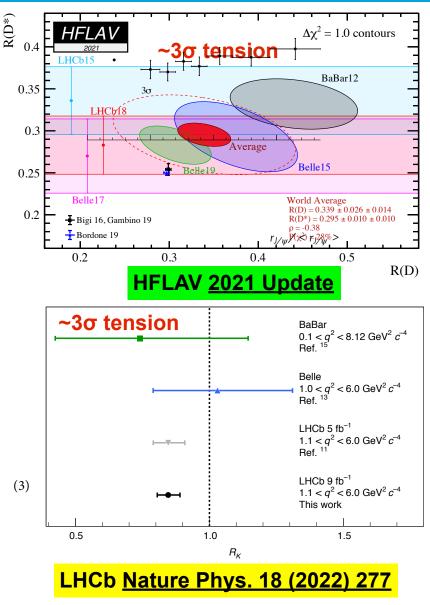
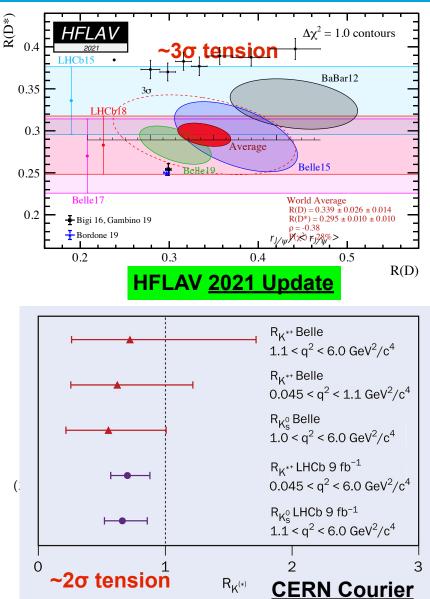
CMS PROSPECTS IN SEMILEPTONIC B DECAYS



Greg Landsberg - Challenges in Semileptonic B Decays Workshop Barolo, Italy, April 20, 2022

Lepton Flavor Anomalies


- Recently, a number of lepton flavor anomalies have been observed in various semileptonic channels, largely driven by the LHCb experiment:
 - ~ 3σ tension in R(D/D*), the ratio of $\mathscr{B}(b \rightarrow c\tau v)/\mathscr{B}(b \rightarrow clv)$ [tree-level process]
 - ~2 σ tensionwin R(J/ ψ), the ratio of $\mathscr{B}(b \rightarrow c\tau v)/\mathscr{B}(b \rightarrow clv)$ [tree-level process]
 - ~2σ deficit in various b → sµ+µtransitions, compared to theory predictions, both in inclusive and differential measurements [loop-level process]
 - ~3 σ tension in R(K), R(K*), the ratio of $\mathscr{B}(b \rightarrow s\mu^{+}\mu^{-})/\mathscr{B}(b \rightarrow se^{+}e^{-})$ [loop-level process] $\mathscr{B}_{J/\psi}(\mu^{-}\mu^{-})K^{-})/\mathscr{B}_{J/\psi}(\mu^{-}e^{-}e^{-})K^{-})$,
- Arguably the strongest hints of new physics to date that survived a dozen of years of the LHC program

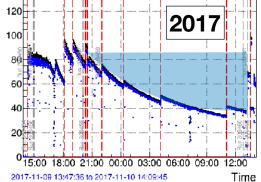
Lepton Flavor Anomalies

- Recently, a number of lepton flavor anomalies have been observed in various semileptonic channels, largely driven by the LHCb experiment:
 - $\sim 3\sigma$ tension in R(D/D*), the ratio of $\mathscr{B}(b \rightarrow c\tau v)/\mathscr{B}(b \rightarrow clv)$ [tree-level process]
 - ~2 σ tensionwin R(J/ ψ), the ratio of $\mathscr{B}(b \rightarrow c\tau v)/\mathscr{B}(b \rightarrow clv)$ [tree-level process]
 - ~2σ deficit in various b → sµ+µtransitions, compared to theory predictions, both in inclusive and differential measurements [loop-level process]
 - ~3 σ tension in R(K), R(K*), the ratio of $\mathscr{B}(b \rightarrow s\mu^{+}\mu^{-})/\mathscr{B}(b \rightarrow se^{+}e^{-})$ [loop-level process] $\mathscr{B}_{J/\psi}(\mu^{-}\mu^{-})K^{-})/\mathscr{B}_{J/\psi}(\mu^{-}e^{-}e^{-})K^{-})$,
- Arguably the strongest hints of new physics to date that survived a dozen of years of the LHC program

CMS and Flavor Anomalies

- In CMS, a number of analyses probing these anomalies are ongoing
 - While no new results are available as of yet, expect a number of them to become public this coming summer and fall
- These analyses use both the 2018 parked data (10¹⁰ unbiased b hadron decays on tape) and standard dimuon triggers:
 - R(K) parked data
 - R(D*) parked data (leptonic τ decays)
 - $R(J/\psi) = \mathscr{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})/\mathscr{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})$ non-parked data (both the muonic and hadronic τ decays)
 - B/B_s(μμ) non-parked data, full Run 2 analysis
 - P₅' and differential branching fractions in $B^0 \to \mu^+ \mu^- K^{0^*}$ decays non-parked data

sll Physics in CMS - April 2022


Î

Ш

Greg Landsberg

CMS 2018 B Parking

Tag B w/ displaced µ Prob Trigger strategy – L1 Fill 6371 L1 trigger rate Rate [Hz]

As the luminosity drops, turn on various single-muon $|\eta|$ -restricted seeds, which allow to keep L1 rate constant and increase HLT rate toward the end of

each fill 13B events =	Lumi (E34)	L1 seed	HLT	rate	purity	
10B b hadrons	1.7	Mu12er1p5	Mu12_IP6	1585	0.92	
	1.5	Mu10er1p5	Mu9_IP5	3656	0.80	~50/fb of data
	1.3	Mu8er1p5	Mu9_IP5	3350	0.80	recorded
	1.1	Mu8er1p5	Mu7_IP4	6153	0.59	
be B	0.9	Mu7er1p5	Mu7_IP4	5524	0.59	

<PU> = 20 Brief summary of data-taking

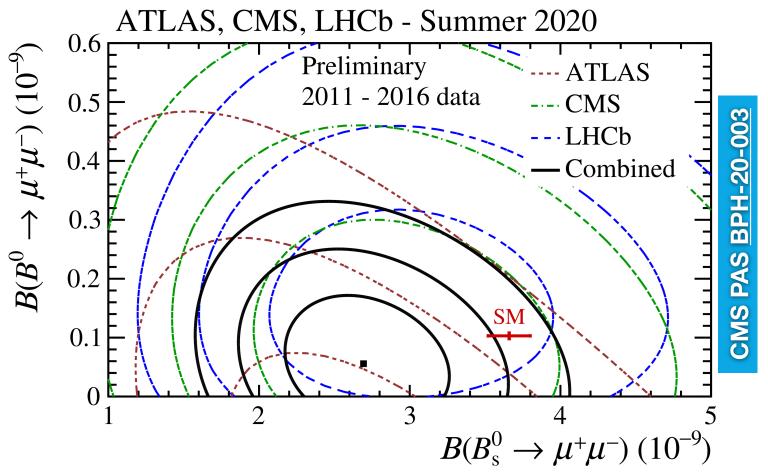
- Most of data taken so far with Set1
 - since Fill 6693, a slightly looser L1 seed was active at 1.2E34
- Starting from HLT Menu v2.2, an optimized version of the trigger proposal (Set2) which improves by 15% the number of saved B is running online

Avg. rate: >2kHz			
Fill Range	HLT Set		
6659 - 6666	FirstRun		
6672 - 6683	Setl		
6688 - 6690	Setl(*)		
6693 - 6761	Setl		
6762	Set2 (*)		
6763 - now	Set2		

rescale chai

Sate

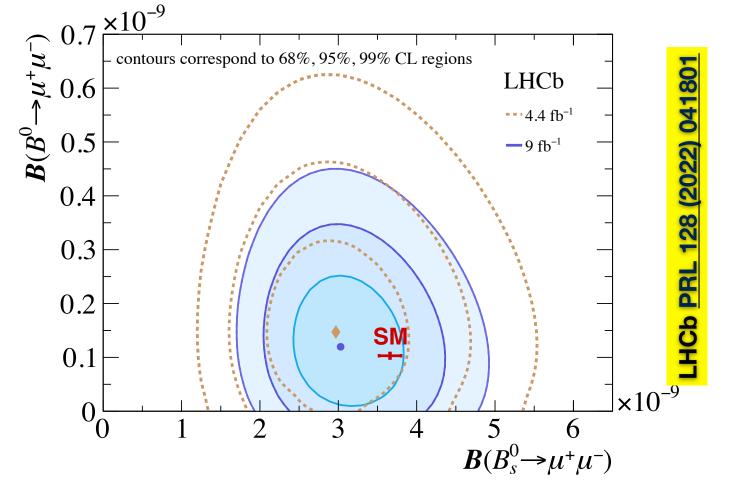
R(K) General Strategy


- Low-p_T electrons are very hard (spent three years optimizing the reconstruction and selection - a lot more challenging than we originally thought) - do not expect competitive precision in R(K) with the 2018 parked data
 - Rethinking trigger strategy for Run 3
 - Focusing on very high precision in the muon channel, which may shed light on whether muons are suppressed compared to the SM predictions, which LHCb data seem to indicate

B_s(μμ) Status

 ATLAS, CMS, LHCb combination: ~2σ tension w.r.t. the SM prediction similar to other b → sµµ decays

• New LHCb result based on full 9/fb data set reduces the tension to $\sim 1\sigma$



6

B_s(µµ) Status

- ATLAS, CMS, LHCb combination: ~2σ tension w.r.t. the SM prediction similar to other b → sµµ decays
- New LHCb result based on full 9/fb data set reduces the tension to $\sim 1\sigma$

6

On the Normalization

 \thickapprox ^{0.1}

0.1

At the mole frient, all three LHC¹ collaborations use Bit $\rightarrow J/\psi K^+$ as the fb⁻¹ \mathfrak{P}_{d} the statistical weight in the combination is dominated by the former] $\overset{\circ}{\underset{0.12}{\bullet}} \underbrace{ \text{This brings the } f_{s}/f_{u} \text{ fragmentation} }_{\text{function}} \underbrace{ function }_{\text{function$ sthe necessary input to the branching fraction measurement 0.11 0.11 [™] The current LHCb best value is 0.254 ± 0,008 [assuming f. ● In the CMS case, we increase the LHCb PRD 104 (2021) 032005 v0.36 0.34 8 TeV/18 TeV and pr variations $B \rightarrow D \mu X$ LHCh 0.34 $_{0.32}$ [the latter is reported at $\sim \overline{8}_{60}$ by 0.32 Fit 1.7 fb^{-1} 0.3 the LHCb at 13 TeV, but not eseen. 13 TeV 0.3 0.28 **Iope: (-17.6 ± 2.1)x10**-4 p_T/GeV 0.28 by ATLAS or internally in CMS] 0.26 As a result, in CMS we add a 0.015 =0.26 0.24 0.013 uncertainty and use: 0.24 0.22 0.22 ✤ f_s/f_u = 0.252 ± 0.0000 0.2^{L}_{0} ^{0,2} This 6% uncertainty is one of 40, most 20 30 10 40 $p_{\rm T}$ [GeV/c] dominant in the overall result, so it's $z^{0.36}$ important to reduce it $B \rightarrow D\pi$ 0.34

World Average f_s/f_d

Given the tension between different measurements of FFR and the claimed p_T dependence by LHCb, world average FFR are no longer being updated:

• From HFLAV arXiv:1909.12524

³The LHC production fractions results are still incomplete, lacking measurements of the production of weakly-decaying baryons heavier than Λ_b^0 . In Ref [1], we provided also a third set of averages including measurements performed at LEP, Tevatron and LHC, but this was mostly for comparison with previous averages. We have decided to discontinue these "world averages", because they mix environments with different fractions.

PDG still provides the world average values:

Table 75.1: $\overline{\chi}$ and *b*-hadron fractions (see text).

	in Z decays [8]	at Tevatron [8]	at LHC [89–91]
$\overline{\chi}$	0.1259 ± 0.0042	0.147 ± 0.011	
$f_u = f_d$	0.408 ± 0.007	0.344 ± 0.021	
f_s	0.100 ± 0.008	0.115 ± 0.013	
$f_{\rm baryon}$	0.084 ± 0.011	0.198 ± 0.046	
f_s/f_d	0.246 ± 0.023	0.333 ± 0.040	0.247 ± 0.009

Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Normalization (cont'd)

- One possibility is to use the B_s → J/ψφ decay, for normalization, which should eliminate the need for the f_s/f_u ratio
- Currently, the world average [PDG] is based on two results:
 - Belle, Y(5S) \rightarrow B_sB_s, B(B_s \rightarrow J/ ψ φ) = 1.25 ± 0.24
 - LHCb, 7 TeV: $B(B_s \rightarrow J/\psi \phi) = 1.050 \pm 0.105$
 - ✤ Unfortunately, the LHCb result uses B⁺ → J/psi K⁺ as the normalization channel, so this measurement is ~100% correlated with their f_s/f_u measurement - not an independent result
 - * N.B. ATLAS uses a theory prediction on B(B_s → J/ψφ)/B(B → J/ψK^{*}) = 0.83 +-0.03 [Liu, Wang, Xie, PRD 89 (2014) 024010] for their f_s/f_d ratio - but it's not reliable
- Can CMS use some other B_s decay mode to normalize?
 - Not really as none of them have been measured to a precision better than 10%, and most are affected by the same normalization channel issue
- Really need a Belle II Y(5S) measurement to make a breakthrough in precision
 - Why don't you guys run on the Y(5S) first???

FFR in CMS

- Several analyses are ongoing, with the results expected this summer:
 - FFR with charmonium $B_s \rightarrow J/\psi \varphi$, $B^0 \rightarrow J/\psi K^*$ (non-parked data; shape measurement testing claimed p_T dependence)
 - FFR with fully hadronic charm decays B_s → D_s-π+/K+, B⁰ → D-K+ via D-π+ (parked data)
 - FFR with charmonium $B_s \rightarrow J/\psi \phi$, $B^0 \rightarrow J/\psi K^*$ (parked data)
- ◆ However, one has to use theoretical input to calculate the FFR in hadronic charm decays (the present measurement of B(B_s → D_s-π⁺) is dominated by LHCb and uses f_s/f_d as an input): B(B_s → D_s-π⁺) = (2.99 ± 0.24)x10⁻³
- ◆ Belle measurement has a 20% uncertainty: B(B_s → D_s-π⁺)
 = (3.6 ± 0.5 ± 0.5)x10⁻³

Theoretical Calculations

- The LHCb extraction is based on the QCD factorization framework [Fleischer, Serra, Tuning PRD 83 (2011) 014017]:
 - Cabibbo-suppressed D-K+ channel is cleaner than the D-π+ channel, due to the lack of an extra non-factorizable diagram

 	$= \frac{\mathcal{B}(B^0 \to D^- K^+)}{\mathcal{B}(B^0_s \to D^s \pi^+)} \frac{\epsilon_{DK}}{\epsilon_{D_s \pi}} \frac{N_{D_s \pi}}{N_{DK}}$
=	$ \Phi_{\rm PS} \left \frac{V_{us}}{V_{ud}} \right ^2 \left(\frac{f_K}{f_\pi} \right)^2 \frac{\tau_{B^0}}{\tau_{B_s^0}} \frac{1}{\mathcal{N}_a \mathcal{N}_F} \frac{\mathcal{B}(D^- \to K^+ \pi^- \pi^-)}{\mathcal{B}(D_s^- \to K^+ K^- \pi^-)} \frac{\epsilon_{DK}}{\epsilon_{D_s \pi}} \frac{N_{D_s \pi}}{N_{DK}} $

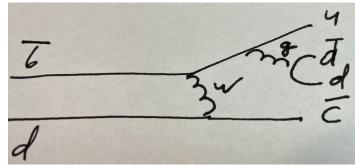
Input	Value	Reference
$\mathcal{B}(\overline{D}^0 \to K^+ \pi^-)$	$(3.999 \pm 0.045)\%$	[6]
$\mathcal{B}(D^- \to K^+ \pi^- \pi^-)$	$(9.38 \pm 0.16)\%$	[7]
$\mathcal{B}(D_s^- \to K^- K^+ \pi^-)$	$(5.47 \pm 0.10)\%$	[6, 39]
$ au_{B^0_s}/ au_{B^0}$	1.006 ± 0.004	[6]
$(\tau_{B^+} + \tau_{B^0})/2\tau_{B^0_s}$	1.032 ± 0.005	[6]
$(1-\xi_s)$	1.010 ± 0.005	[34]
\mathcal{N}_{a}	1.000 ± 0.020	[36]
\mathcal{N}_F	1.000 ± 0.042	[19, 40]
\mathcal{N}_E	0.966 ± 0.062	[7, 36]
$ V_{us} f_K/ V_{ud} f_{\pi}$	0.2767	[9]

Theoretical Calculations

- The LHCb extraction is based on the QCD factorization framework [Fleischer, Serra, Tuning PRD 83 (2011) 014017]:
 - Cabibbo-suppressed D-K+ channel is cleaner than the D-π+ channel, due to the lack of an extra non-factorizable diagram

f_s		$\mathcal{B}(B^0 \to D^- K^+) \epsilon_{DK} N_{D_s \pi}$
$\overline{f_d}$		$\overline{\mathcal{B}(B^0_s \to D^s \pi^+)} \ \overline{\epsilon_{D_s \pi}} \ \overline{N_{DK}}$
	=	$\Phi_{\rm PS} \left \frac{V_{us}}{V_{ud}} \right ^2 \left(\frac{f_K}{f_\pi} \right)^2 \frac{\tau_{B^0}}{\tau_{B_s^0}} \frac{1}{\mathcal{N}_a \mathcal{N}_F} \frac{\mathcal{B}(D^- \to K^+ \pi^- \pi^-)}{\mathcal{B}(D_s^- \to K^+ K^- \pi^-)} \frac{\epsilon_{DK}}{\epsilon_{D_s \pi}} \frac{N_{D_s \pi}}{N_{DK}}$

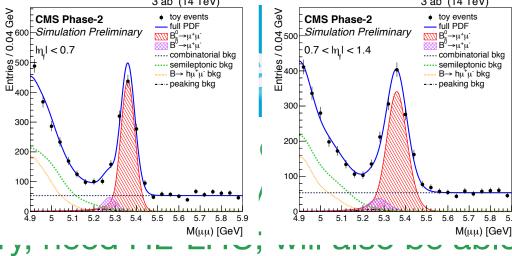
Input	Value	Reference
$\mathcal{B}(\overline{D}^0 \to K^+ \pi^-)$	$(3.999 \pm 0.045)\%$	[6]
$\mathcal{B}(D^- \to K^+ \pi^- \pi^-)$	$(9.38 \pm 0.16)\%$	[7]
$\mathcal{B}(D_s^- \to K^- K^+ \pi^-)$	$(5.47 \pm 0.10)\%$	[6, 39]
$ au_{B^0_s}/ au_{B^0}$	1.006 ± 0.004	[6]
$(\tau_{B^+} + \tau_{B^0})/2\tau_{B^0_s}$	1.032 ± 0.005	[6]
$(1-\xi_s)$	1.010 ± 0.005	[34]
\mathcal{N}_{a}	1.000 ± 0.020	[36]
\mathcal{N}_F	1.000 ± 0.042	[19, 40]
\mathcal{N}_E	0.966 ± 0.062	[7, 36]
$ V_{us} f_K/ V_{ud} f_{\pi}$	0.2767	[9]

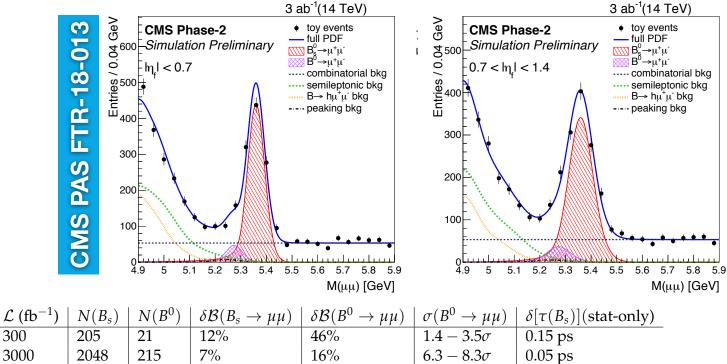

On the other hand, what was a tendency to overestimate the individual branching fractions in the past, is now a clear discrepancy: naively we observe a 4σ difference between prediction and measurement in $\bar{B}_s^0 \rightarrow D_s^+\pi^-$, over 5σ difference in $\bar{B}^0 \rightarrow D^+K^-$, about 2σ in $\bar{B}_s^0 \rightarrow D_s^{*+}\pi^-$ and 3σ in $\bar{B}^0 \rightarrow D^{*+}K^-$. A fit to the same data as above, but

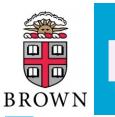
Bordone et al., EPJC 80 (2020) 347 and 951

Using non-Cabibbo-Suppressed Channel

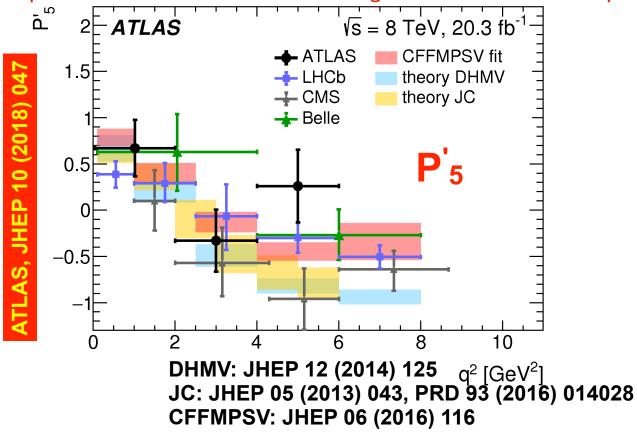
- In CMS, due to the lack of particle ID, Cabibbosuppressed channel is difficult
 - Use non-Cabibbo-suppressed B⁰ → D⁻π⁺ instead and normalize to the theoretically clean channel via the ratio of the branching fractions: B(B⁰ → D⁻K⁺)/B(B⁰ → D⁻π⁺)
 - This ratio is known to a rather fine 3.3% precision [PDG]: $(8.22 \pm 0.11 \pm 0.25)\%$
 - This is better than the precision on the non-factorizable diagram contribution $N_E = 0.966 \pm 0.062$
- Using parked data we can also measure $B(B_s \rightarrow J/\psi \phi)/B(B_s \rightarrow D_s \pi)$ and normalize the charmonium channel to the same d (clean?) theoretical value!


12


 3x more Run 2 data is significant improvem

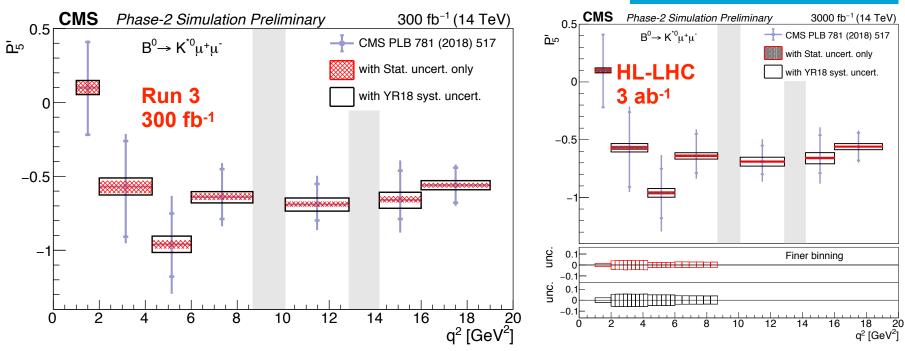

For the B(µµ) discove.

5.8 5.9

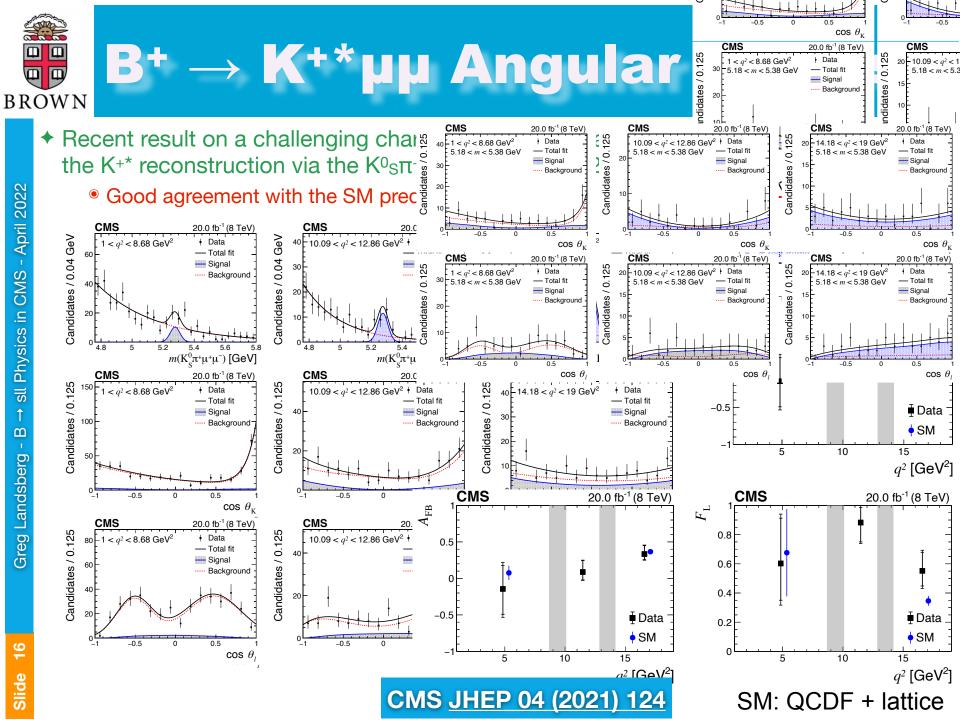

to probe the lifetime with sufficient enough precision to resolve the two B_s states

P'5: Experimental Situation

- Experimental situation: all over the place
 - The results are consistent among the experiments; inconsistency with the theory is an open question (both experimentally and theoretically!)
- In CMS, working on the 13 TeV analysis with significantly higher statistics
 - Will attempt to have finer bins and including the ones between J/ ψ and ψ (2S)



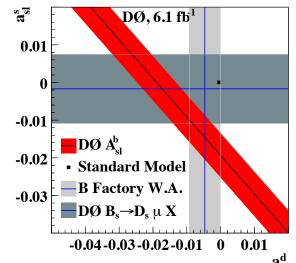
P'5: HL-LHC Projections


Run 3 and HL-LHC projections

- Up to x15 improvement w/ 3 ab⁻¹ compared to the 8 TeV CMS result [PLB 781 (2018) 517]
- Should be possible to resolve the situation experimentally already in Run 3

CMS PAS FTR-18-033

15



- Uncontested D0 result [PRD 82 (2010) 032001]
- Probes charge asymmetry in semileptonic B $\stackrel{\bullet}{\operatorname{Meson}}$ $\stackrel{\bullet}{\operatorname{Meson}}$ $\stackrel{\bullet}{\operatorname{Mup}} \stackrel{\bullet}{\operatorname{Mup}} \stackrel{\bullet$

 $A_{c1}^b = +0.0094 \pm 0.0112 \text{ (stat)} \pm 0.0214 \text{ (syst)}$

- This is a very hard measurement to make; D0 has used the fact that both the solenoid and the toroid polarities were periodically switched
 - While CMS always has the opposite solenoid and toroid fields, they have never been switched to an opposite polarity (this can be potentially done but would require some investment in the solenoid control circuit)
 - On the other hand, the systematics due to the Lorentz angle in the CMS silicon tracker is much smaller than for the D0 drift chamber

DØ, 6.1 fb

Observed asymme

Can CMS Test This?

- Not with the standard triggers, as most of the lowmass dimuon triggers required opposite-sign muons
- Could potentially do this with the parked data sample, using the trigger side, which guarantees at least one muon per event
- Systematics may be hard to control, but given the enormous size of the data set, many sources could be studied in situ
- Hard, but not impossible measurement!

Conclusions

- CMS has succeeded in a bold and aggressive program of putting ~10¹⁰ b hadron decays on tape in 2018
 - Unprecedented data set, with very huge potential
- Allows to do a number of B physics measurements, thought not to be possible before in CMS:
 - R(K)
 - R(D*)
 - FFR
 - •
- A number of results on semileptonic B decays will come this summer
- Rethinking trigger strategy for Run 3 in order to get more data for R(K/K*/φ) analyses