HPQCD calculations for Heavy \rightarrow Heavy Decays

Judd Harrison, University of Glasgow

Challenges in semileptonic B decays - April 2022

Background

 $B_a(p)$

Many interesting ${\cal B}$ semileptonic decays currently under active investigation

- ▶ Here, focus on three related $b \to c$, pseudoscalar to vector decays: $B_{(s)} \to D^*_{(s)} \ell \nu$ and $B_c \to J/\psi \ell \nu$
 - Complementary determinations of V_{cb} ,

 \overline{a}

Comparison of observables sensitive to lepton flavor universality violation (LFUV) to experiment

(p')

$$B_{(s)}
ightarrow D^*_{(s)} \ell
u$$
, $B_c
ightarrow J/\psi \ell
u$

Pseudoscalar to vector decay has the following structure in the SM:

$$rac{d \mathsf{\Gamma}}{d q^2} = \! \chi(q^2) imes \mathcal{F}^2(q^2) |V_{cb}|^2$$

$$\mathcal{F}^2(q^2) = \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) \left(H_+^2(q^2) + H_-^2(q^2) + H_0^2(q^2) \right) + \frac{3m_\ell^2}{2q^2} H_t^2(q^2) \right]$$

Helicity amplitudes expressed in terms of form factors

 $\{ H_+(q^2), H_-(q^2), H_0(q^2) \} \leftrightarrow \{ A_1(q^2), A_2(q^2), V(q^2) \}$ $H_t(q^2) \propto A_0(q^2)$

► Theoretical predictions for vector meson final state require:

- 4 form factors within the Standard Model
- 3 additional tensor form factor for New Physics
- ▶ V_{cb} compare experimental value of $\eta_{\rm EW} \mathcal{F}(q_{\rm max}^2) |V_{cb}|$ to lattice calculations of $\mathcal{F}(q_{\rm max}^2)$
 - preferred over $B_{(s)} \to D_{(s)}$ due to favorable kinematics near zero-recoil.
- ► R(D*)
 - Sensitive to LFUV
 - Theory for $R(D^*)$ relies on experimental fits + HQET for A_0
 - On the lattice, typically use unphysically heavy pions and treat $D^*\to D\pi$ resonance using χPT

▶ Lattice calculation of FFs for $B_c \rightarrow J/\psi \ < \ B_s \rightarrow D_s^* \ < \ B \rightarrow D^*$

- Computational cost of propagators for c < s << u/d
- $-~J/\psi$ and D_s^* are 'gold-plated'
- $B
 ightarrow D^{*}$ requires careful treatment of chiral effects

Overview of Lattice Results

- ▶ SM FFs for $B \rightarrow D\ell\nu$ available away from zero recoil¹
- ▶ SM FFs for $B_s \rightarrow D_s \ell \nu$ now available across the full kinematic range, tensor FF available close to zero-recoil, with work also ongoing²
- SM FFs for B → D^{*}ℓν recently became available from Fermilab-MILC away from zero-recoil³, with lattice calculations also underway by JLQCD as well as HPQCD.
- ▶ SM FFs for $B_s \rightarrow D_s^* \ell \nu$ and $B_c \rightarrow J/\psi \ell \nu$ available across full kinematic range from HPQCD⁴
- ▶ (Preliminary) SM FFs for $B \rightarrow D^* \ell \nu$ across full kinematic range from HPQCD

¹e.g. 1503.07237,1505.03925 ²1906.00701,1310.5238,2110.10061 ³2105.14019 ⁴2105.11433, 2007.06957

Current Results

	Lattice only	$Lattice+Exp^5$	Experiment	Tension
R(D)	0.293(4) ⁶	0.299(3)	0.340(30)	1.4σ
$R(D^*)$	0.265(13)	0.2483(13)	0.295(14)	3.3σ
$R(D_s)$	0.299(5)	—	—	_
$R(D_s^*)$	0.249(7)	—	_	_
$R(J/\psi)$	0.258(4)	_	$0.71(25)^7$	1.8σ

HFLAV average, Fermilab-MILC, HPQCD.

	V _{cb}	
$B \rightarrow D$	$39.58(94)_{ m exp}(37)_{ m th} imes 10^{-3}$	HFLAV
$B ightarrow D^*$	$38.76(42)_{ m exp}(55)_{ m th} imes 10^{-3}$	
$B_s ightarrow D_s^{(*)}$	$42.3(1.2)_{ m exp}(1.2)_{ m th} imes 10^{-3}$	LHCb (2001.03225)
$B \to X_c \ell \nu$	$42.16(51) imes 10^{-3}$	Bordone et al.(2107.00604)

⁵Assumes new physics only possible in semitauonic mode ⁶FLAG review ⁷LHCb-1711.05623

Experimental Outlook

Dataset up to year

- Need precise SM form factors across full kinematic range
 - Resolve discrepancy between inclusive and exclusive determinations of V_{cb}
 - Make first principles predictions for $R(D^*_{(s)})$ independent of experimental measurements
- ▶ Need tensor form factors to disentangle possible new physics effects

b ightarrow c Pseudoscalar to Vector Form Factors

In the standard model $\mathcal{F}(q^2)$ is a simple function of the form factors, $A_1(q^2)$, $A_0(q^2)$, $A_2(q^2)$ and $V(q^2)$, defined in terms of matrix elements. For example, for $B_s \to D_s^* \ell \nu$:

$$\begin{split} \langle D_s^*(p',\lambda)|\bar{c}\gamma^{\mu}b|B_s^0(p)\rangle &= \frac{2iV(q^2)}{M_{B_s}+M_{D_s^*}}\varepsilon^{\mu\nu\rho\sigma}\epsilon_{\nu}^*(p',\lambda)p'_{\rho}p_{\sigma}\\ \langle D_s^*(p',\lambda)|\bar{c}\gamma^{\mu}\gamma^5b|B_s^0(p)\rangle &= 2M_{D_s^*}A_0(q^2)\frac{\epsilon^*(p',\lambda)\cdot q}{q^2}q^{\mu}\\ &+ (M_{B_s}+M_{D_s^*})A_1(q^2)\Big[\epsilon^{*\mu}(p',\lambda)-\frac{\epsilon^*(p',\lambda)\cdot q}{q^2}q^{\mu}\Big]\\ &- A_2(q^2)\frac{\epsilon^*(p',\lambda)\cdot q}{M_{B_s}+M_{D_s^*}}\Big[p^{\mu}+p'^{\mu}-\frac{M_{B_s}^2-M_{D_s^*}^2}{q^2}q^{\mu}\Big] \end{split}$$

Form Factors Across the Full q^2 Range with Lattice QCD⁹

Use "Heavy-HISQ" approach:

- Compute form factors using multiple heavy masses ranging up to close to the physical b-quark mass
- Use Highly Improved Staggered Quark action⁸ for all quarks fully relativistic, small discretisation effects
- Nonperturbatively renormalised currents, using PCVC and PCAC relations for vector and axial-vector, RI-SMOM for tensor
- Fit the form factor data including am_h discretisation effects, physical heavy mass dependence, and lattice spacing dependence
 - For $B_s
 ightarrow D_s^*$ and $B_c
 ightarrow J/\psi$ first convert to z space, e.g.

$$P(q^2) \times A_1(q^2) = \sum_{n=0}^3 a_n z^n(q^2) \mathcal{N}_n$$

$$a_n = \sum_{j,k,l=0}^{3} b_n^{jkl} \left(\frac{2\Lambda_{\rm QCD}}{M_{\eta_h}}\right)^j \left(\frac{am_c^{\rm val}}{\pi}\right)^{2k} \left(\frac{am_h^{\rm val}}{\pi}\right)^{2l}$$

 $^{8} {\rm hep-lat}/0610092$ $^{9} B_{s} \to D_{s}^{*}{:}2105.11433, \ B_{c} \to J/\psi$:2007.06957

We use the second generation MILC HISQ gauge configurations with u/d, s and c quarks in the sea.

The subset of configurations we use include physical u/d quark masses, and have small lattice spacings allowing us to come very close to the physical b mass.

 $P(q^2) \times A_1$ for $B_c \to J/\psi,$ plotted in z space, showing the physical continuuum form factor as a blue band

$B_c \to J/\psi$ Results - 2007.06956, 2007.06957

 $R(J/\psi) = 0.2582(38)$ $\Gamma(B_c^- \to J/\psi \mu^- \bar{\nu}_{\mu})/\eta_{\rm EW}^2 |V_{cb}|^2 = 1.73(12) \times 10^{13} s^{-1}$

Experimental results for B_c → J/ψ are currently much less precise than our lattice results, but expect this to improve in future.
 In addition to R(J/ψ), other observables and ratios may be

- constructed with high precision from our form factor results
 - $-\,$ Can study the effect of NP couplings full details in 2007.06956

 $B_s \rightarrow D_s^*$ Results - 2105.11433

$R(D_s^*)$, V_{cb} ...

Many new lattice predictions for $B_s \rightarrow D_s^*$ quantities:

	This work	Exp. ¹⁰	$B ightarrow D^{* 11}$
$\frac{\Gamma(B_s^0 \to D_s^- \mu^+ \nu_\mu)}{\Gamma(B^0 \to D_s^{*-} \mu^+ \nu_\mu)}$	0.443(40)	0.464(45)	0.457(23)
$R(D_{(s)}^{*})$	0.249(7)	_	0.2483(13)
$F_L^{(-)}$	0.440(16)	_	0.464(10)
$\mathcal{A}_{\lambda_{ au}} = - P_{ au}$	0.520(12)	_	0.496(15)

Can also infer a total experimental rate Γ from LHCb analysis of V_{cb} in 2001.03225, we can use this with our results to give a value of V_{cb}

$$|V_{cb}| = 42.2(2.3) \times 10^{-3}$$

Consistent with the result using lattice data only at zero-recoil.

¹⁰LHCb 2001.03225
 ¹¹HFLAV 1909.12524,Bordone et. al 1908.09398

$B_s \rightarrow D_s^*$ Shape

We can compare the binned experimental differential rate 12 for the $B_{\rm s} \to D_{\rm s}^*$ shape to our results

 $\chi^2/{
m dof} = 1.8$ (0.62 excluding third bin)

$B_s \rightarrow D_s^*$ Shape Parameters

In the CLN parameterisation, the shape of the decay for massive leptons in the SM is fully described by the four parameters ρ^2 , $R_1(1)$, $R_2(1)$ and $R_0(1)$, with ρ^2 , $R_1(1)$, $R_2(1)$ determined from experiment and $R_0(1)$ known to NLO in HQET¹³

• Our results are broadly consistent with the measured values of ρ^2 , $R_1(1)$ and $R_2(1)$ for $B_s \rightarrow D_s^*$, and with the NLO HQET value of $R_0(1)$.

¹³LHCb:2001.03225+2003.08453, HFLAV:1909.12524, HQET:1703.05330

For $B \rightarrow D^*$, use HQET form factors:

$$\frac{\langle D^*(p',\lambda)|\bar{c}\gamma^{\mu}b|B(p)\rangle}{\sqrt{M_BM_{D^*}}} = h_V(w)\varepsilon^{\mu\nu}_{\ \rho\sigma}\epsilon^*_{\nu}(v_{D^*},\lambda)v^{\rho}_{D^*}v^{\sigma}_{B}$$

$$\frac{\langle D^*(p',\lambda)|\bar{c}\gamma^{\mu}\gamma^5b|B(p)\rangle}{\sqrt{M_BM_{D^*}}}$$

$$= i\epsilon^*_{\nu}[g^{\mu\nu}(w+1)h_{A_1}(w) - v^{\nu}_B(v^{\mu}_Bh_{A_2}(w) + v^{\mu}_{D^*}h_{A_3}(w))$$

Computation completed on a = 0.045 fm, a = 0.06 fm and a = 0.09 fm $m_l = m_s/5$ lattices and a = 0.09 fm physical m_l lattices. In the process of generating correlation functions on a = 0.06 fm physical m_l lattices. Fit form factors to HQET inspired form, including chiral terms:

$$F = \sum_{nijk} a_{ijk}^{n} (w - 1)^{n} \left(\frac{am_{c}}{\pi}\right)^{i} \left(\frac{am_{h}}{\pi}\right)^{j} \left(\frac{\Lambda_{\rm QCD}}{M_{B}}\right)^{k} \mathcal{N}_{n}$$
$$+ X_{\rm log} (M_{\pi}/\Lambda_{\chi}) + A \left(\frac{M_{\pi}}{\Lambda_{\chi}}\right)^{2}$$

We include data from $B_s \rightarrow D_s^*$ in our chiral extrapolation.

Joint fit to HPQCD lattice and Belle untagged data - $\chi^2/{
m dof}=1.6$

 $V_{cb} = 39.7(0.5)_{\text{latt}}(0.5)_{\text{exp}} \times 10^{-3}$ (PRELIMINARY)

Comparison to Fermilab-MILC (2105.14019)

Comparison to Fermilab-MILC (2105.14019)

Summary

- ▶ Published lattice results for $B_c \rightarrow J/\psi$ form factors, corresponding experimental measurements are currently imprecise.
 - Experimental results for $B_c \rightarrow J/\psi$ decays are expected to become more precise
- Results for the $B_s \rightarrow D_s^*$ form factors on arXiv
 - Model independent determinations of $R(D_s^*)$ and other observables
 - Model independent determination of $|V_{cb}|,$ though ideally would use experimental results directly
- ▶ Work on $B \rightarrow D^*$ form factors, including Tensor form factors, almost complete

Thanks for listening!