S. Simula INFN - Roma Tre

in collaboration with:

G. Martinelli (Roma "La Sapienza"), M. Naviglio (Pisa), L. Vittorio (Pisa)

outline of the talk

* results for $B \to D^{(*)} \ell \nu_{\ell}$ decays: extraction of $|V_{cb}|$ and theoretical determination of $R(D^{(*)})$ [2105.08674, 2109.15248]

* results for $B_s \to D_s^{(*)} \ell \nu_{\ell}$ decays: extraction of $|V_{cb}|$ and theoretical determination of $R(D_s^{(*)})$ [2204.05925]

International Workshop on Challenges in Semileptonic B decays Barolo, Italy, April 19-23, 2022

$|V_{cb}|$ and $R(D_{(s)}^{(*)})$ using lattice QCD and unitarity

* the Dispersion Matrix approach: an attractive way to implement unitarity and Lattice QCD calculations in the analysis of exclusive semileptonic decays of hadrons [PRD '21 (2105.02497), PRD '21 (2105.07851), PRD '22 (2105.08674)]

* results for $|V_{ub}|$ from $B \to \pi \ell \nu_{\ell}$ and $B_s \to K \ell \nu_{\ell}$ decays [2202.10285] \to Ludovico's slides in the discussion session

* two critical issues in semileptonic $B \to D^{(*)} \ell \nu_{\ell}$ decays - exclusive/inclusive $|V_{cb}|$ puzzle: <u>exclusive</u> (FLAG '21): $|V_{cb}|(BGL) \cdot 10^3 = 39.36$ (68)

- $R(D^{(*)})$ anomalies: $$\begin{split} & \frac{\mathscr{B}(B \to D\tau\nu_{\tau})}{\mathscr{B}(B \to D\ell\nu_{\ell})} \\ & \mathscr{B}(B \to D^{*}\tau\nu_{\tau}) \\ & \mathcal{B}(B \to D^{*}\ell\nu_{\ell}) \end{split}$$ R(D) $R(D^*)$

differences of ~ 3.4 σ between exp.'s and "SM"

" " = mix of theoretical calculations and experimental

motivations

simultaneous fit of the lattice points and experimental data to determine the shape of the FFs and to extract $|V_{cb}|$ *** slope differences between exp's and theory \rightarrow bias on $|V_{ch}|^{\text{joint fit}}$? ***

important news: LQCD form factors for $B \to D^* \ell \nu_{\ell}$ decays from FNAL/MILC (arXiv:2105.14019) synthetic data points at 3 non-zero values of the recoil (w - 1)

- entirely based on first principles (i.e. lattice QCD simulations of 2- and 3-point Euclidean correlators)
- independent on any assumption about the momentum dependence of the FFs
- unitarization of the input theoretical data (including also kinematical constraints)
- no mixing among theoretical calculations and experimental data to describe the shape of the FFs
- * results for $B_{(s)} \to D_{(s)}^{(*)} \ell \nu_{\ell}$ decays: extraction of $|V_{cb}|$ and theoretical determination of $R(D_{(s)}^{(*)})$ using LQCD results for the FFs (from FNAL/MILC and HPQCD)

decay	$ V_{cb} ^{\mathrm{DM}} \cdot 10^3$	inclusive	exclusive	observable	DM	experiment	difference
		[2107.00604]	[FLAG 21]	R(D)	0.296(8)	0.340(27)(13)	≃ 1.4
$B \rightarrow D$	41.0 ± 1.2			$R(D^*)$	0.275 (8)	0.295(11) (8)	≃ 1.3
$B \rightarrow D^*$	41.3 ± 1.7			$R(D_s)$	0.298(5)		
$B_s \rightarrow D_s$	42.4 ± 2.0			$R(D_{s}^{*})$	0.250(6)		
$B_s \rightarrow D_s^*$	41.4 ± 2.6						
average	41.4 ± 0.8	42.16 ± 0.50	39.36 ± 0.68				
difference		$\simeq 0.8 \sigma$	$\simeq 1.9 \sigma$				

aim of the talk

to show the relevant, attractive features of the Dispersion Matrix (DM) approach [arXiv:2105.02497], which is a rigorously model-independent tool for describing the hadronic form factors (FFs) in their whole kinematical range

> [2105.08674, 2109.15248, 2204.05925]

*** reduced tensions in both $|V_{ch}|$ and $R(D^{(*)})$ ***

ce σ σ

Dispersion Matrix (DM) approach

$$\mathcal{M} = \begin{pmatrix} \langle \phi f | \phi f \rangle & \langle \phi f | g_t \rangle & \langle \phi f | g_{t_1} \rangle & \dots & \langle \phi f | g_{t_N} \rangle \\ \langle g_t | \phi f \rangle & \langle g_t | g_t \rangle & \langle g_t | g_t \rangle & \langle g_t | g_{t_1} \rangle & \dots & \langle g_t | g_{t_N} \rangle \\ \langle g_{t_1} | \phi f \rangle & \langle g_{t_1} | g_t \rangle & \langle g_{t_1} | g_t \rangle & \dots & \langle g_{t_1} | g_{t_N} \rangle \\ \dots & \dots & \dots & \dots & \dots \\ \langle g_{t_N} | \phi f \rangle & \langle g_{t_N} | g_t \rangle & \langle g_{t_N} | g_{t_1} \rangle & \dots & \langle g_{t_N} | g_{t_N} \rangle \end{pmatrix}$$
 inner product: $\langle g | h \rangle \equiv \frac{1}{2\pi i} \int_{|z|=1}^{1} \frac{dz}{z} \ \overline{g}(z) h(z)$
 $g_t(z) \equiv \frac{1}{1 - \overline{z}(t) z}$
 $\langle g_t | \phi f \rangle \equiv \phi(z, q_0^2) f(z) \qquad \langle g_t | g_{t_m} \rangle = \frac{1}{1 - \overline{z}(t_m)}$

 t_1, t_2, \ldots, t_N are the N values of the squared 4-momentum transfer where the form factor f has been computed and t is its value where we want to compute f(t)

unitarity bound: $\langle \phi f | \phi f \rangle$

in the case of interest $z_i \equiv z(t_i)$ and $\phi_i f_i \equiv \phi(z_i, q_i)$ real numbers and the positivity of the inner product

[arXiv:2105.02497]

* reappraisal and improvement of the method originally proposed by Bourrely et al. NPB '81 and Lellouch in NPB '96

$$= \frac{1}{2\pi i} \int_{|z|=1}^{1} \frac{dz}{z} |\phi(z, q_0^2) f(z)|^2 \le \chi(q_0^2)$$

$$\stackrel{2}{\to} f(t_i) \text{ are timplies:} \quad \det[\overline{\mathcal{M}}] = \begin{vmatrix} \chi(q_0^2) & \phi f & \phi_1 f_1 & \dots & \phi_N f_N \\ \phi f & \frac{1}{1-z^2} & \frac{1}{1-zz_1} & \dots & \frac{1}{1-zz_N} \\ \phi_1 f_1 & \frac{1}{1-z_1z} & \frac{1}{1-z_1^2} & \dots & \frac{1}{1-z_1z_N} \\ \dots & \dots & \dots & \dots \\ \phi_N f_N & \frac{1}{1-z_Nz} & \frac{1}{1-z_Nz_1} & \dots & \frac{1}{1-z_N^2} \end{vmatrix}$$

* the explicit solution is a band of values: $\beta - \sqrt{\gamma} \le f(z)$

$$\beta = \frac{1}{d(z)\phi(z)} \sum_{j=1}^{N} f_j \phi_j d_j \frac{1 - z_j^2}{z - z_j}$$

 χ, f_i : nonperturbative input quantities, $\phi(z), d(z), \phi_i, d_i$: kinematical coefficients depending on z_i

* unitarity is satisfied when $\gamma \geq 0$, which implies: $\chi \geq \chi$

*** parameterization-independent "unitarization" of the input data $\{f\}$ ***

* important feature: when $z \to z_j$ one has $\beta \to f_j$ and $\gamma \to 0$, i.e. the DM band collapses to f_j for $z = z_j$

for any given set of input data the DM approach reproduces exactly the known data and it allows to extrapolate the form factor in the whole kinematical range in a parameterization-independent way providing a band of values representing the results of all possible BGL fits satisfying unitarity and passing through the known points

- to generate the final band for the FF f(z)
- * kinematical constraint(s) can be easily and rigorously implemented in the DM approach [2105.02497, 2105.08674, 2109.15248]

$$\gamma = \frac{1}{d^2(z)\phi^2(z)} \frac{1}{1-z^2} \left[\chi - \sum_{i,j=1}^N f_i f_j \phi_i \phi_j d_i d_j \frac{(1-z_i^2)(1-z_j^2)}{1-z_i z_j} \right]$$

$$\sum_{\substack{\{f\}\\i,j=1}}^{N} \sum_{j=1}^{N} f_{i}f_{j}\phi_{i}\phi_{j}d_{i}d_{j}\frac{(1-z_{i}^{2})(1-z_{j}^{2})}{1-z_{i}z_{j}}$$

select only events with $\chi \ge \chi_{\{f\}}^{DM}$

* the DM band represents a uniform distribution which is combined with the multivariate distribution of the input data $\{f_i\}$

nonperturbative determination of the susceptibilities

* <u>lattice QCD simulations can provide a first-principle determination of the unitarity bounds</u> [arXiv:2105.02497]

time-momentum representation (Q = Euclidean 4-momentum)

$$\begin{split} \chi_{0^{+}}(Q^{2}) &\equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2}\Pi_{0^{+}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2} j_{0}(Qt) \ C_{0^{+}}(t) \ , \qquad C_{0^{+}}(t) = \widetilde{Z}_{V}^{2} \ \int d^{3}x \langle 0|T \left[\bar{q}_{1}(x)\gamma_{0}q_{2}(x) \ \bar{q}_{2}(0)\gamma_{0}q_{1}(0) \right] |0\rangle \ , \\ \chi_{1^{-}}(Q^{2}) &\equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2}Q^{2}} \left[Q^{2}\Pi_{1^{-}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{-}}(t) \ , \qquad C_{1^{-}}(t) = \widetilde{Z}_{V}^{2} \ \frac{1}{3} \sum_{j=1}^{3} \int d^{3}x \langle 0|T \left[\bar{q}_{1}(x)\gamma_{j}q_{2}(x) \ \bar{q}_{2}(0)\gamma_{j}q_{1}(0) \right] |0\rangle \ , \\ \chi_{0^{-}}(Q^{2}) &\equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2}\Pi_{0^{-}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2} j_{0}(Qt) \ C_{0^{-}}(t) \ , \qquad C_{0^{-}}(t) = \widetilde{Z}_{A}^{2} \ \int d^{3}x \langle 0|T \left[\bar{q}_{1}(x)\gamma_{0}\gamma_{5}q_{2}(x) \ \bar{q}_{2}(0)\gamma_{0}\gamma_{5}q_{1}(0) \right] |0\rangle \ , \\ \chi_{1^{+}}(Q^{2}) &\equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2}Q^{2}} \left[Q^{2}\Pi_{1^{+}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{+}}(t) \ , \qquad C_{1^{+}}(t) = \widetilde{Z}_{A}^{2} \ \frac{1}{3} \sum_{j=1}^{3} \int d^{3}x \langle 0|T \left[\bar{q}_{1}(x)\gamma_{j}\gamma_{5}q_{2}(x) \ \bar{q}_{2}(0)\gamma_{j}\gamma_{5}q_{1}(x) \right] \ . \end{split}$$

* in arXiv:2105.02497, 2105.07851 and 2202.10285 we have calculated the $\chi's$ for the $c \rightarrow s, b \rightarrow c$ and $b \rightarrow u$ transitions at $Q^2 = 0$ using the $N_f = 2+1+1$ gauge ensembles generated by ETMC

> - subtraction of discretization effects evaluated in perturbation theory at order $\mathcal{O}(\alpha_s^0)$ applicable also - implementation of WI for the 0⁺ and 0⁻ channels to avoid exactly contact terms at $Q^2 \neq 0$ - use of the ETMC ratio method (hep-lat/0909.3187) to reach the physical b-quark point

- $b \rightarrow c$

2-point Euclidean correlation functions

 $|0\rangle$, $0\rangle$, $(0)] |0\rangle ,$

 $b \rightarrow c$ transition (arXiv:2105.07851)

channel	nonPT	with GS subtr.	NNLO PT	with GS subtr.
0+ [10-3]	7.58 (59)		6.204 (81)	
1- [10-4 GeV-2]	6.72 (41)	5.88 (44)	6.486 (48)	5.131 (48)
0- [10-2]	2.58 (17)	2.19 (19)	2.41	1.94
1+ [10-4 GeV-2]	4.69 (30)		3.894	

* differences with NNLO PT ~ 4% for 1-, ~7% for 0-, ~20 % for 0+ and 1+

 $c \rightarrow s$ transition (arXiv:2105.02497)

channel	nonPT	with GS subtr.
0+ [10-2]	0.929 (64)	0.433 (133)
1- [10-3 GeV-2]	7.88 (41)	4.19 (36)
0- [10-2]	2.48 (15)	0.942 (91)
1+ [10-3 GeV-2]	4.89 (29)	3.74 (56)

GS = ground state

perturbative

Bigi, Gambino PRD '16 Bigi, Gambino, Schacht PLB '17 Bigi, Gambino, Schacht JHEP '17

 $b \rightarrow \ell$ transition (arXiv:2202.10285)

channel	nonPT	with GS sul
0+ [10-2]	2.04 (20)	
1- [10-4 GeV-2]	4.88 (1.16)	4.45 (1.16
0- [10-2]	2.34 (13)	
1+ [10-4 GeV-2]	4.65 (1.02)	

form factors for $B \to D^* \ell \nu_{\ell}$ decays

* lattice QCD form factors from FNAL/MILC arXiv:2105.14019: synthetic data points at 3 (small) values of the recoil w * nonperturbative susceptibilities from arXiv:2105.07851 (resonances from Bigi et al., arXiv:1707.09509)

three unitarity bounds: χ_{1-} for g, χ_{1+} for f and \mathcal{F}_1 , χ_{0-} for P_1

[arXiv:2109.15248]

LCSR: $\mathscr{F}_1(w_{max}) = 16.0 \pm 2.1 \text{ GeV}^2$ (arXiv:1811.00983)

* overall consistency, differences hidden in the correlations among the FFs at different values of w

* some differences for $\mathcal{F}_1(w_{max})$: some impact on $R(D^*)$

* comparison with FNAL/MILC "lattice fit" from arXiv:2105.14019 \rightarrow blue bands: quadratic BGL fit of LQCD points only

blue bands

 $\sum a_i^2 \leq 1$ 68 %

$$\sum_{i} (b_i^2 + c_i^2) \le 1 \qquad 94\% \ (f$$

$$\sum_{i} d_i^2 \le 1 \qquad 67\%$$

43 % of events satisfy unitarity KC at w=1: OK

KC at w=w_{max}: not applied

red bands (DM)

100 % of events satisfying unitarity KC at w=1: OK KC at w=w_{max}: OK (after iterative procedure)

 $R(D^*) = 0.265 \pm 0.013$ $R(D^*) = 0.275 \pm 0.008$

extraction of $|V_{cb}|$ from $B \to D^* \ell \nu_{\ell}$ decays

*** we do not mix theoretical calculations with experimental data to describe the shape of the FFs ***

$$\left\|V_{cb}\right\|_{i} \equiv \sqrt{\frac{(d\Gamma/dx)_{i}^{exp}}{(d\Gamma/dx)_{i}^{th}}} \qquad i = 1, \dots,$$

[arXiv:2109.15248]

$$, N_{bins}$$

four different differential decay rates

 $d\Gamma/dx$ where $x = \{w, \cos\theta_v, \cos\theta_\ell, \chi\}$:

- 10 bins for each variable
- total of 80 data points

blue data: Belle 1702.01521

red data: Belle 1809.03290

bands are (correlated) weighted averages

$$|V_{cb}| = \frac{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij} |V_{cb}|_j}{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij}}$$

$$\sigma_{|V_{cb}|}^2 = \frac{1}{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij}} ,$$

Belle 1702.01521 Belle 1809.03290

experiment	$ V_{cb} (x=w)$	$ V_{cb} (x = \cos\theta_l)$	$ V_{cb} (x = \cos\theta_v)$	$ V_{cb} (x=\chi) $
Ref. [11]	0.0398(9)	0.0422~(13)	0.0421 (13)	0.0426(14)
Ref. [12]	0.0395(7)	0.0405~(11)	0.0402(10)	0.0430(13)

averaging procedure

the use of exp. data to describe the shape of the FFs leads to smaller errors, but it produces a bias on the extracted value of $|V_{cb}|$

$$V_{cb}|_{excl.} \cdot 10^3 = 41.3 \pm 1.7$$

 $|V_{cb}|_{incl} \cdot 10^3 = 42.16 \pm 0.50$ (Bordone et al: arXiv:2107.00604) exclusive/inclusive tension reduced to less than 1σ

$$|V_{cb}|_{excl.} \cdot 10^{3} = 39.6^{+1.1}_{-1.0}$$
$$|V_{cb}|_{excl.} \cdot 10^{3} = 39.56^{+1.04}_{-1.06}$$
$$|V_{cb}|_{excl.} \cdot 10^{3} = 38.86 \pm 0.88$$

Gambino et al., arXiv:1905.08209

Jaiswal et al., arXiv:2002.05726

FLAG '21, arXiv:2111.09849

Both remarks appear to be related to a different w-slope of the theoretical FFs based on the lattice results from FNAL/MILC with respect to the Belle experimental data. This crucial issue (a kind of *slope puzzle*) needs to be further investigated by forthcoming calculations of the FFs at non-zero recoil expected from the JLQCD Collaboration (see Kaneko's talk) as well as by future improvements of the precision of the experimental data.

Remark 1

The value of $|V_{cb}|$ exhibits some dependence on the specific w-bin. The value obtained adopting a constant fit is dominated by the bins at small values of the recoil w, where direct lattice data are available and the lenght of the momentum extrapolation is limited.

Remark 2

The value of $|V_{cb}|$ deviates from a constant fit for $x = \cos(\theta_v)$. If we try a quadratic fit of the form $|V_{cb}| \left[1 + \delta B \cos^2(\theta_v)\right]$

we get $\delta B \neq 0$ (2-3 σ level) and $|V_{cb}|$ more consistent between the two sets of Belle data, but still in agreement with the value of $|V_{cb}|$ obtained with a constant fit

- * experimental data from Belle collaboration in 10 bins (arXiv:1510.03657)

no bias on the extracted value of $|V_{cb}|$

extraction of $|V_{cb}|$ from $B \rightarrow D\ell \nu_{\ell}$ decays

[arXiv:2105.08674]

* lattice QCD form factors from FNAL/MILC (arXiv:1503.07237): synthetic data points at 3 (small) values of the recoil

 $|V_{cb}|_{excl.} \cdot 10^3 = 41.0 \pm 1.1$ $|V_{cb}|_{excl.} \cdot 10^3 = 40.0 \pm 1.0$

Gambino et al., arXiv:1606.08030 Jaiswal et al., arXiv:1707.09977 FLAG '21, arXiv:2111.09849

observable	DM
R(D)	0.296 (8)
$R(D^*)$	0.275 (8)
$P_{\tau}(D^*)$	-0.52(1)
$F_L(D^*)$	0.42(1)

* pure theoretical and parameterization-independent determinations within the DM approach

experiment	difference
0.339 (26) (14)	$\simeq 1.4 \sigma$
0.295 (10) (10)	$\simeq 1.2 \sigma$
$-0.38(51)(^{+21}_{-16})$	
0.60(8)(4)	$\simeq 2.0 \sigma$

******* exp/SM tension significantly reduced for $R(D^*)$ *******

* lattice QCD form factors from HPQCD arXiv:1906.00701($B_s \rightarrow D_s$) and arXiv:2105.11433 ($B_s \rightarrow D_s^*$) in the form of BCL fits in the whole kinematical range * we extract 3 data points for the FFs at small values of the recoil and we apply the DM approach

form factors for $B_s \to D_s^{(*)} \ell \nu_{\ell}$ decays

[arXiv:2204.05925]

extraction of $|V_{cb}|$ from $B_s \to D_s^{(*)} \ell \nu_{\ell}$ decays

* two sets of experimental data from LHCb collaboration: arXiv:2001.03225 and arXiv:2003.08453

* first analysis: ratios of branching ratios [2001.03225]

- using the PDG values for $\mathscr{B}(B \to D^{(*)} \mu \nu_{\mu})$ and the B_s -meson lifetime one gets

$$\Gamma^{\text{LHCb}}(B_s \to D_s \mu \nu_{\mu}) = (1.08 \pm 0.10) \cdot 10^{-14} \text{ GeV}$$

$$\Gamma^{\text{LHCb}}(B_s \to D_s^* \mu \nu_{\mu}) = (2.34 \pm 0.26) \cdot 10^{-14} \text{ GeV}$$
 to be

decays $\begin{array}{c} B_s \to D_s \ell \\ B_s \to D_s^* \ell \end{array}$ two different runs at LHC

$$\frac{\mathscr{B}(B_s \to D_s \mu \nu_{\mu})}{\mathscr{B}(B \to D \mu \nu_{\mu})} = 1.09 \pm 0.05_{stat} \pm 0.06_{syst} \pm 0.05_{inputs} = 1.09 \pm 0.09$$
$$\frac{\mathscr{B}(B_s \to D_s^* \mu \nu_{\mu})}{\mathscr{B}(B \to D^* \mu \nu_{\mu})} = 1.06 \pm 0.05_{stat} \pm 0.07_{syst} \pm 0.05_{inputs} = 1.06 \pm 0.10$$

 $\Gamma^{\text{DM}}(B_s \to D_s \mu \nu_{\mu}) / |V_{cb}|^2 = (6.04 \pm 0.23) \cdot 10^{-12} \text{ GeV}$ $\Gamma^{\text{DM}}(B_s \to D_s^* \mu \nu_{\mu}) / |V_{cb}|^2 = (1.39 \pm 0.11) \cdot 10^{-11} \text{ GeV}$

compared with

$$|V_{cb}|^{DM} \cdot 10^{3}$$

 $2\nu_{\ell} \quad 42.3 \pm 2.1$
 $2\nu_{\ell} \quad 41.0 \pm 2.8$

for the FFs) carried out in arXiv:2001.03225

* second analysis: differential decay rates reconstructed from the LHCb fits of p_{\perp} distributions (<u>BGL</u>/CLN parameterizations

correlated weighted averages $|V_{cb}| = \frac{\sum_{i,j=1}^{N_{\text{bins}}} (\mathbf{C}^{-1})_{ij} |V_{cb}|_j}{\sum_{i,j=1}^{N_{\text{bins}}} (\mathbf{C}^{-1})_{ij}}$ $\sigma_{|V_{cb}|}^2 = \frac{1}{\sum_{i,j=1}^{N_{\text{bins}}} (\mathbf{C}^{-1})_{ij}}$

decays
$$|V_{cb}|^{DM} \cdot B_s \rightarrow D_s \ell \nu_{\ell}$$
 42.4 ±
 $B_s \rightarrow D_s^* \ell \nu_{\ell}$ 41.9 ±

 $|V_{cb}|^{\text{LHCb}} \cdot 10^3 = 42.3 \pm 1.7$

* third analysis: LHCb ratios from arXiv:2003.08453

j	1	2	3	4	5	6	7
w-bin	1.000 - 1.1087	1.1087 - 1.1688	1.1688 - 1.2212	1.2212 - 1.2717	1.2717 - 1.3226	1.3226 - 1.3814	1.3814 - 1.4667
Δw_j	0.1087	0.0601	0.0524	0.0505	0.0509	0.0588	0.0853
$\Delta r_j^{ m LHCb}$	0.183(12)	0.144(8)	0.148(8)	0.128(8)	0.117(7)	0.122(6)	0.158(9)
$\Delta r_j^{ m DM}$	0.1942(82)	0.1534(45)	0.1377(28)	0.1289(18)	0.1212(20)	0.1241(40)	0.1405(110)

$$\Delta r_j = \frac{\Delta \Gamma_j (B_s \to D_s^* \mu \nu_\mu)}{\Gamma(B_s \to D_s^* \mu \nu_\mu)} \qquad j = 1, \dots, 7$$

consistency within $\sim 1\sigma$

shape of theoretical FFs is consistent with the one of the experimental data

* to determine $|V_{ch}|$ we evaluate the integrated differential decay rates for each bin

$$\Delta\Gamma_{j}^{\exp} = \Delta r_{j}^{\text{LHCb}} \cdot \Gamma^{\text{LHCb}}(B_{s} \to D_{s}^{*}\mu\nu_{\mu}) \qquad j = 1,...,7 \qquad \qquad \Gamma^{\text{LHCb}}(B_{s} \to D_{s}^{*}\mu\nu_{\mu}) \qquad \qquad for arXiv:200$$

$$\Delta\Gamma_{j}^{\exp} = \Delta r_{j}^{\text{LHCb}} \cdot \Gamma^{\text{LHCb}}(B_{s} \to D_{s}^{*}\mu\nu_{\mu}) \qquad \qquad j = 1,...,7 \qquad \qquad \Gamma^{\text{LHCb}}(B_{s} \to D_{s}^{*}\mu\nu_{\mu}) \qquad \qquad \Gamma^{\text{$$

- D'Agostini effect (NIMA '94): negative bias on constant fits to data affected by an overall normalization uncertainty; it depends upon $\sigma_{\overline{\Gamma}}$ and $\Delta r_i^{\text{LHCb}} \neq \Delta r_j^{\text{LHCb}}$

$$\underbrace{\operatorname{\mathsf{r}}_{ij}^{\operatorname{exp}} = R_{ij}^{\operatorname{LHCb}} \left[\overline{\Gamma}^2 + \sigma_{\overline{\Gamma}}^2 \right] + \sigma_{\overline{\Gamma}}^2 / N}_{ij}}_{i,j=1} \underbrace{\Gamma}_{ij}^{\operatorname{exp}} = \sum_{i,j=1}^{N_{bins}} \underbrace{\Gamma}_{ij}^{\operatorname{exp}} = \sigma_{\overline{\Gamma}}^2}_{i,j=1}$$

correlated weighted averages $|V_{cb}| \cdot 10^3 = 38.6 \pm 2.7$ $|V_{cb}| \cdot 10^3 = 41.2 \pm 2.4$

 $|V_{cb}|^{\text{DM}} \cdot 10^3 \text{ from } B_s \to D_s^{(*)} \ell \nu_{\ell}$

analysis	$B_s \rightarrow D_s$	$B_s \rightarrow D_s^*$	decay	$ V_{cb} ^{\mathrm{DM}} \cdot 10^3$	inclusive	exclusive
first	42.3 ± 2.1	41.0 ± 2.8			[2107.00604]	[FLAG 21]
second	42.4 ± 1.9	41.9 ± 2.2	$B \rightarrow D$	41.0 ± 1.2		
third		41.2 ± 2.4	$B \rightarrow D^*$	41.3 ± 1.7		
average	42.4 ± 2.0	41.4 ± 2.6	$B_s \rightarrow D_s$	42.4 ± 2.0		
U	N		$B_s \rightarrow D_s^*$	41.4 ± 2.6		
	$x = \sum_{k=1}^{N} a_{k}$	$v_k x_k$	average	41.4 ± 0.8	42.16 ± 0.50	39.36 ± 0.68
	$\sigma^2 = \sum^{N} \omega_k \left[\sigma_k^2 + (x_k - x_k) \right]$	$(x)^2$	difference		$\simeq 0.8\sigma$	$\simeq 1.9 \sigma$

$$\sigma^2 = \sum_{k=1}^{N} \omega_k \left[\sigma_k^2 + (x_k - x)^2 \right]$$
differe
$$\omega_k = (1/\sigma_k^2) / \sum_{j=1}^{N} (1/\sigma_j^2)$$

summary of
$$R(D_{c})$$
, $R($

observable	DM	
$R(D_s)$	0.298 (5)	
$R(D_s^*)$	0.250(6)	←
$P_{\tau}(D_s^*)$	-0.520(12)	SU(3) _F breaking ?
$F_L(D_s^*)$	0.440(16)	

summary of $|V_{cb}|^{\text{DM}}$ from $B_{(s)} \to D_{(s)}^{(*)} \ell \nu_{\ell}$

summary of $R(D_{(s)})$, $R(D_{(s)}^*)$ and polarization observables

observable	DM	experiment	difference
R(D)	0.296(8)	0.339(27)(14)	$\simeq 1.4 \sigma$
$R(D^*)$	0.275 (8)	0.295 (10) (10)	$\simeq 1.2 \sigma$
$P_{\tau}(D^*)$	-0.52(1)	$-0.38(51)(^{+21}_{-16})$	
$F_L(D^*)$	0.42(1)	0.60(8)(4)	$\simeq 2.0 \sigma$

SU(3)_F breaking effects

red: u/d spectator quark blue: strange spectator quark

ratios of branching ratios

$$\frac{\mathscr{B}(B_s \to D_s \mu \nu_{\mu})}{\mathscr{B}(B \to D \mu \nu_{\mu})} \bigg|_{\text{LHCb}} = 1.09 \pm 0.09$$
$$\frac{\mathscr{B}(B_s \to D_s^* \mu \nu_{\mu})}{\mathscr{B}(B \to D^* \mu \nu_{\mu})} \bigg|_{\text{LHCb}} = 1.06 \pm 0.10$$

$$\frac{\mathscr{B}(B_s \to D_s \mu \nu_{\mu})}{\mathscr{B}(B \to D \mu \nu_{\mu})} \Big|_{\mathrm{D}}$$
$$\frac{\mathscr{B}(B_s \to D_s^* \mu \nu_{\mu})}{\mathscr{B}(B \to D^* \mu \nu_{\mu})} \Big|_{\mathrm{D}}$$

[arXiv:2204.05925]

- no SU(3)_F breaking effects in $B_{(s)} \rightarrow PS$ - some SU(3)_F breaking effects in $B_{(s)} \rightarrow V$

 $= 1.02 \pm 0.06$ DM

 $= 1.19 \pm 0.11$

need of more precise exp. and theo. data

Conclusions

- of exclusive semileptonic decays of hadrons. The main features are:
 - it does not rely on any assumption about the momentum dependence of the hadronic form factors

 - reproducing exactly a given set of data points
 - it can be applied to any exclusive semileptonic decay of hadrons

* results for $B_{(s)} \to D_{(s)}^{(*)} \ell \nu_{\ell}$ decays: extraction of $|V_{cb}|$ and theoretical determination of $R(D_{(s)}^{(*)})$ using LQCD results for the FFs (from FNAL/MILC and HPQCD)

decay	$ V_{cb} ^{\mathrm{DM}} \cdot 10^3$	inclusive	exclusive	observable	DM	experiment	difference
		[2107.00604]	[FLAG 21]	R(D)	0.296(8)	0.340(27)(13)	$\simeq 1.4$
$B \rightarrow D$	41.0 ± 1.2			$R(D^*)$	0.275 (8)	0.295(11) (8)	$\simeq 1.3$
$B \rightarrow D^*$	41.3 ± 1.7			$R(D_s)$	0.298(5)		
$B_s \rightarrow D_s$	42.4 ± 2.0			$R(D_{s}^{*})$	0.250(6)		
$B_s \rightarrow D_s^*$	41.4 ± 2.6						
average	41.4 ± 0.8	42.16 ± 0.50	39.36 ± 0.68				
difference		$\simeq 0.8 \sigma$	$\simeq 1.9 \sigma$				

* the Dispersion Matrix approach is an attractive tool to implement unitarity and lattice QCD calculations in the analysis

- it can be based entirely on first principles using lattice determinations both of the relevant form factors and of the dispersive bounds (the susceptibilities) from appropriate 2-point and 3-point (Euclidean) correlation functions - it allows to implement unitarity and kinematical constraints in a rigorous and parameterization-independent way - it predicts band of values that are equivalent to the infinite number of BGL fits satisfying unitarity and KCs and

[2105.08674, 2109.15248, 2204.05925]

e σ

	decays	DM	FLAG '21	inclus
$ V_{cb} \bullet 10^3$	$B_{(s)} \rightarrow D_{(s)}^{(*)}$	41.4 (8)	39.48 (68)	42.16
V _{ub} •10 ³	$B_{(s)} \rightarrow \pi, K$	3.85 (27)	3.63 (14)	4.13 (

see Ludovico's slides in the discussion session

	DM	HFLAV '21
R(D)	0.296 (8)	0.339 (26) (14)
R(D*)	0.275 (8)	0.295 (10) (10)
R(D _s)	0.298 (5)	
$R(D_s^*)$	0.250 (6)	

reduced tensions in both $|V_{cb}|$, $|V_{ub}|$ and $R(D^*)$ when theory and experiments are not fitted simultaneously

backup slides

$$\frac{d\Gamma}{dw} \propto |V_{cb}|^2 \sqrt{w^2 - 1} \frac{q^2}{M_b^3} [H_0^2(w) + H_-^2(w) + H_+^2(w)] = |V_{cb}|^2 \sqrt{w^2 - 1} \left\{ \left(\frac{\mathscr{F}_1(w)}{M_b^2}\right)^2 + 2\frac{q^2}{M_b^2} \left[\left(\frac{f(w)}{M_b}\right)^2 + r^2(w^2 - 1) m_b^2 g^2(w) \right] \right\} \quad m_e = \frac{1}{10} + \frac{1$$

w

FNAL/MILC joint fit (arXiv:2105.14019) uses Belle+BaBar data and new FNAL/MILC LQCD points JNP 20 fit (Jaiswal et al. JHEP '20) uses Belle data + old FNAL/MILC LQCD point $h_{A_1}(1)$

FNAL/MILC data from arXiv:2105.14019 JLQCD data from slides of T. Kaneko at CKM '21

FNAL/MILC fit to lattice points (arXiv:2105.14019)

TABLE XI. Results of linear	, quadratic, a	and unitarity-co	onstrained	cubic z ex
-----------------------------	----------------	------------------	------------	--------------

	Linear	Quadratic	
a_0	0.0330(12)	0.0330(12)	0.03
a_1	-0.157(52)	-0.155(55)	-0.15
a_2		-0.12(98)	-0.12
a_3			-0.00
b_0	0.01229(23)	0.01229(24)) 0.01
b_1	-0.002(10)	-0.003(12)	-0.00
b_2		0.07(53)	0.05
b_3			-0.01
c_1	-0.0057(22)	-0.0058(25)	-0.00
c_2		-0.013(91)	-0.02
c_3			0.10
$\overline{d_0}$	0.0508(15)	0.0509(15)	0.05
d_1	-0.317(59)	-0.327(67)	-0.32
d_2		-0.03(96)	-0.02
d_3			-0.00
$-\chi^2/dof$	0.83/5	0.64/3	0.64
$\sum_{i}^{N}a_{i}^{2}$	0.026(16)	0.04(24)	0.04
$\sum_{i}^{N} (b_i^2 + c_i^2)$	0.000193(69)	0.005(70)	0.01
$\sum_{i}^{N} d_{i}^{2}$	0.103(37)	0.110(61)	0.11

xpansions using only lattice-QCD data.

Cubic 330(12)55(55)2(98)04(1.000)1229(23)03(12)5(55)1(1.00)057(25)2(10)0(95)509(15)27(67)2(96)006(1.0000)4/34(24)1(18)10(52)

$$\frac{\text{quadratic fit}}{\sum_{i=1}^{2} a_i^2 = 0.04 \pm 0.24} ??$$

indeed: $a_2 = -0.12 \pm 0.98$
with 1σ one has $|a_2| > 1 !!!$

what's going on?

linearization of the error

 $(a_2 + \delta a_2)^2 - a_2^2 \rightarrow 2 |a_2| \delta a_2 \approx 0.24$

wrong when $\delta a_2 > |a_2|$

- generate a multivariate distribution of N_{boot} events

- for each event $k = 1, 2, ..., N_{boot}$ evaluate the lower $f_{lo}^k(t)$ and upper $f_{up}^k(t)$ values of the form factor at a given t

FIG. 1. Histograms of the values of \bar{f}_{up} (upper panel) and \bar{f}_{lo} (lower panel) for the bootstrap events that pass the unitarity filter in the case of the vector form factor $f_+(t = 0 \text{ GeV}^2)$ of the $D \rightarrow K$ transition.

- start from a set of input data $\{f_i\}$ with a given covariance matrix C_{ij} and a (eventually correlated) susceptibility χ

$$t) = \frac{1}{N_{boot}} \sum_{k=1}^{N_{boot}} f_{lo(up)}^{k}(t)$$

$$t_{lo(U)} \equiv \frac{1}{N_{boot} - 1} \sum_{k=1}^{N_{boot}} \left[f_{lo(up)}^{k}(t) - \bar{f}_{lo(up)}(t) \right] \left[f_{lo(up)}^{k}(t) - \bar{f}_{lo(up)}(t) \right]$$

$$t_{lo(up)}(t) = \frac{\sqrt{\det(C^{-1})}}{2\pi} e^{-\frac{1}{2} \left[C_{LL}^{-1}(f_L - \bar{f}_{lo})^2 + 2C_{LU}^{-1}(f_L - \bar{f}_{lo})(f_U - \bar{f}_{up}) + C_{UU}^{-1}(f_L - f_{up}) + C_{UU}^{-1}(f_L - f_{up}) + C_{UU}^{-1}(f_L - f_{up}) \right]}$$

tion:
$$P(f) = \frac{1}{f_U - f_L} \theta(f - f_L) \theta(f_U - f)$$

average:
$$f(t) \equiv \frac{\bar{f}_{lo}(t) + \bar{f}_{up}(t)}{2}$$

final variance: $\sigma_f^2(t) \equiv \frac{1}{12} \left[\bar{f}_{lo}(t) - \bar{f}_{up}(t) \right]^2 + \frac{1}{3} \left[C_{LL}(t) + C_{UU}(t) + C_{LU}(t) \right]$

* kinematical constraint: $f_+(0) = f_0(0)$

for each event $k = 1, 2, ..., N_{boot}$: $f(0)|_{lo} \le f(0) \le f(0)$

addition of one (common) point at $q^2 = 0$ in the dispersion matrices of f_0 and f_+ uniformely distributed in $|f(0)|_{lo}, f(0)|_{up}$

* when the percentage of events satisfying the unitarity and/or kinematical constraints is too low, the reliability of the DM bands may become questionable and we apply a procedure to recover a larger percentage of events passing the filters

skeptical procedure (from D'Agostini, arXiv: 2001.0346

- 1. modify the standard deviations σ_i of the input data factor r_i while keeping fixed the averages f_i (a com value r is typically enough)
- 2. enlarge the number of bootstraps by extracting Nr va of r distributed according to a exponential distributio
- 3. select the the events passing the filters and compute average value r*
- 4. select the event with r closest to r^*

$$f_{0}(0)|_{up} \qquad f_{0}(0)|_{lo} = \max(f_{0}(0)|_{lo}, f_{+}(0)|_{lo})$$

$$f_{0}(0)|_{up} = \min(f_{0}(0)|_{up}, f_{+}(0)|_{up})$$

66)	iterative procedure [arXiv:2109.15248]
by a	1. recalculate the mean values and the covariance matrix of the subset of inpout data passing the filters
alues	 generate a new multivariate distribution check unitarity and kinematical constraints
on their	4. repeat steps 1-3 until convergence of the percentage of events passing the filters is reached

simpler and more effective procedure

hadronic form factors in semileptonic $B \rightarrow D^{(*)} \ell \nu_{\ell}$ decays

$$\frac{d\Gamma(B \to D\ell\nu_{\ell})}{dq^2} = \frac{G_F^2}{24\pi^3} \eta_{EW}^2 |V_{cb}|^2 p_D^3 f_+^2(q^2)$$
for

$$\frac{d^4 \Gamma(B \to D^* \ell \nu_{\ell})}{dw \ d\cos\theta_{\nu} \ d\cos\theta_{\ell} \ d\chi} =$$

٠

+

+

$$\frac{3}{4} \frac{G_F^2}{(4\pi)^4} \eta_{EW}^2 |V_{cb}|^2 m_B^3 r^2 \sqrt{w^2 - 1} (1 + r^2 - 2rw) \\ \left\{ H_+^2(w) \sin^2\theta_v (1 - \cos\theta_\ell)^2 + H_-^2(w) \sin^2\theta_v (1 + \cos\theta_\ell)^2 \right. \\ \left. 4 H_0^2(w) \cos^2\theta_v \sin^2\theta_\ell - 2 H_-(w)H_+(w) \sin^2\theta_v \sin^2\theta_\ell \cos 2\chi \\ \left. 2 H_+(w)H_0(w) \cos 2\theta_v \sin \theta_\ell (1 - \cos\theta_\ell) \cos \chi \right. \\ \left. 2 H_-(w)H_0(w) \cos 2\theta_v \sin \theta_\ell (1 + \cos\theta_\ell) \cos \chi \right\}$$

$$g(w) = \frac{1}{r\sqrt{w^2 - 1}} \frac{H_+(w) - H_-(w)}{2m_B^2}$$

$$f(w) = \frac{H_+(w) + H_-(w)}{2}$$
for a
$$F_1(w) = m_B\sqrt{1 - 2rw + r^2}H_0(w)$$

for massless leptons

massive leptons one should $add f_0(q^2)$ for $B \to D$ and $P_1(w)$ for $B \to D^*$

experimental data for $B \to D^* \ell \nu_\ell$ decays

- two sets of data from Belle collaboration arXiv:1702.01521 and arXiv:1809.03290

- four differential decay rates $d\Gamma/dx$ where $x = \{w, \cos\theta_{\ell}, \chi\}$: 10 bins for each variable

*** we do not mix theoretical calculations with experimental data to describe the shape of the FFs ***

$$|V_{cb}|_{i} \equiv \sqrt{\frac{(d\Gamma/dx)_{i}^{exp}}{(d\Gamma/dx)_{i}^{th}}} \qquad i = 1, \dots, N_{bins}$$

f the Belle data: $\Gamma^{exp} \equiv \sum_{i=1}^{10} \left(\frac{d\Gamma}{dx}\right)_{i}^{exp}$ should be the same for all the variables x

* issue with the covariance matrix C_{ii}^{exp} of

- we recover the above property by evaluating the correlation matrix of the experimental ratios

$$\frac{1}{\Gamma^{ex}}$$

and by considering the new covariance matrix of the experimental data given by (see arXiv:2105.08674)

$$\widetilde{C}_{ij}^{exp} \rightarrow \rho_{ij}^{ratios} \sqrt{C_{ii}^{exp.} C_{jj}^{exp}}$$

total of 80 data points

$$\frac{1}{2}\left(\frac{d\Gamma}{dx}\right)_{i}^{exp}$$

extraction of $|V_{cb}|$ from $B \to D^* \ell \nu_{\ell}$ decays

original covariance matrix of Belle data

blue data: Belle 1702.01521

red data: Belle 1809.03290

bands are (correlated) weighted averages

$$|V_{cb}| = \frac{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij} |V_{cb}|_j}{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij}}$$
$$\sigma_{|V_{cb}|}^2 = \frac{1}{\sum_{i,j=1}^{10} (\mathbf{C}^{-1})_{ij}},$$
$$|V_{cb}| \cdot 10^3 = 40.5 \pm 1.7$$

)

from unitarity, analyticity and crossing symmetry, in terms of the conformal variable $z (|z| \le 1)$

$$f_{+}(q^{2}) = \sqrt{\frac{n_{I}}{\chi_{1-}(q_{0}^{2})}} \frac{1}{\phi_{+}(z(q^{2}), q_{0}^{2})} \frac{1}{P_{+}(z(q^{2}))} \sum_{n=0}^{\infty} a_{n} z^{n}(q^{2}) \qquad z(t) \equiv \frac{\sqrt{t_{+} - t} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - t} + \sqrt{t_{+} - t_{0}}} \qquad t_{0} \to t_{-}$$

 $\phi_+(z(q^2), q_0^2) =$ kinematical function $(q_0^2 =$ auxiliary quantity)

 $P_+(z(q^2)) =$ Blaschke factor including resonances below the pair-production threshold t_+

 n_I = factor counting the number of spectator quarks

 $\chi_{1-}(q_0^2) = \text{transverse vector susceptibility} \equiv \frac{1}{2} \frac{\partial^2}{\partial (q_0^2)^2} \left[q_0^2 \Gamma \right]$

unitarity con

BGL approach

* the hadronic form factors corresponding to definite spin-parity can be represented as an expansion, originating

$$\Pi_{1-}(q_0^2) = \frac{1}{\pi} \int_0^\infty ds \frac{s \operatorname{Im}\Pi_{1-}(s)}{(s - q_0^2)^3}$$

calculable nonperturbatively from appropriate 2-point lattice correlators (see arXiv:2105.07851)

Astraint:
$$\sum_{n=0}^{\infty} a_n^2 \le 1$$

mean value
$$\overline{\Gamma} = \sum_{i=1}^{N} \overline{\Gamma}_i$$
 and variance $\sigma_{\Gamma}^2 = \sum_{i,j=1}^{N} C_{ij}$

$$\sum_{i,j=1}^{N} C_{ij} = \sum_{i,j=1}^{N} \left\langle (\Gamma_i - \overline{\Gamma}_i)(\Gamma_j - \overline{\Gamma}_j) \right\rangle = \left\langle \left[\sum_{i=1}^{N} (\Gamma_i - \overline{\Gamma}_i) \right]^2 \right\rangle = \left\langle (\Gamma - \overline{\Gamma})^2 \right\rangle \equiv \sigma_{\Gamma}^2$$

Γ_i : mean values $\overline{\Gamma}_i$ and covariance matrix C_{ij} i, j = 1, ..., N

$$\Gamma = \sum_{i=1}^{N} \Gamma_i$$

 $\Gamma_i = r_i \cdot I$

- mean values \overline{r}_i and covariance matrix R_{ij} r_i :
- mean value $\overline{\Gamma}$ and variance σ_{Γ}^2 uncorrelated with all the $r'_i s$ Γ :

 Γ_i : mean values $\overline{\Gamma}_i = \overline{r}_i \cdot \overline{\Gamma}$ and covariance matrix $C_{ij} = R_{ij} \cdot [\overline{\Gamma}^2 + \sigma_{\Gamma}^2] + \overline{r}_i \overline{r}_j \sigma_{\Gamma}^2$

$$r_{i} = \bar{r}_{i} + \sqrt{R_{ii}} \sum_{k=1}^{N} U_{ik}^{T} \sqrt{\lambda_{k}} \cdot \xi_{k} \qquad R_{ij} = \sqrt{R_{ii}R_{jj}} \sum_{k=1}^{N} U_{ik}^{T} \lambda_{k} U_{kj} \qquad \xi_{k} : \text{uncorrelated variables} \\ <\xi_{k} > = 0 \text{ and } <\xi_{k}\xi_{k'} > = \delta_{kk'}$$

 $\Gamma = \overline{\Gamma} + \sigma_{\Gamma} \cdot \xi_{\Gamma}$

$$C_{ij} = \langle (r_i \cdot \Gamma - \overline{r}_i \cdot \overline{\Gamma})(r_j \cdot \Gamma - \overline{r}_j \cdot \overline{\Gamma} \rangle = \sqrt{R_{ii}R_{jj}} \sum_{k=1}^N U_{ik}^T \lambda_k U_{jk}^T \left[\overline{\Gamma}^2 + \sigma_{\Gamma}^2\right] + \overline{r}_i \overline{r}_j \sigma_{\Gamma}^2 = R_{ij} \left[\overline{\Gamma}^2 + \sigma_{\Gamma}^2\right] + \overline{r}_i \overline{r}_j \sigma_{\Gamma}^2$$

$$\Gamma \qquad i=1,\ldots,N$$

 ξ_{Γ} : uncorrelated variable with all the ξ_k variables $<\xi_{\Gamma}>=0$ and $<\xi_{\Gamma}^{2}>=1, <\xi_{\Gamma}\xi_{k}>=0$

* LHCb ratios from arXiv:2003.08453

- experimental covariance matrix R_{ii}^{LHCb} :

- modified covariance matrix $\widetilde{R}_{ij}^{\text{LHCb}}$: $\widetilde{\Delta r_j} = \Delta r_j / \sum_{l=1}^{j} \Delta r_k$

$$\Delta r_j = \frac{\Delta \Gamma_j (B_s \to D_s^* \mu \nu_\mu)}{\Gamma(B_s \to D_s^* \mu \nu_\mu)} \qquad j = 1, \dots, 7$$

2) $\sum_{i,j} R_{ij}^{\text{LHCb}} = 0$ (null variance for the sum)

