HPQCD calculations for Heavy \rightarrow Heavy Decays

Judd Harrison, University of Glasgow

Challenges in semileptonic B decays - April 2022

Background

Many interesting B semileptonic decays currently under active investigation

- Here, focus on three related $b \rightarrow c$, pseudoscalar to vector decays:
$B_{(s)} \rightarrow D_{(s)}^{*} \ell \nu$ and $B_{c} \rightarrow J / \psi \ell \nu$
- Complementary determinations of $V_{c b}$,
- Comparison of observables sensitive to lepton flavor universality violation (LFUV) to experiment

Kinematic variables:

$$
\begin{aligned}
q^{2} & =\left(p-p^{\prime}\right)^{2} \\
w & =\frac{p^{\prime} \cdot p}{M_{B_{q}} M_{D_{q}^{(*)}}} \\
z & =\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}
\end{aligned}
$$

$B_{(s)} \rightarrow D_{(s)}^{*} \ell \nu, B_{c} \rightarrow J / \psi \ell \nu$

Pseudoscalar to vector decay has the following structure in the SM:

$$
\begin{gathered}
\frac{d \Gamma}{d q^{2}}=\chi\left(q^{2}\right) \times \mathcal{F}^{2}\left(q^{2}\right)\left|V_{c b}\right|^{2} \\
\mathcal{F}^{2}\left(q^{2}\right)=\left[\left(1+\frac{m_{\ell}^{2}}{2 q^{2}}\right)\left(H_{+}^{2}\left(q^{2}\right)+H_{-}^{2}\left(q^{2}\right)+H_{0}^{2}\left(q^{2}\right)\right)+\frac{3 m_{\ell}^{2}}{2 q^{2}} H_{t}^{2}\left(q^{2}\right)\right]
\end{gathered}
$$

Helicity amplitudes expressed in terms of form factors

$$
\begin{aligned}
\left\{H_{+}\left(q^{2}\right), H_{-}\left(q^{2}\right), H_{0}\left(q^{2}\right)\right\} & \leftrightarrow\left\{A_{1}\left(q^{2}\right), A_{2}\left(q^{2}\right), V\left(q^{2}\right)\right\} \\
H_{t}\left(q^{2}\right) & \propto A_{0}\left(q^{2}\right)
\end{aligned}
$$

- Theoretical predictions for vector meson final state require:
- 4 form factors within the Standard Model
- 3 additional tensor form factor for New Physics
- $V_{c b}$ - compare experimental value of $\eta_{\mathrm{EW}} \mathcal{F}\left(q_{\max }^{2}\right)\left|V_{c b}\right|$ to lattice calculations of $\mathcal{F}\left(q_{\text {max }}^{2}\right)$
- preferred over $B_{(s)} \rightarrow D_{(s)}$ due to favorable kinematics near zero-recoil.
- $R\left(D^{*}\right)$
- Sensitive to LFUV
- Theory for $R\left(D^{*}\right)$ relies on experimental fits + HQET for A_{0}
- On the lattice, typically use unphysically heavy pions and treat $D^{*} \rightarrow D \pi$ resonance using $\chi \mathrm{PT}$
- Lattice calculation of FFs for $B_{c} \rightarrow J / \psi<B_{s} \rightarrow D_{s}^{*}<B \rightarrow D^{*}$
- Computational cost of propagators for $c<s \ll u / d$
$-J / \psi$ and D_{s}^{*} are 'gold-plated'
$-B \rightarrow D^{*}$ requires careful treatment of chiral effects

Overview of Lattice Results

- SM FFs for $B \rightarrow D \ell \nu$ available away from zero recoil ${ }^{1}$
- SM FFs for $B_{s} \rightarrow D_{s} \ell \nu$ now available across the full kinematic range, tensor FF available close to zero-recoil, with work also ongoing ${ }^{2}$
- SM FFs for $B \rightarrow D^{*} \ell \nu$ recently became available from Fermilab-MILC away from zero-recoil ${ }^{3}$, with lattice calculations also underway by JLQCD as well as HPQCD.
- SM FFs for $B_{s} \rightarrow D_{s}^{*} \ell \nu$ and $B_{c} \rightarrow J / \psi \ell \nu$ available across full kinematic range from HPQCD ${ }^{4}$
- (Preliminary) SM FFs for $B \rightarrow D^{*} \ell \nu$ across full kinematic range from HPQCD

[^0]
Current Results

	Lattice only	Lattice + Exp 5	Experiment	Tension
$R(D)$	$0.293(4)^{6}$	$0.299(3)$	$0.340(30)$	1.4σ
$R\left(D^{*}\right)$	$0.265(13)$	$0.2483(13)$	$0.295(14)$	3.3σ
$R\left(D_{s}\right)$	$0.299(5)$	-	-	-
$R\left(D_{s}^{*}\right)$	$0.249(7)$	-	-	-
$R(J / \psi)$	$0.258(4)$	-	$0.71(25)^{7}$	1.8σ

HFLAV average, Fermilab-MILC, HPQCD.

	$V_{c b}$	
$B \rightarrow D$	$39.58(94)_{\exp }(37)_{\mathrm{th}} \times 10^{-3}$	HFLAV
$B \rightarrow D^{*}$	$38.76(42)_{\exp }(55)_{\text {th }} \times 10^{-3}$	
$B_{s} \rightarrow D_{s}^{(*)}$	$42.3(1.2)_{\exp }(1.2)_{\text {th }} \times 10^{-3}$	LHCb (2001.03225)
$B \rightarrow X_{c} \ell \nu$	$42.16(51) \times 10^{-3}$	Bordone et al.(2107.00604)

[^1]
Experimental Outlook

- Need precise SM form factors across full kinematic range
- Resolve discrepancy between inclusive and exclusive determinations of $V_{c b}$
- Make first principles predictions for $R\left(D_{(s)}^{*}\right)$ independent of experimental measurements
- Need tensor form factors to disentangle possible new physics effects

$b \rightarrow c$ Pseudoscalar to Vector Form Factors

In the standard model $\mathcal{F}\left(q^{2}\right)$ is a simple function of the form factors, $A_{1}\left(q^{2}\right), A_{0}\left(q^{2}\right), A_{2}\left(q^{2}\right)$ and $V\left(q^{2}\right)$, defined in terms of matrix elements. For example, for $B_{s} \rightarrow D_{s}^{*} \ell \nu$:

$$
\begin{aligned}
& \left\langle D_{s}^{*}\left(p^{\prime}, \lambda\right)\right| \bar{c} \gamma^{\mu} b\left|B_{s}^{0}(p)\right\rangle=\frac{2 i V\left(q^{2}\right)}{M_{B_{s}}+M_{D_{s}^{*}}} \varepsilon^{\mu \nu \rho \sigma} \epsilon_{\nu}^{*}\left(p^{\prime}, \lambda\right) p_{\rho}^{\prime} p_{\sigma} \\
& \left\langle D_{s}^{*}\left(p^{\prime}, \lambda\right)\right| \bar{c} \gamma^{\mu} \gamma^{5} b\left|B_{s}^{0}(p)\right\rangle=2 M_{D_{s}^{*}} A_{0}\left(q^{2}\right) \frac{\epsilon^{*}\left(p^{\prime}, \lambda\right) \cdot q}{q^{2}} q^{\mu} \\
& +\left(M_{B_{s}}+M_{D_{s}^{*}}\right) A_{1}\left(q^{2}\right)\left[\epsilon^{* \mu}\left(p^{\prime}, \lambda\right)-\frac{\epsilon^{*}\left(p^{\prime}, \lambda\right) \cdot q}{q^{2}} q^{\mu}\right] \\
& -A_{2}\left(q^{2}\right) \frac{\epsilon^{*}\left(p^{\prime}, \lambda\right) \cdot q}{M_{B_{s}}+M_{D_{s}^{*}}}\left[p^{\mu}+p^{\prime \mu}-\frac{M_{B_{s}}^{2}-M_{D_{s}^{*}}^{2}}{q^{2}} q^{\mu}\right]
\end{aligned}
$$

Form Factors Across the Full q^{2} Range with Lattice QCD 9

Use "Heavy-HISQ" approach:

- Compute form factors using multiple heavy masses ranging up to close to the physical b-quark mass
- Use Highly Improved Staggered Quark action ${ }^{8}$ for all quarks - fully relativistic, small discretisation effects
- Nonperturbatively renormalised currents, using PCVC and PCAC relations for vector and axial-vector, RI-SMOM for tensor
- Fit the form factor data including $a m_{h}$ discretisation effects, physical heavy mass dependence, and lattice spacing dependence
- For $B_{s} \rightarrow D_{s}^{*}$ and $B_{c} \rightarrow J / \psi$ first convert to z space, e.g.

$$
\begin{gathered}
P\left(q^{2}\right) \times A_{1}\left(q^{2}\right)=\sum_{n=0}^{3} a_{n} z^{n}\left(q^{2}\right) \mathcal{N}_{n} \\
a_{n}=\sum_{j, k, l=0}^{3} b_{n}^{j k l}\left(\frac{2 \Lambda_{\mathrm{QCD}}}{M_{\eta_{h}}}\right)^{j}\left(\frac{a m_{c}^{\mathrm{val}}}{\pi}\right)^{2 k}\left(\frac{a m_{h}^{\mathrm{val}}}{\pi}\right)^{2 l}
\end{gathered}
$$

$$
{ }^{9} B_{s} \rightarrow D_{s}^{*}: 2105.11433, B_{c} \rightarrow J / \psi: 2007.06957
$$

- We use the second generation MILC HISQ gauge configurations with $u / d, s$ and c quarks in the sea.

- The subset of configurations we use include physical u / d quark masses, and have small lattice spacings allowing us to come very close to the physical b mass.

$P\left(q^{2}\right) \times A_{1}$ for $B_{c} \rightarrow J / \psi$, plotted in z space, showing the physical continuuum form factor as a blue band

$B_{c} \rightarrow J / \psi$ Results - 2007.06956, 2007.06957

$$
\begin{aligned}
R(J / \psi) & =0.2582(38) \\
\Gamma\left(B_{c}^{-} \rightarrow J / \psi \mu^{-} \bar{\nu}_{\mu}\right) / \eta_{\mathrm{EW}}^{2}\left|V_{c b}\right|^{2} & =1.73(12) \times 10^{13} s^{-1}
\end{aligned}
$$

- Experimental results for $B_{c} \rightarrow J / \psi$ are currently much less precise than our lattice results, but expect this to improve in future.
- In addition to $R(J / \psi)$, other observables and ratios may be constructed with high precision from our form factor results
- Can study the effect of NP couplings - full details in 2007.06956

$B_{s} \rightarrow D_{s}^{*}$ Results - 2105.11433

$$
\begin{aligned}
R\left(D_{s}^{*}\right) & =0.249(6)_{\mathrm{latt}}(4)_{\mathrm{EM}} \\
\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}\right) / \eta_{\mathrm{EW}}^{2}\left|V_{c b}\right|^{2} & =2.06(16) \times 10^{13} s^{-1}
\end{aligned}
$$

$R\left(D_{s}^{*}\right), V_{c b} \ldots$

Many new lattice predictions for $B_{s} \rightarrow D_{s}^{*}$ quantities:

	This work	Exp. 10	$B \rightarrow D^{*}{ }^{11}$
$\frac{\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}{\Gamma\left(B_{s}^{0}-D_{s}^{+-} \mu^{+} \nu_{\mu}\right)}$	$0.443(40)$	$0.464(45)$	$0.457(23)$
$R\left(D_{(s)}^{*}\right)$	$0.249(7)$	-	$0.2483(13)$
F_{L}	$0.440(16)$	-	$0.464(10)$
$\mathcal{A}_{\lambda_{\tau}}=-P_{\tau}$	$0.520(12)$	-	$0.496(15)$

- Can also infer a total experimental rate Γ from LHCb analysis of $V_{c b}$ in 2001.03225, we can use this with our results to give a value of $V_{c b}$

$$
\left|V_{c b}\right|=42.2(2.3) \times 10^{-3}
$$

- Consistent with the result using lattice data only at zero-recoil.

[^2]
$B_{s} \rightarrow D_{s}^{*}$ Shape

We can compare the binned experimental differential rate ${ }^{12}$ for the $B_{s} \rightarrow D_{s}^{*}$ shape to our results

$$
\chi^{2} / \text { dof }=1.8(0.62 \text { excluding third bin })
$$

$B_{s} \rightarrow D_{s}^{*}$ Shape Parameters

In the CLN parameterisation, the shape of the decay for massive leptons in the SM is fully described by the four parameters $\rho^{2}, R_{1}(1), R_{2}(1)$ and $R_{0}(1)$, with $\rho^{2}, R_{1}(1), R_{2}(1)$ determined from experiment and $R_{0}(1)$ known to NLO in HQET ${ }^{13}$

- Our results are broadly consistent with the measured values of ρ^{2}, $R_{1}(1)$ and $R_{2}(1)$ for $B_{s} \rightarrow D_{s}^{*}$, and with the NLO HQET value of $R_{0}(1)$.
${ }^{13}$ LHCb:2001.03225+2003.08453, HFLAV:1909.12524, HQET:1703.05330

Preliminary results for $B \rightarrow D^{*}$

For $B \rightarrow D^{*}$, use HQET form factors:

$$
\begin{aligned}
& \frac{\left\langle D^{*}\left(p^{\prime}, \lambda\right)\right| \bar{c} \gamma^{\mu} b|B(p)\rangle}{\sqrt{M_{B} M_{D^{*}}}}=h_{V}(w) \varepsilon_{\rho \sigma}^{\mu \nu} \epsilon_{\nu}^{*}\left(v_{D^{*}}, \lambda\right) v_{D^{*}}^{\rho} v_{B}^{\sigma} \\
& \frac{\left\langle D^{*}\left(p^{\prime}, \lambda\right)\right| \bar{c} \gamma^{\mu} \gamma^{5} b|B(p)\rangle}{\sqrt{M_{B} M_{D^{*}}}} \\
& =i \epsilon_{\nu}^{*}\left[g^{\mu \nu}(w+1) h_{A_{1}}(w)-v_{B}^{\nu}\left(v_{B}^{\mu} h_{A_{2}}(w)+v_{D^{*}}^{\mu} h_{A_{3}}(w)\right)\right]
\end{aligned}
$$

Computation completed on $a=0.045 \mathrm{fm}, a=0.06 \mathrm{fm}$ and $a=0.09 \mathrm{fm}$ $m_{l}=m_{s} / 5$ lattices and $a=0.09 \mathrm{fm}$ physical m_{l} lattices. In the process of generating correlation functions on $a=0.06 \mathrm{fm}$ physical m_{l} lattices. Fit form factors to HQET inspired form, including chiral terms:

$$
\begin{aligned}
F= & \sum_{n i j k} a_{i j k}^{n}(w-1)^{n}\left(\frac{a m_{c}}{\pi}\right)^{i}\left(\frac{a m_{h}}{\pi}\right)^{j}\left(\frac{\Lambda_{\mathrm{QCD}}}{M_{B}}\right)^{k} \mathcal{N}_{n} \\
& +X_{\log }\left(M_{\pi} / \Lambda_{\chi}\right)+A\left(\frac{M_{\pi}}{\Lambda_{\chi}}\right)^{2}
\end{aligned}
$$

Preliminary results for $B \rightarrow D^{*}$

We include data from $B_{s} \rightarrow D_{s}^{*}$ in our chiral extrapolation.

Preliminary results for $B \rightarrow D^{*}$

Preliminary results for $B \rightarrow D^{*}$

Joint fit to HPQCD lattice and Belle untagged data $-\chi^{2} /$ dof $=1.6$

$$
V_{c b}=39.7(0.5)_{\mathrm{latt}}(0.5)_{\exp } \times 10^{-3}
$$

(PRELIMINARY)

Comparison to Fermilab-MILC (2105.14019)

Comparison to Fermilab-MILC (2105.14019)

Summary

- Published lattice results for $B_{c} \rightarrow J / \psi$ form factors, corresponding experimental measurements are currently imprecise.
- Experimental results for $B_{c} \rightarrow J / \psi$ decays are expected to become more precise
- Results for the $B_{s} \rightarrow D_{s}^{*}$ form factors on arXiv
- Model independent determinations of $R\left(D_{s}^{*}\right)$ and other observables
- Model independent determination of $\left|V_{c b}\right|$, though ideally would use experimental results directly
- Work on $B \rightarrow D^{*}$ form factors, including Tensor form factors, almost complete

Thanks for listening!

[^0]: ${ }^{1}$ e.g. $1503.07237,1505.03925$
 ${ }^{2} 1906.00701,1310.5238,2110.10061$
 ${ }^{3} 2105.14019$
 ${ }^{4} 2105.11433,2007.06957$

[^1]: ${ }^{5}$ Assumes new physics only possible in semitauonic mode
 ${ }^{6}$ FLAG review
 ${ }^{7}$ LHCb- 1711.05623

[^2]: ${ }^{10}$ LHCb 2001.03225
 ${ }^{11}$ HFLAV 1909.12524,Bordone et. al 1908.09398

