$\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$ analysis with BABAR data and comparison with new lattice predictions

Biplab Dey

"Challenges in Semileptonic B decays", Barolo, 2022

Eötvös Loránd University

Highlights from the BABAR-19 $B \to D^*$ paper

- First full 4-d $\overline{B} \to D^* \ell^- \overline{\nu}_{\ell}$ angular analysis with hadronic tagging: 1903.10002.
- Exclusive $|V_{cb}|$ showed little dependence on BGL/CLN and remained in tension with inclusive.
- Strong deviation with CLN-WA in $R_{1,2}(1)$ FF ratios:

- Figure as is, from the *BABAR*-19 paper.
- "CLN-WA" used HFLAV16 numbers.

SUMMARY OF BABAR-19 RESULTS (CONTD.)

- $R_1(1)$ moved from 1.404 ± 0.032 (HFLAV16) to 1.269 ± 0.026 (HFLAV21, *BABAR*-19 not included). Almost 3.3σ change! Latest number is close to *BABAR*-19.
- Experimentally, needs to be resolved: $R_2(1) \sim [h_{A_2}, h_{A_3}]/h_{A_1}$. HFLAV21 (excluding BABAR-19) quotes $R_2(1) \sim 0.85$.

FURTHER DEVELOPMENTS (NEW TODAY!)

- Significant inputs from lattice now in w > 1 for $B \to D^*$. Independent validations of FFs.
- MILC and JLQCD $(B \to D^*)$ and HPQCD $(B_s^0 \to D_s^*, \text{ full } q^2)$. Lots of checks possible.
- Checks for flavor SU(3) in $B_{(s)} \to D^*_{(s)}$.
- Include BABAR $B \rightarrow D$ data. Flavor SU3 checks.
- Goal: joint $B \to D^{(*)}$ HQET fits including all information, to interpret the FFs.
- Caveat: everything shown today is preliminary.

Biplab Dey (ELTE)

$B \rightarrow D$: INTRODUCTION

- Rate $\propto \sin^2 \theta_\ell \mathbf{k}^3 |f_+|^2$. $\lambda = 0$ projection of spin-1 W^{*+} .
- Scalar/tensor current searches for $\cos \theta_{\ell}$ terms interesting, but we need new MC flat in $\cos \theta_{\ell}$ (not available).
- Lattice has access to f_0 FF with the $q^2 = 0$ relation $f_+(0) = f_0(0)$. HISQ uses this relation at $w = w_{\text{max}}$.
- Data analysis has two challenges:
 - Acceptance and background subtraction do *not* factorize. Really a 2d problem.
 - Large D^\ast feed down has strong PHSP dependence.
- We perform a full 2-d unbinned ML angular analysis, with special care for a data-driven background subtraction.

Stacked histograms for $B \to D \ell^- \overline{\nu}_\ell$

• After all selections (all modes merged):

• $U = E_{\text{miss}} - p_{\text{miss}}$ in the *B* RF. Better variable than mm^2 .

- Main take-aways: no peaking component and the (out of the box generic $B\bar{B}$) MC follows the data well in the sidebands.
- Assume background template from MC under the signal. Signal part is handled in a data-driven fashion.

Biplab Dey (ELTE)

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

April 19, 2022 6 / 25

BREAKDOWN INTO INDIVIDUAL MODES

- Main motivation is that each mode has different acceptance and background characteristics.
- Handled independently and the NLL's summed in the end.

ℓ^-	D	decay mode	mode
e^-	D^0	$K^{-}\pi^{+}$	0
		$K^-\pi^+\pi^0$	1
		$K^-\pi^+\pi^-\pi^+$	2
e^-	D^+	$K^{-}\pi^{+}\pi^{+}$	3
		$K^-\pi^+\pi^+\pi^0$	4
μ^{-}	D^0	$K^{-}\pi^{+}$	5
		$K^-\pi^+\pi^0$	6
		$K^-\pi^+\pi^-\pi^+$	7
μ^{-}	D^+	$K^-\pi^+\pi^+$	8
		$K^-\pi^+\pi^+\pi^0$	9

SAMPLE DATA FITS, INTEGRATED OVER q^2 AND $\cos heta_\ell$

• The central widths of the signal are allowed to be floated slightly for Data/MC differences. The normalizations are always floated.

Biplab Dey (ELTE)

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

April 19, 2022 8 / 25

Sample data fits in different $\cos \theta_{\ell}$ bins

- Background *shape* varies in phase-space and modewise. Shown for mode 2.
- Signal-background separation method tracks this correlation smoothly in $q^2 \cos \theta_{\ell}$. Assigns an event-wise signal probability/weight, Q_i . Unlike sWeights, always > 0.

The $q^2 \rightarrow 0$ region issue

- $q^2 < 0.5 \text{ GeV}^2$ region: clean and significant signal.
- However, background peaks, so very difficult to estimate the background in a data-driven fashion.

- Same issue in BABAR-10 and Belle-16 $B \to D\ell^- \overline{\nu}_{\ell}$.
- Phase-space "edges" trimmed. Fiducial region is $|\cos\theta_\ell|<0.97$ and $q^2\in[0.5,10]~{\rm GeV^2}$

FINAL SIGNAL-BACKGROUND SEPARATION RESULTS

• signal and background integrated over all modes and phase-space.

• Tails removed subsequently with |U| < 50 MeV cut.

Biplab Dey (ELTE)

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

April 19, 2022 11 / 25

Setup

"NON-EXTENDED" UML ANGULAR FITS

- Unbinned maximum likelihood fits without absolute normalization (tagging efficiency).
- BGL: N = 2 (nominal) and N = 3 tested. CLN as well.
- Lattice MILC (1503.07237) constrains the $w \to 1$ region.
- To extract $|V_{cb}|$, include Belle (1510.03657) $d\Gamma/dw$ points.
- External data added as Gaussian constraints to the fit NLL.

1-D PROJECTIONS

• "Accepted" MC weighted by the fit results should match the background-subtracted data.

- Expected $\sin^2 \theta_{\ell}$ shown for $B \to D\ell^- \overline{\nu}_{\ell}$ for the first time. Demonstrates quality of neutrino reconstruction.
- NP via deviations from this behavior has been searched in $B \to K \mu^+ \mu^-$ at LHCb.

Biplab Dey (ELTE)

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

April 19, 2022 13 / 25

$B \rightarrow D$ numerical results (not shown)

- Dominant systematic is the background subtraction.
- PRD being prepared: $|V_{cb}|$ from $B \to D$, form-factors and flavor SU3 checks with $B_s \to D_s$ (HPQCD)
- Update to previous BABAR 2010 paper (0904.4063). Main goal is to prepare data for joint $B \to D^{(*)}$ fits.

$B \rightarrow D^* BABAR + LATTICE FITS: SETUP$

- Dataset remains the same as in BABAR-19 paper.
- Main change is access to N = 3 BGL expansion due to including the new lattice w > 1 data w/o breaking unitarity conditions.
- $\{3,3,3,2\}$ z expansion configuration for BGL basis $\{f_0, F_1, g, F_2\}$.
- F_2 is least constrained. Lattice-only.
- Try various combinations of BABAR + lattice:
 - BaBar+lattice fit result is in green.
 - HPQCD-only is blue
 - MILC is red.
 - JLQCD is black.
- HPQCD $B_s \to D_s^*$ FF converted to $B \to D^*$ using flavor SU3.

Biplab Dey (ELTE)

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

16 / 25

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

1.2

 h_V :

1.4

1.4

Biplab Dey (ELTE)

Biplab Dey (ELTE)

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

18 / 25

Biplab Dey (ELTE)

BaBar $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$

19 / 25

TAKEAWAYS

- Adding three new independent lattice data over the past two years did not change the overall conclusions in *BABAR-2019* paper.
- Especially true in the "clean" ratio observables $R_{1,2}$.
- Some movement among different lattice calculations.
- HPQCD errors are largest and trends show some deviations from BABAR +MILC+JLQCD. Flavor SU3 violation for $B \rightarrow D^*$?
- These combined fits are most precise, and also robust (no funny instabilities).

SUMMARY OF FIT RESULTS

Type	BABAR NLL	MILC χ^2	HPQCD χ^2	JLQCD χ^2
HPQCD	103441	69.7047	3.58412	25.0954
MILC+JLQCD	103441	14.1659	20.1721	5.63138
ALL	103443	13.1148	7.97299	5.91532

- Number of data points: 14 (MILC), 12 (HPQCD, JLQCD).
- Also MILC uncertainties as provided are smallest.
- Overall, BABAR can accommodate the new lattice data quite well.

Effect of lattice on $|V_{cb}|$

- Use HFLAV-16 $B \to D^*$ BFs, but include all lattice data now.
- $|V_{cb}| \times 10^3$ moves from 38.36 ± 0.90 to 38.93 ± 0.68 ,
- Using the updated HFLAV-21 BFs, the number is 39.83 ± 0.71 .
- Uncertainties on the BGL coefficients certainly improves the lattice data. No issue with unitarity as well.

RH CURRENT SEARCHES

- Parameterization: $h_V \to h_V(1 + \varepsilon_R)$. Axial FF's unchanged.
- Fits converged, blinded.
- Smoking gun: strong discrepancy between lattice (pure SM) and data (SM+NP) in $R_1(1)$, along with good agreement in $R_2(1)$.

SUMMARY AND NEXT STEPS

- BABAR $B \to D$ data getting ready to be incorporated in joint $B \to D^{(*)}$ HQET fits.
- BABAR-19 FF + $|V_{cb}|$ conclusions very robust. Survives checks from new lattice data and combined BABAR-lattice results most precise FFs.
- We're waiting for the updated BLPR paper for the joint $B \to D^{(*)}$ HQET fits.

Q-VALUE TECHNIQUE

- Signal/background lineshapes varying strongly in PHSP: Near PHSP edges or specific backgrounds.
- Metric $d_{ij} = \sum_{k} (\phi_{k,i} \phi_{k,j})^2$ to define closest-neighbor points.
- Event-wise fits on $N_c = 50, 100, \dots$ closest-neighbor points.
- Extract $Q_i = S_i/(S_i + B_i)$ as > 0 probability/weights for each data event.
- CPU-heavy (GPUs?), but gets around the problem of correlations.