\right|$ in agreement with both exclusive and inclusive determinations from B decays.

BGL details

Phase space factors

$$
\begin{array}{l|l}
f(z)= & \frac{1}{P_{1}+(z) \phi_{f}(z)} \\
n & \sum_{n=0}^{\infty}\left(b_{n} z^{n},\right. \\
g(z)= & \frac{1}{P_{1}-(z) \phi_{g}(z)} \\
\sum_{n=0}^{\infty}\left(a_{n} z^{n},\right. & \mathrm{B} \rightarrow \mathrm{D}^{*} \mu \mathrm{~V} \\
\mathcal{F}_{1}(z)=\frac{1}{P_{1}+(z) \phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{\infty} c_{n} z^{n} . \mid \\
f_{+}(z)=\frac{1}{P_{1-}(z) \phi(z)} \sum_{n=0}^{\infty}\left(d_{n} z^{n} \mid \mathrm{B} \rightarrow \mathrm{D} \mu \mathrm{~V}\right. \\
\text { Paramelers }
\end{array}
$$

Blaschke fackors

$$
P_{1^{ \pm}}(z)=C_{1^{ \pm}} \prod_{k=1}^{\text {poles }} \frac{z-z_{k}}{1-z z_{k}}
$$

$$
\begin{gathered}
z_{k}=\left(\sqrt{t_{+}-m_{k}^{2}}-\sqrt{t_{+}-t_{-}}\right) /\left(\sqrt{t_{+}-m_{k}^{2}}+\sqrt{t_{+}-t_{-}}\right) \\
t_{ \pm}=\left(m_{B} \pm m_{D^{*}}\right)^{2}
\end{gathered}
$$

$\sum_{n=0}^{\infty} a_{n}^{2} \leqslant 1$,
$\sum_{n=0}^{\infty}\left(b_{n}^{2}+c_{n}^{2}\right) \leqslant 1$
$\sum_{n=0}^{\infty} d_{n}^{2}<1$

Unibariby bounds

$$
\begin{aligned}
b_{0} & =2 \sqrt{m_{B} m_{D^{*}}} P_{1+}(0) \phi_{f}(0) h_{A_{1}}(1) \\
c_{0} & =\left(m_{B}-m_{D^{*}} \frac{\phi_{\mathcal{F}_{1}}(0)}{\phi_{f}(0)} b_{0}\right. \\
d_{0} & =\frac{1+r}{2 \sqrt{r}} \mathcal{G}(0) P_{1-}(0) \phi(0)
\end{aligned}
$$

Only for $\mathrm{B}_{\mathrm{S}}, \mathrm{O}$ for B^{0}
Only for $B_{s}, 1$ for B^{0}

CLNN vs BGL

- No significant difference found in the results of $\left|V_{c b}\right|$ between CLN and BGL.
- Address correlation by bootstrapping 1K times the data and fitting them with both configurations
- Background-subtracted distributions of p_{\perp} show no significant difference either.

BGL variations

- Different BGL configurations tried to assess stability of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ result.
- For $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mu \vee$ decays, keep always order z^{2} (from LQCD constraints).
- Change the order of the series of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mu \mathrm{~V}$ decays. Not shown: discarded configurations which led to poor fit quality (lower orders) or degraded sensitivity (higher orders).

Nominal
Shift in $\left|V_{c b}\right|$ confirmed with toys

Parameter	$2-110$	$2-111$	$2-210$
$\left\|V_{c b}\right\|\left[10^{-3}\right]$	$41.67 \pm 1.31(0.57)$	$42.26 \pm 1.43(0.80)$	$42.24 \pm 1.41(0.79)$
b_{1}	$-0.008 \pm 0.039(0.038)$	$-0.060 \pm 0.069(0.068)$	$-0.153 \pm 0.090(0.094)$
b_{2}	-	-	$1.9 \pm 1.5(1.4)$
a_{0}	$0.0380 \pm 0.0082(0.0078)$	$0.0374 \pm 0.0086(0.0086)$	$0.046 \pm 0.011(0.011)$
a_{1}	-	$0.28 \pm 0.20(0.26)$	bound hot
c_{1}	$0.0046 \pm 0.0016(0.0016)$	$0.0031 \pm 0.0023(0.0022)$	$0.0029 \pm 0.0021(0.0020)$
d_{1}	-0.0176 ± 0.0074	-0.0172 ± 0.0075	-0.0165 ± 0.0075
d_{2}	-0.259 ± 0.047	-0.256 ± 0.047	-0.254 ± 0.047
$\mathcal{G}(0)$	1.102 ± 0.034	1.097 ± 0.034	1.094 ± 0.034
$\mathcal{F}(1)$	0.899 ± 0.013	0.901 ± 0.013	0.900 ± 0.013
$\chi^{2} /$ dof	$277 / 285$	$276 / 284$	$275 / 284$
Probability	0.62	0.63	0.64

Ratio of BR

- Parametrise the signal yields in terms of ratio of branching fraction between signal and reference decays (and all other inputs).
- FF are shape parameters of the templates (found same values as in the fit for $\left.\left|\mathrm{V}_{\mathrm{cb}}\right|\right)$. CLN used (BGL as a systematic uncertainty).

$$
\begin{aligned}
\mathcal{R} & \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu}\right)}=1.09 \pm 0.05(\text { stat }) \pm 0.05(\mathrm{ext}) \\
\mathcal{R}^{*} & \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{*-} \mu^{+} \nu_{\mu}\right)}=1.06 \pm 0.05(\mathrm{stat}) \pm 0.05(\mathrm{ext})
\end{aligned}
$$

Systematics (all)

Source	Uncertainty															
	CLN parametrization						BGL parametrization								$\begin{gathered} \mathcal{R} \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} \mathcal{R}^{*} \\ {\left[10^{-1}\right]} \end{gathered}$
	$\begin{gathered} \left\|V_{c b}\right\| \\ {\left[10^{-3}\right]} \end{gathered}$	$\begin{gathered} \rho^{2}\left(D_{s}^{-}\right) \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} \mathcal{G}(0) \\ {\left[10^{-2}\right]} \end{gathered}$	$\begin{gathered} \rho^{2}\left(D_{s}^{*-}\right) \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{aligned} & R_{1}(1) \\ & {\left[10^{-1}\right]} \end{aligned}$	$\begin{aligned} & R_{2}(1) \\ & {\left[10^{-1}\right]} \end{aligned}$	$\begin{gathered} \left\|V_{c b}\right\| \\ {\left[10^{-3}\right]} \end{gathered}$	$\begin{gathered} d_{1} \\ {\left[10^{-2}\right]} \end{gathered}$	$\begin{gathered} d_{2} \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} \mathcal{G}(0) \\ {\left[10^{-2}\right]} \end{gathered}$	$\begin{gathered} b_{1} \\ {\left[10^{-1}\right]} \end{gathered}$	$\begin{gathered} c_{1} \\ {\left[10^{-3}\right]} \end{gathered}$	$\begin{gathered} a_{0} \\ {\left[10^{-2}\right]} \end{gathered}$	$\begin{gathered} a_{1} \\ {\left[10^{-1}\right]} \end{gathered}$		
$f_{s} / f_{d} \times \mathcal{B}\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}\right)(\times \tau)$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.4
$\mathcal{B}\left(D^{-\longrightarrow-} \mathrm{H}\right.$	0.5	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.3
$\mathcal{B}\left(D^{*-} \rightarrow D^{-} X\right)$	0.2	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.2	0.0	0.3	-	0.2
$\mathcal{B}\left(B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu}\right)$	0.4	0.0	0.3	0.1	0.2	0.1	0.5	0.1	0.0	0.1	0.1	0.4	0.1	0.7	-	-
$\mathcal{B}\left(B^{0} \rightarrow D^{*-} \mu^{+} \nu_{\mu}\right)$	0.3	0.0	0.2	0.1	0.1	0.1	0.2	0.0	0.0	0.1	0.1	0.3	0.1	0.4	-	-
$m\left(B_{s}^{0}\right), m\left(D^{(*)-}\right)$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-	-
$\eta_{\text {EW }}$	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-	-
$h_{A_{1}}(1)$	0.3	0.0	0.2	0.1	0.1	0.1	0.3	0.0	0.0	0.1	0.1	0.3	0.1	0.5	-	-
External inputs (ext)	1.2	0.0	0.4	0.1	0.2	0.1	(1.2)	0.1	0.0	0.1	0.1	0.6	0.1	0.8	0.5	0.5
$D_{(s)}^{-} \rightarrow K^{+} K^{-} \pi^{-}$model	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.4
Background	0.4	0.3	2.2	0.5	0.9	0.7	0.1	0.5	0.2	2.3	0.7	2.0	0.5	2.0	0.4	0.6
Fit bias	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.2	0.4	0.2	0.4	0.0	0.0
Corrections to simulation	0.0	0.0	0.5	0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0
Form-factor parametrization	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	0.1
Experimental (syst)	0.9	0.3	2.2	0.5	0.9	0.7	0.9	0.5	0.2	2.3	0.7	2.1	0.5	2.0	0.6	0.7
Statistical (stat)	0.6	0.5	3.4	1.7	2.5	1.6	0.8	0.7	0.5	3.4	0.7	2.2	0.9	2.6	0.5	0.5

m(KK) requirement

MC vs bkg-subtracted data for $\mathrm{D}_{\mathrm{s}} \rightarrow \mathrm{KK} \pi$ and $\mathrm{D} \rightarrow \mathrm{KK} \pi$ decays

Subleading terms

For $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \mu \mathrm{v}$ decays, p_{\perp} has some (little) sensitivity to $\cos (\mathrm{D}, \mu)$, giving possibility to access R_{1} and R_{2} form factors.

