# $\left|V_{c b}\right|$ and $R\left(D_{(s)}^{(*)}\right)$ using lattice QCD and unitarity 

in collaboration with:
G. Martinelli (Roma "La Sapienza"), M. Naviglio (Pisa), L. Vittorio (Pisa)

## outline of the talk

* the Dispersion Matrix approach: an attractive way to implement unitarity and Lattice QCD calculations in the analysis of exclusive semileptonic decays of hadrons [PRD '21 (2105.02497), PRD '21 (2105.07851), PRD '22 (2105.08674)]
* results for $B \rightarrow D^{(*)} \ell \nu_{\ell}$ decays: extraction of $\left|V_{c b}\right|$ and theoretical determination of $R\left(D^{(*)}\right)[2105.08674,2109.15248]$
* results for $B_{s} \rightarrow D_{s}^{(*)} \ell \nu_{\ell}$ decays: extraction of $\left|V_{c b}\right|$ and theoretical determination of $R\left(D_{s}^{(*)}\right)$ [2204.05925]
* results for $\left|V_{u b}\right|$ from $B \rightarrow \pi \ell \nu_{\ell}$ and $B_{s} \rightarrow K \ell \nu_{\ell}$ decays [2202.10285] $\rightarrow$ Ludovico's slides in the discussion session


## motivations

* two critical issues in semileptonic $B \rightarrow D^{(*)} \ell \nu_{\ell}$ decays
- exclusive/inclusive $\left|V_{c b}\right|$ puzzle:
exclusive (FLAG '21): $\quad\left|V_{c b}\right|(B G L) \cdot 10^{3}=39.36$ (68)
inclusive (HFLAV '21): $\left|V_{c b}\right| \cdot 10^{3}=42.19$ (78)
difference of $\sim 2.7 \sigma \quad\left|V_{c b}\right| \cdot 10^{3}=42.16(50)$
(Bordone et al. 2107.00604)
$-R\left(D^{(*)}\right)$ anomalies:

$$
\begin{aligned}
R(D) & =\frac{\mathscr{B}\left(B \rightarrow D \tau \nu_{\tau}\right)}{\mathscr{B}\left(B \rightarrow D \ell \nu_{\ell}\right)} \\
R\left(D^{*}\right) & =\frac{\mathscr{B}\left(B \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathscr{B}\left(B \rightarrow D^{*} \ell \nu_{\ell}\right)}
\end{aligned} \quad \text { 恠 }
$$

differences of $\sim 3.4 \sigma$ between exp.'s and "SM"
$">=$ mix of theoretical calculations and experimental

important news: LQCD form factors for $B \rightarrow D^{*} \ell \nu_{\ell}$ decays from FNAL/MILC (arXiv:2105.14019) synthetic data points at 3 non-zero values of the recoil (w-1)




joint fit:
BGL fit of LQCD points + Belle + BaBar exp. data
$\left|V_{c b}\right| \cdot 10^{3}=38.40 \pm 0.74$ $R\left(D^{*}\right)=0.2483 \pm 0.0013$

lattice fit:
quadratic BGL fit of LQCD points only

$$
\begin{aligned}
& \left|V_{c b}\right|>\left|V_{c b}\right|^{\text {joint fit }} ? \\
& R\left(D^{*}\right)=0.265 \pm 0.013
\end{aligned}
$$

simultaneous fit of the lattice points and experimental data to determine the shape of the FFs and to extract $\left|V_{c b}\right|$

## aim of the talk

to show the relevant, attractive features of the Dispersion Matrix (DM) approach [arXiv:2105.02497], which is a rigorously model-independent tool for describing the hadronic form factors (FFs) in their whole kinematical range

- entirely based on first principles (i.e. lattice QCD simulations of 2- and 3-point Euclidean correlators)
- independent on any assumption about the momentum dependence of the FFs
- unitarization of the input theoretical data (including also kinematical constraints)
- no mixing among theoretical calculations and experimental data to describe the shape of the FFs
* results for $B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu_{\ell}$ decays: extraction of $\left|V_{c b}\right|$ and theoretical determination of $R\left(D_{(s)}^{(*)}\right) \quad[2105.08674,2109.15248$, using LQCD results for the FFs (from FNAL/MILC and HPQCD)

| decay | $\left\|V_{c b}\right\|^{\text {DM }} \cdot 10^{3}$ | $\begin{array}{r} \text { inclusive } \\ {[2107.00604]} \end{array}$ | exclusive <br> [FLAG 21] | observable $R(D)$ | $\begin{array}{r} \text { DM } \\ 0.296(8) \end{array}$ | experiment 0.340 (27) (13) | difference $\simeq 1.4 \sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B \rightarrow$ D | $41.0 \pm 1.2$ |  |  | $R\left(D^{*}\right)$ | 0.275 (8) | 0.295 (11) (8) | $\simeq 1.3 \sigma$ |
| $B \rightarrow D^{*}$ | $41.3 \pm 1.7$ |  |  | $R\left(D_{s}\right)$ | 0.298 (5) |  |  |
| $B_{s} \rightarrow D_{s}$ | $42.4 \pm 2.0$ |  |  | $R\left(D_{s}^{*}\right)$ | 0.250 (6) |  |  |
| $B_{s} \rightarrow D_{s}^{*}$ | $41.4 \pm 2.6$ |  |  |  |  |  |  |
| average | $41.4 \pm 0.8$ | $42.16 \pm 0.50$ | $39.36 \pm 0.68$ |  |  |  |  |
| ifference |  | $\simeq 0.8 \sigma$ | $\simeq 1.9 \sigma$ |  |  |  |  |

## Dispersion Matrix (DM) approach

* reappraisal and improvement of the method originally proposed by Bourrely et al. NPB ' 81 and Lellouch in NPB '96

$$
\mathscr{M}=\left(\begin{array}{ccccc}
<\phi f \mid \phi f> & <\phi f \mid g_{t}> & <\phi f \mid g_{t_{1}}> & \ldots & <\phi f \mid g_{t_{N}}> \\
<g_{t} \mid \phi f> & <g_{t} \mid g_{t}> & <g_{t} \mid g_{t_{1}}> & \ldots & <g_{t} \mid g_{t_{N}}> \\
<g_{t_{1}} \mid \phi f> & <g_{t_{t^{\prime}} \mid g_{t}>}> & <g_{t_{1}} \mid g_{t_{1}}> & \ldots & <g_{t_{1}} \mid g_{t_{N}}> \\
<g_{t_{N}} \mid \phi f> & <g_{t_{N}} \mid g_{t}> & <g_{t_{N}} \mid g_{t_{1}}> & \ldots & <g_{t_{N}} \mid g_{t_{N}}>
\end{array}\right) \quad \text { inner product: }\langle g| h>\equiv \frac{1}{2 \pi i} \int_{|z|=1} \frac{d z}{z} \bar{g}(z) h(z)
$$

$t_{1}, t_{2}, \ldots, t_{N}$ are the $N$ values of the squared 4 -momentum transfer where the form factor $f$ has been computed and $t$ is its value where we want to compute $f(\mathrm{t})$

$$
\text { unitarity bound: }\langle\phi f \mid \phi f\rangle \equiv \frac{1}{2 \pi i} \int_{|z|=1} \frac{d z}{z}\left|\phi\left(z, q_{0}^{2}\right) f(z)\right|^{2} \leq \chi\left(q_{0}^{2}\right)
$$

in the case of interest $z_{i} \equiv z\left(t_{i}\right)$ and $\phi_{i} f_{i} \equiv \phi\left(z_{i}, q_{0}^{2}\right) f\left(t_{i}\right)$ are real numbers and the positivity of the inner product implies:

$$
\operatorname{det}[\overline{\mathscr{M}}]=\left|\begin{array}{ccccc}
\chi\left(q_{0}^{2}\right) & \phi f & \phi_{1} f_{1} & \ldots & \phi_{N} f_{N} \\
\phi f & \frac{1}{1-z^{2}} & \frac{1}{1-z z_{1}} & \cdots & \frac{1}{1-z z_{N}} \\
\phi_{1} f_{1} & \frac{1}{1-z_{1} z} & \frac{1}{1-z_{1}^{2}} & \cdots & \frac{1}{1-z_{N} z_{N}} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\phi_{N} f_{N} & \frac{1}{1-z_{N} z} & \frac{1}{1-z_{N} z_{1}} & \cdots & \frac{1}{1-z_{\bar{N}}}
\end{array}\right| \geq 0
$$

* the explicit solution is a band of values: $\quad \beta-\sqrt{\gamma} \leq f(z) \leq \beta+\sqrt{\gamma}$

$$
\beta=\frac{1}{d(z) \phi(z)} \sum_{j=1}^{N} f_{j} \phi_{j} d_{j} \frac{1-z_{j}^{2}}{z-z_{j}} \quad \gamma=\frac{1}{d^{2}(z) \phi^{2}(z)} \frac{1}{1-z^{2}}\left[\chi-\sum_{i, j=1}^{N} f_{i} f_{j} \phi_{i} \phi_{j} d_{i} d_{j} \frac{\left(1-z_{i}^{2}\right)\left(1-z_{j}^{2}\right)}{1-z_{i} z_{j}}\right]
$$

$\chi, f_{i}:$ nonperturbative input quantities,
$\phi(z), d(z), \phi_{i}, d_{i}:$ kinematical coefficients depending on $z_{i}$

* unitarity is satisfied when $\gamma \geq 0$, which implies: $\quad \chi \geq \chi_{\{f\}}^{D M} \equiv \sum_{i, j=1}^{N} f_{i} f_{j} \phi_{i} \phi_{j} d_{i} d_{j} \frac{\left(1-z_{i}^{2}\right)\left(1-z_{j}^{2}\right)}{1-z_{i} z_{j}}$ *** parameterization-independent "unitarization" of the input data $\{f\} * * *$
select only events with $\chi \geq \chi_{\{f\}}^{D M}$
* important feature: when $z \rightarrow z_{j}$ one has $\beta \rightarrow f_{j}$ and $\gamma \rightarrow 0$, i.e. the DM band collapses to $f_{j}$ for $z=z_{j}$
for any given set of input data the DM approach reproduces exactly the known data and it allows to extrapolate the form factor in the whole kinematical range in a parameterization-independent way providing a band of values representing the results of all possible BGL fits satisfying unitarity and passing through the known points
* the DM band represents a uniform distribution which is combined with the multivariate distribution of the input data $\left\{f_{j}\right\}$ to generate the final band for the $\operatorname{FF} f(z)$
* kinematical constraint(s) can be easily and rigorously implemented in the DM approach [2105.02497, 2105.08674, 2109.15248]


## nonperturbative determination of the susceptibilities

* lattice QCD simulations can provide a first-principle determination of the unitarity bounds [arXiv:2105.02497]
time-momentum representation $(\mathrm{Q}=$ Euclidean 4-momentum $)$

$$
\begin{array}{ll}
\chi_{0^{+}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{+}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{+}}(t), & C_{0^{+}}(t)=\widetilde{Z}_{V}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{0} q_{2}(x) \bar{q}_{2}(0) \gamma_{0} q_{1}(0)\right]|0\rangle \\
\chi_{1^{-}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{-}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{-}}(t), & C_{1^{-}}(t)=\widetilde{Z}_{V}^{2} \frac{1}{3} \sum_{j=1}^{3} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{j} q_{2}(x) \bar{q}_{2}(0) \gamma_{j} q_{1}(0)\right]|0\rangle \\
\chi_{0^{-}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{-}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{-}}(t), & C_{0^{-}}(t)=\widetilde{Z}_{A}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{0} \gamma_{5} q_{2}(x) \bar{q}_{2}(0) \gamma_{0} \gamma_{5} q_{1}(0)\right]|0\rangle \\
\chi_{1^{+}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{+}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{+}}(t), & C_{1^{+}}(t)=\widetilde{Z}_{A}^{2} \frac{1}{3} \sum_{j=1}^{3} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{j} \gamma_{5} q_{2}(x) \bar{q}_{2}(0) \gamma_{j} \gamma_{5} q_{1}(0)\right]|0\rangle
\end{array}
$$

* in arXiv:2105.02497, 2105.07851 and 2202.10285 we have calculated the $\chi^{\prime} s$ for the $c \rightarrow s, b \rightarrow c$ and $b \rightarrow u$ transitions at $Q^{2}=0$ using the $\mathrm{N}_{\mathrm{f}}=2+1+1$ gauge ensembles generated by ETMC
- subtraction of discretization effects evaluated in perturbation theory at order $\mathcal{O}\left(\alpha_{s}^{0}\right)$
$b \rightarrow c$
- implementation of WI for the $0^{+}$and $0^{-}$channels to avoid exactly contact terms
- use of the ETMC ratio method (hep-lat/0909.3187) to reach the physical b-quark point
applicable also at $Q^{2} \neq 0$
$b \rightarrow c$ transition (arXiv:2105.07851)

| channel | nonPT | with GS subtr. | NNLO PT | with GS subtr. |
| :---: | :---: | :---: | :---: | :---: |
| $0^{+}\left[10^{-3}\right]$ | $7.58(59)$ | - | $6.204(81)$ | - |
| $1^{-}\left[10^{-4} \mathrm{GeV}^{-2}\right]$ | $6.72(41)$ | $5.88(44)$ | $6.486(48)$ | $5.131(48)$ |
| $0^{-}\left[10^{-2}\right]$ | $2.58(17)$ | $2.19(19)$ | 2.41 | 1.94 |
| $1^{+}\left[10^{-4} \mathrm{GeV}^{-2}\right]$ | $4.69(30)$ | - | 3.894 | - |

GS = ground state
perturbative

Bigi, Gambino PRD '16
Bigi, Gambino, Schacht PLB '17
Bigi, Gambino, Schacht JHEP '17

* differences with NNLO PT $\sim 4 \%$ for $1^{-}, \sim 7 \%$ for $0^{-}, \sim 20 \%$ for $0^{+}$and $1^{+}$
$c \rightarrow s$ transition (arXiv:2105.02497)

| channel | nonPT | with GS subtr. |
| :---: | :---: | :---: |
| $0^{+}\left[10^{-2}\right]$ | $0.929(64)$ | $0.433(133)$ |
| $1^{-}\left[10^{-3} \mathrm{GeV}^{-2}\right]$ | $7.88(41)$ | $4.19(36)$ |
| $0^{-}\left[10^{-2}\right]$ | $2.48(15)$ | $0.942(91)$ |
| $1^{+}\left[10^{-3} \mathrm{GeV}^{-2}\right]$ | $4.89(29)$ | $3.74(56)$ |

$$
b \rightarrow \ell \text { transition (arXiv:2202.10285) }
$$

| channel | nonPT | with GS subtr. |
| :---: | :---: | :---: |
| $0^{+}\left[10^{-2}\right]$ | $2.04(20)$ | - |
| $1^{-}\left[10^{-4} \mathrm{GeV}^{-2}\right]$ | $4.88(1.16)$ | $4.45(1.16)$ |
| $0^{-}\left[10^{-2}\right]$ | $2.34(13)$ | - |
| $1^{+}\left[10^{-4} \mathrm{GeV}^{-2}\right]$ | $4.65(1.02)$ | - |

## form factors for $B \rightarrow D^{*} \ell \nu_{\ell}$ decays

* lattice QCD form factors from FNAL/MILC arXiv:2105.14019: synthetic data points at 3 (small) values of the recoil w * nonperturbative susceptibilities from arXiv:2105.07851 (resonances from Bigi et al., arXiv:1707.09509)




unitarity + two kinematical constraints

$$
\begin{array}{cr}
w=1: & \mathscr{F}_{1}(1)=m_{B}(1-r) f(1) \\
w=w_{\max }: & P_{1}\left(w_{\max }\right)=\frac{\mathscr{F}_{1}\left(w_{\max }\right)}{m_{B}^{2}\left(1+w_{\max }\right)(1-r) \sqrt{r}}
\end{array}
$$

extrapolation at maximum recoil

$$
\begin{aligned}
f\left(w_{\max }\right) & =4.19 \pm 0.31 \mathrm{GeV}, \\
g\left(w_{\max }\right) & =0.180 \pm 0.023 \mathrm{GeV}^{-1}, \\
\mathcal{F}_{1}\left(w_{\max }\right) & =11.0 \pm 1.3 \mathrm{GeV}^{2}, \\
P_{1}\left(w_{\max }\right) & =0.411 \pm 0.048 .
\end{aligned}
$$

three unitarity bounds: $\chi_{1^{-}}$for $\mathrm{g}, \quad \chi_{1^{+}}$for f and $\mathscr{F}_{1}, \quad \chi_{0^{-}}$for $P_{1}$
LCSR: $\mathscr{F}_{1}\left(w_{\max }\right)=16.0 \pm 2.1 \mathrm{GeV}^{2} \quad(\operatorname{arXiv}: 1811.00983)$

* comparison with FNAL/MILC "lattice fit" from arXiv: $2105.14019 \rightarrow$ blue bands: quadratic BGL fit of LQCD points only






## blue bands

$$
\begin{gathered}
\sum_{i} a_{i}^{2} \leq 1 \quad 68 \% \quad(g) \\
\sum_{i}\left(b_{i}^{2}+c_{i}^{2}\right) \leq 1 \quad 94 \%\left(f+\mathscr{F}_{1}\right) \\
\sum_{i} d_{i}^{2} \leq 1 \quad 67 \% \quad\left(P_{1}\right) \\
43 \% \text { of events satisfy unitarity } \\
\text { KC at w=1: OK } \\
\text { KC at } \mathrm{w}=\mathrm{W}_{\text {max: }} \text { not applied } \\
\text { red lbands (DM) } \\
100 \% \text { of events satisfying unitarity } \\
\text { KC at w=1: OK } \\
\text { KC at } \mathrm{w}=\mathrm{W}_{\text {max: }} \text { OK } \\
\text { (after iterative procedure) }
\end{gathered}
$$

* overall consistency, differences hidden in the correlations among the FFs at different values of w
${ }^{*}$ some differences for $\mathscr{F}_{1}\left(w_{\max }\right)$ : some impact on $R\left(D^{*}\right)$

$$
\begin{aligned}
& R\left(D^{*}\right)=0.265 \pm 0.013 \\
& R\left(D^{*}\right)=0.275 \pm 0.008
\end{aligned}
$$

## extraction of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $B \rightarrow D^{*} \ell \nu_{\ell}$ decays

*** we do not mix theoretical calculations with experimental data to describe the shape of the FFs ***

$$
\left|V_{c b}\right|_{i} \equiv \sqrt{\frac{(d \Gamma / d x)_{i}^{e x p}}{(d \Gamma / d x)_{i}^{t h}}} \quad i=1, \ldots, N_{b i n s}
$$



four different differential decay rates $d \Gamma / d x$ where $x=\left\{w, \cos \theta_{v}, \cos \theta_{\ell}, \chi\right\}$ :

- 10 bins for each variable
- total of 80 data points
blue data: Belle 1702.01521
red data: Belle 1809.03290


bands are (correlated) weighted averages

$$
\begin{aligned}
\left|V_{c b}\right| & =\frac{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}\left|V_{c b}\right|_{j}}{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}}, \\
\sigma_{\left|V_{c b}\right|}^{2} & =\frac{1}{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}},
\end{aligned}
$$

| experiment | $\left\|V_{c b}\right\|(x=w)$ | $\left\|V_{c b}\right\|\left(x=\cos \theta_{l}\right)$ | $\left\|V_{c b}\right\|\left(x=\cos \theta_{v}\right)$ | $\left\|V_{c b}\right\|(x=\chi)$ |
| :---: | :---: | :---: | :---: | :---: |
| Ref. [11] | $0.0398(9)$ | $0.0422(13)$ | $0.0421(13)$ | $0.0426(14)$ |
| Ref. [12] | $0.0395(7)$ | $0.0405(11)$ | $0.0402(10)$ | $0.0430(13)$ |

averaging procedure

$$
\begin{array}{ll}
\mu_{x}=\frac{1}{N} \sum_{k=1}^{N} x_{k}, & \left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=41.3 \pm 1.7 \\
\sigma_{x}^{2}=\frac{1}{N} \sum_{k=1}^{N} \sigma_{k}^{2}+\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\mu_{x}\right)^{2}, & \left|V_{c b}\right|_{\text {incl. }} \cdot 10^{3}=42.16 \pm 0.50
\end{array}
$$

$$
\left|V_{c b}\right|_{\text {incl. }} \cdot 10^{3}=42.16 \pm 0.50 \quad \text { (Bordone et al: arXiv:2107.00604) }
$$

## exclusive/inclusive tension reduced to less than $1 \sigma$

the use of exp. data to describe the shape of the FFs leads to smaller errors, but it produces a bias on the extracted value of $\left|V_{c b}\right|$

$$
\begin{array}{lr}
\left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=39.6_{-1.0}^{+1.1} & \text { Gambino et al., arXiv:1905.08209 } \\
\left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=39.56_{-1.06}^{1+04} & \text { Jaiswal et al., arXiv:2002.05726 } \\
\left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=38.86 \pm 0.88 & \text { FLAG '21, arXiv:2111.09849 }
\end{array}
$$




## Remark 1

The value of $\left|V_{c b}\right|$ exhibits some dependence on the specific w-bin. The value obtained adopting a constant fit is dominated by the bins at small values of the recoil w , where direct lattice data are available and the lenght of the momentum extrapolation is limited.

## Remark 2

The value of $\left|V_{c b}\right|$ deviates from a constant fit for $x=\cos \left(\theta_{v}\right)$. If we try a quadratic fit of the form

$$
\left|V_{c b}\right|\left[1+\delta B \cos ^{2}\left(\theta_{v}\right)\right]
$$

we get $\delta B \neq 0\left(2-3 \sigma\right.$ level) and $\left|V_{c b}\right|$ more consistent between the two sets of Belle data, but still in agreement with the value of $\left|V_{c b}\right|$ obtained with a constant fit

Both remarks appear to be related to a different w-slope of the theoretical FFs based on the lattice results from FNAL/MILC with respect to the Belle experimental data. This crucial issue (a kind of slope puzzle) needs to be further investigated by forthcoming calculations of the FFs at non-zero recoil expected from the JLQCD Collaboration (see Kaneko's talk) as well as by future improvements of the precision of the experimental data.

## extraction of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $B \rightarrow D \ell \nu_{\ell}$ decays

* lattice QCD form factors from FNAL/MILC (arXiv:1503.07237): synthetic data points at 3 (small) values of the recoil
* experimental data from Belle collaboration in 10 bins (arXiv:1510.03657)


$$
\left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=41.0 \pm 1.2 \quad \text { nice consistency with }\left|V_{c b}\right| \text { from } B \rightarrow D^{*}
$$

no tension between $\exp$ and theory shapes
no bias on the extracted value of $\left|V_{c b}\right|$

$$
\begin{aligned}
& \left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=40.49 \pm 0.97 \\
& \left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=41.0 \pm 1.1 \\
& \left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=40.0 \pm 1.0
\end{aligned}
$$

Gambino et al., arXiv:1606.08030
Jaiswal et al., arXiv:1707.09977
FLAG '21, arXiv:2111.09849

## $R(D), R\left(D^{*}\right)$ and polarization observables

* pure theoretical and parameterization-independent determinations within the DM approach

| observable | DM | experiment | difference |
| ---: | ---: | ---: | ---: |
| $R(D)$ | $0.296(8)$ | $0.339(26)(14)$ | $\simeq 1.4 \sigma$ |
| $R\left(D^{*}\right)$ | $0.275(8)$ | $0.295(10)(10)$ | $\simeq 1.2 \sigma$ |
| $P_{\tau}\left(D^{*}\right)$ | $-0.52(1)$ | $-0.38(51)\left({ }_{-16}^{+21}\right)$ |  |
| $F_{L}\left(D^{*}\right)$ | $0.42(1)$ | $0.60(8)(4)$ | $\simeq 2.0 \sigma$ |

*** exp/SM tension significantly reduced for $R\left(D^{*}\right) * * *$

## form factors for $B_{s} \rightarrow D_{s}^{(*)} \ell \nu_{\ell}$ decays

* lattice QCD form factors from HPQCD arXiv: $1906.00701\left(B_{s} \rightarrow D_{s}\right)$ and $\operatorname{arXiv} \mathbf{2 1 0 5 . 1 1 4 3 3}\left(B_{s} \rightarrow D_{s}^{*}\right)$ in the form of BCL fits in the whole kinematical range
* we extract 3 data points for the FFs at small values of the recoil and we apply the DM approach

$$
B_{s} \rightarrow D_{s}^{*} \ell \nu_{\ell}
$$

$$
B_{s} \rightarrow D_{s} \ell \nu_{\ell}
$$



* nice agreement in the whole kinematical range






## extraction of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $B_{s} \rightarrow D_{s}^{(*)} \ell \nu_{\ell}$ decays

* two sets of experimental data from LHCb collaboration: arXiv:2001.03225 and arXiv:2003.08453
two different runs at LHC
* first analysis: ratios of branching ratios [2001.03225]

$$
\begin{aligned}
& \frac{\mathscr{B}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D \mu \nu_{\mu}\right)}=1.09 \pm 0.05_{\text {stat }} \pm 0.06_{\text {syst }} \pm 0.05_{\text {inputs }}=1.09 \pm 0.09 \\
& \frac{\mathscr{B}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D^{*} \mu \nu_{\mu}\right)}=1.06 \pm 0.05_{\text {stat }} \pm 0.07_{\text {syst }} \pm 0.05_{\text {inputs }}=1.06 \pm 0.10
\end{aligned}
$$

- using the PDG values for $\mathscr{B}\left(B \rightarrow D^{(*)} \mu \nu_{\mu}\right)$ and the $B_{s}$-meson lifetime one gets

$$
\begin{aligned}
\Gamma^{\mathrm{LHCb}}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right) & =(1.08 \pm 0.10) \cdot 10^{-14} \mathrm{GeV} \\
\Gamma^{\mathrm{LHCb}}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right) & =(2.34 \pm 0.26) \cdot 10^{-14} \mathrm{GeV}
\end{aligned}
$$

to be compared with

$$
\begin{aligned}
& \Gamma^{\mathrm{DM}}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right) /\left|V_{c b}\right|^{2}=(6.04 \pm 0.23) \cdot 10^{-12} \mathrm{GeV} \\
& \Gamma_{\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right) /\left|V_{c b}\right|^{2}}=(1.39 \pm 0.11) \cdot 10^{-11} \mathrm{GeV}
\end{aligned}
$$



| decays | $\left\|V_{c b}\right\|^{\mathrm{DM}} \cdot 10^{3}$ |
| :---: | ---: |
| $B_{s} \rightarrow D_{s} \ell \nu_{\ell}$ | $42.3 \pm 2.1$ |
| $B_{s} \rightarrow D_{s}^{*} \ell \nu_{\ell}$ | $41.0 \pm 2.8$ |

* second analysis: differential decay rates reconstructed from the LHCb fits of $p_{\perp}$ distributions (BGL/CLN parameterizations for the FFs) carried out in arXiv:2001.03225
bin-per-bin analysis: $\left|V_{c b}\right|_{j} \equiv \sqrt{\frac{d \Gamma^{\mathrm{LHCb}} / d w_{j}}{d \Gamma^{\mathrm{DM}} / d w_{j}}} \quad j=1, \ldots, N_{\text {bins }}$
we adopted $N_{\text {bins }}=14 \mathrm{w}$-bins


correlated weighted averages

$$
\begin{aligned}
\left|V_{c b}\right| & =\frac{\sum_{i, j=1}^{N_{\text {bins }}\left(\mathbf{C}^{-1}\right)_{i j}\left|V_{c b}\right|_{j}}}{\sum_{i, j=1}^{N_{\text {bins }}\left(\mathbf{C}^{-1}\right)_{i j}}} \\
\sigma_{\left|V_{c b}\right|}^{2} & =\frac{1}{\sum_{i, j=1}^{N_{\text {bins }}\left(\mathbf{C}^{-1}\right)_{i j}}}
\end{aligned}
$$

| decays | $\left\|V_{c b}\right\|^{\mathrm{DM}} \cdot 10^{3}$ |
| :---: | ---: |
| $B_{s} \rightarrow D_{s} \ell \nu_{\ell}$ | $42.4 \pm 1.9$ |
| $B_{s} \rightarrow D_{s}^{*} \ell \nu_{\ell}$ | $41.9 \pm 2.2$ |

$$
\left|V_{c b}\right|^{\mathrm{LHCb}} \cdot 10^{3}=42.3 \pm 1.7
$$

* third analysis: LHCb ratios from arXiv:2003.08453

$$
\Delta r_{j}=\frac{\Delta \Gamma_{j}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)}{\Gamma\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)} \quad j=1, \ldots, 7
$$

| $j$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $w$-bin | $1.000-1.1087$ | $1.1087-1.1688$ | $1.1688-1.2212$ | $1.2212-1.2717$ | $1.2717-1.3226$ | $1.3226-1.3814$ | $1.3814-1.4667$ |
| $\Delta w_{j}$ | 0.1087 | 0.0601 | 0.0524 | 0.0505 | 0.0509 | 0.0588 | 0.0853 |
| $\Delta r_{j}^{\mathrm{LHCb}}$ | $0.183(12)$ | $0.144(8)$ | $0.148(8)$ | $0.128(8)$ | $0.117(7)$ | $0.122(6)$ | $0.158(9)$ |
| $\Delta r_{j}^{\mathrm{DM}}$ | $0.1942(82)$ | $0.1534(45)$ | $0.1377(28)$ | $0.1289(18)$ | $0.1212(20)$ | $0.1241(40)$ | $0.1405(110)$ |


consistency within $\sim 1 \sigma$

shape of theoretical FFs is consistent with the one of the experimental data

* to determine $\left|V_{c b}\right|$ we evaluate the integrated differential decay rates for each bin

$$
\Delta \Gamma_{j}^{\exp }=\Delta r_{j}^{\mathrm{LHCb}} \cdot \Gamma^{\mathrm{LHCb}}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right) \quad j=1, \ldots, 7
$$

$$
\Gamma^{\mathrm{LHCb}}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right) \text { from arXiv:2001.03225 }
$$

$$
\bar{\Gamma} \pm \sigma_{\bar{\Gamma}}=(2.34 \pm 0.26) \cdot 10^{-14} \mathrm{GeV}
$$

*** uncorrelated with $\Delta r_{j}^{\mathrm{LHCb}} * * *$
and the covariance matrix: $\quad \Gamma_{i j}^{\exp }=R_{i j}^{\mathrm{LHCb}}\left[\bar{\Gamma}^{2}+\sigma_{\bar{\Gamma}}^{2}\right]+\Delta r_{i}^{\mathrm{LHCb}} \Delta r_{j}^{\mathrm{LHCb}} \sigma_{\bar{\Gamma}}^{2}$

$$
\text { general property: } \sum_{i, j=1}^{N_{\text {bins }}} \Gamma_{i j}^{\mathrm{exp}}=\sigma_{\bar{\Gamma}}^{2} \quad \sum_{i=1}^{N_{\text {bins }}} \Delta r_{i}^{\mathrm{LHCb}}=1 \quad \text { and } \quad \sum_{i, j=1}^{N_{\text {bins }}} R_{i j}^{\mathrm{LHCb}}=0
$$

- D'Agostini effect (NIMA '94): negative bias on constant fits to data affected by an overall normalization uncertainty; it depends upon $\sigma_{\bar{\Gamma}}$ and $\Delta r_{i}^{\mathrm{LHCb}} \neq \Delta r_{j}^{\mathrm{LHCb}}$

modified covariance matrix

$$
\begin{gathered}
\widetilde{\Gamma}_{i j}^{\exp }=R_{i j}^{\mathrm{LHCb}}\left[\bar{\Gamma}^{2}+\sigma_{\bar{\Gamma}}^{2}\right]+\sigma_{\bar{\Gamma}}^{2} / N_{\text {bins }}^{2} \\
\sum_{i, j=1}^{N_{\text {bins }}} \widetilde{\Gamma}_{i j}^{\exp }=\sum_{i, j=1}^{N_{\text {bins }}} \Gamma_{i j}^{\exp }=\sigma_{\bar{\Gamma}}^{2}
\end{gathered}
$$

correlated weighted averages

$$
\begin{aligned}
& \left|V_{c b}\right| \cdot 10^{3}=38.6 \pm 2.7 \\
& \left|V_{c b}\right| \cdot 10^{3}=41.2 \pm 2.4
\end{aligned}
$$

$$
\left|V_{c b}\right|^{\mathrm{DM}} \cdot 10^{3} \text { from } B_{s} \rightarrow D_{s}^{(*)} \ell \nu_{\ell}
$$

summary of $\left|V_{c b}\right|^{\mathrm{DM}}$ from $B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu_{\ell}$

$$
\begin{array}{rrr}
\text { analysis } & B_{s} \rightarrow D_{s} & B_{s} \rightarrow D_{s}^{*} \\
\text { first } & 42.3 \pm 2.1 & 41.0 \pm 2.8 \\
\text { second } & 42.4 \pm 1.9 & 41.9 \pm 2.2 \\
\text { third } & & 41.2 \pm 2.4 \\
\text { average } & 42.4 \pm 2.0 & 41.4 \pm 2.6 \\
& x=\sum_{k=1}^{N} \omega_{k} x_{k} \\
& \sigma^{2}=\sum_{k=1}^{N} \omega_{k}\left[\sigma_{k}^{2}+\left(x_{k}-x\right)^{2}\right] \\
& \omega_{k}=\left(1 / \sigma_{k}^{2}\right) / \sum_{j=1}^{N}\left(1 / \sigma_{j}^{2}\right)
\end{array}
$$

decay
$\left|V_{c b}\right|^{\mathrm{DM}} \cdot 10^{3}$
inclusive
[2107.00604]

| $B \rightarrow D$ | $41.0 \pm 1.2$ |
| :---: | :---: |
| $B \rightarrow D^{*}$ | $41.3 \pm 1.7$ |
| $B_{s} \rightarrow D_{s}$ | $42.4 \pm 2.0$ |
| $B_{s} \rightarrow D_{s}^{*}$ | $41.4 \pm 2.6$ |
| average | $41.4 \pm 0.8$ |

$$
\begin{aligned}
42.16 & \pm 0.50 \\
& \simeq 0.8 \sigma
\end{aligned}
$$

$$
\begin{aligned}
39.36 & \pm 0.68 \\
& \simeq 1.9 \sigma
\end{aligned}
$$

summary of $R\left(D_{(s)}\right), R\left(D_{(s)}^{*}\right)$ and polarization observables

| observable | DM |  | observable | DM | experiment |
| ---: | ---: | ---: | ---: | ---: | ---: | difference


red: $u / d$ spectator quark
blue: strange spectator quark

$$
B_{(s)} \rightarrow D_{(s)}^{*} \ell \nu_{\ell}
$$





$\underline{\text { ratios of branching ratios }}$

$$
\begin{array}{ll}
\left.\frac{\mathscr{B}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D \mu \nu_{\mu}\right)}\right|_{\mathrm{LHCb}}=1.09 \pm 0.09 & \left.\frac{\mathscr{B}\left(B_{s} \rightarrow D_{s} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D \mu \nu_{\mu}\right)}\right|_{\mathrm{DM}}=1.02 \pm 0.06 \\
\left.\frac{\mathscr{B}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D^{*} \mu \nu_{\mu}\right)}\right|_{\mathrm{LHCb}}=1.06 \pm 0.10 & \left.\frac{\mathscr{B}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)}{\mathscr{B}\left(B \rightarrow D^{*} \mu \nu_{\mu}\right)}\right|_{\mathrm{DM}}=1.19 \pm 0.11
\end{array}
$$

- no $\mathrm{SU}(3)_{\mathrm{F}}$ breaking effects in $B_{(s)} \rightarrow P S$
- some $\mathrm{SU}(3)_{\mathrm{F}}$ breaking effects in $B_{(s)} \rightarrow V$
need of more precise exp. and theo. data


## Conclusions

* the Dispersion Matrix approach is an attractive tool to implement unitarity and lattice QCD calculations in the analysis of exclusive semileptonic decays of hadrons. The main features are:
- it does not rely on any assumption about the momentum dependence of the hadronic form factors
- it can be based entirely on first principles using lattice determinations both of the relevant form factors and of the dispersive bounds (the susceptibilities) from appropriate 2-point and 3-point (Euclidean) correlation functions
- it allows to implement unitarity and kinematical constraints in a rigorous and parameterization-independent way
- it predicts band of values that are equivalent to the infinite number of BGL fits satisfying unitarity and KCs and reproducing exactly a given set of data points
- it can be applied to any exclusive semileptonic decay of hadrons
* results for $B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu_{\ell}$ decays: extraction of $\left|V_{c b}\right|$ and theoretical determination of $R\left(D_{(s)}^{(*)}\right) \quad[2105.08674,2109.15248$, using LQCD results for the FFs (from FNAL/MILC and HPQCD)

| decay | $\left\|V_{c b}\right\|^{\text {DM }} \cdot 10^{3}$ | inclusive | exclusive | observable | DM | experiment | difference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | [2107.00604] | [FLAG 21] | $R(D)$ | 0.296 (8) | 0.340 (27) (13) | $\simeq 1.4 \sigma$ |
| $B \rightarrow$ D | $41.0 \pm 1.2$ |  |  | $R\left(D^{*}\right)$ | 0.275 (8) | 0.295 (11) (8) | $\simeq 1.3 \mathrm{\sigma}$ |
| $B \rightarrow D^{*}$ | $41.3 \pm 1.7$ |  |  | $R\left(D_{s}\right)$ | 0.298 (5) |  |  |
| $B_{s} \rightarrow D_{s}$ | $42.4 \pm 2.0$ |  |  | $R\left(D_{s}^{*}\right)$ | 0.250 (6) |  |  |
| $B_{s} \rightarrow D_{s}^{*}$ | $41.4 \pm 2.6$ |  |  |  |  |  |  |
| average | $41.4 \pm 0.8$ | $42.16 \pm 0.50$ | $39.36 \pm 0.68$ |  |  |  |  |
| difference |  | $\simeq 0.8 \sigma$ | $\simeq 1.9 \mathrm{\sigma}$ |  |  |  |  |



# backup slides 

$$
\frac{d \Gamma}{d w} \propto\left|V_{c b}\right|^{2} \sqrt{w^{2}-1} \frac{q^{2}}{M_{B}^{4}}\left[H_{0}^{2}(w)+H_{-}^{2}(w)+H_{+}^{2}(w)\right]=\left|V_{c b}\right|^{2} \sqrt{w^{2}-1}\left\{\left(\frac{\mathscr{F}_{1}(w)}{M_{B}^{2}}\right)^{2}+2 \frac{q^{2}}{M_{B}^{2}}\left[\left(\frac{f(w)}{M_{B}}\right)^{2}+r^{2}\left(w^{2}-1\right) m_{B}^{2} g^{2}(w)\right]\right\} \quad m_{\ell}=0
$$




FNAL/MILC joint fit (arXiv:2105.14019) uses Belle+BaBar data and new FNAL/MILC LQCD points JNP 20 fit (Jaiswal et al. JHEP '20) uses Belle data + old FNAL/MILC LQCD point $h_{A_{1}}(1)$


FNAL/MILC data from arXiv:2105.14019

## JLQCD data from slides of T. Kaneko at CKM '21

FNAL/MILC fit to lattice points (arXiv:2105.14019)
TABLE XI. Results of linear, quadratic, and unitarity-constrained cubic $z$ expansions using only lattice-QCD data.
quadratic fit

|  | Linear | Quadratic | Cubic |
| :---: | :---: | :---: | :---: |
| $a_{0}$ | $0.0330(12)$ | $0.0330(12)$ | $0.0330(12)$ |
| $a_{1}$ | $-0.157(52)$ | $-0.155(55)$ | $-0.155(55)$ |
| $a_{2}$ |  | $-0.12(98)$ | $-0.12(98)$ |
| $a_{3}$ |  | $-0.004(1.000)$ |  |
| $b_{0}$ | $0.01229(23)$ | $0.01229(24)$ | $0.01229(23)$ |
| $b_{1}$ | $-0.002(10)$ | $-0.003(12)$ | $-0.003(12)$ |
| $b_{2}$ |  | $0.07(53)$ | $0.05(55)$ |
| $b_{3}$ |  |  | $-0.01(1.00)$ |
| $c_{1}$ | $-0.0057(22)$ | $-0.0058(25)$ | $-0.0057(25)$ |
| $c_{2}$ |  | $-0.013(91)$ | $-0.02(10)$ |
| $c_{3}$ |  |  | $0.10(95)$ |
| $d_{0}$ | $0.0508(15)$ | $0.0509(15)$ | $0.0509(15)$ |
| $d_{1}$ | $-0.317(59)$ | $-0.327(67)$ | $-0.327(67)$ |
| $d_{2}$ |  | $-0.03(96)$ | $-0.02(96)$ |
| $d_{3}$ |  |  | $-0.0006(1.0000)$ |
| $\chi^{2} / \operatorname{dof}^{2}$ | $0.83 / 5$ | $0.64 / 3$ | $0.64 / 3$ |
| $\sum_{i}^{N} a_{i}^{2}$ | $0.026(16)$ | $0.04(24)$ | $0.04(24)$ |
| $\sum_{i}^{N}\left(b_{i}^{2}+c_{i}^{2}\right)$ | $0.000193(69)$ | $0.005(70)$ | $0.01(18)$ |
| $\sum_{i}^{N} d_{i}^{2}$ | $0.103(37)$ | $0.110(61)$ | $0.110(52)$ |

$$
\sum_{i=1}^{2} a_{i}^{2}=0.04 \pm 0.24 \quad ? ? ?
$$

indeed: $a_{2}=-0.12 \pm 0.98$
with $1 \sigma$ one has $\left|a_{2}\right|>1!!!$
what's going on?

## linearization of the error

$$
\left(a_{2}+\delta a_{2}\right)^{2}-a_{2}^{2} \rightarrow 2\left|a_{2}\right| \delta a_{2} \approx 0.24
$$

wrong when $\delta a_{2} \gg\left|a_{2}\right|$

- start from a set of input data $\left\{f_{i}\right\}$ with a given covariance matrix $C_{i j}$ and a (eventually correlated) susceptibility $\chi$ - generate a multivariate distribution of $N_{\text {boot }}$ events
- for each event $k=1,2, \ldots, N_{b o o t}$ evaluate the lower $f_{l o}^{k}(t)$ and upper $f_{u p}^{k}(t)$ values of the form factor at a given t


FIG. 1. Histograms of the values of $\bar{f}_{\text {up }}$ (upper panel) and $\bar{f}_{\text {lo }}$ (lower panel) for the bootstrap events that pass the unitarity filter in the case of the vector form factor $f_{+}\left(t=0 \mathrm{GeV}^{2}\right)$ of the $D \rightarrow K$ transition.
averages: $\bar{f}_{l o(u p)}(t)=\frac{1}{N_{b o o t}} \sum_{k=1}^{N_{\text {boot }}} f_{l o(u p)}^{k}(t)$
covariance: $C_{L(U), L(U)} \equiv \frac{1}{N_{\text {boot }}-1} \sum_{k=1}^{N_{b o o t}}\left[f_{l o(u p)}^{k}(t)-\bar{f}_{l o(u p)}(t)\right]\left[f_{l o(u p)}^{k}(t)-\bar{f}_{l o(u p)}(t)\right]$
correlated bivariate: $P_{L U}\left(f_{L}, f_{U}\right)=\frac{\sqrt{\operatorname{det}\left(C^{-1}\right)}}{2 \pi} e^{-\frac{1}{2}\left[C_{L L}^{-1}\left(f_{L}-\bar{f}_{l o}\right)^{2}+2 C_{L U}^{-1}\left(f_{L}-\bar{f}_{l o}\right)\left(f_{U}-\bar{f}_{u p}\right)+C_{U U}^{-1}\left(f_{U}-\bar{f}_{u p}\right)^{2}\right]}$
uniform distribution: $P(f)=\frac{1}{f_{U}-f_{L}} \theta\left(f-f_{L}\right) \theta\left(f_{U}-f\right)$

$$
\text { final average: } f(t) \equiv \frac{\bar{f}_{l o}(t)+\bar{f}_{u p}(t)}{2}
$$

final variance: $\sigma_{f}^{2}(t) \equiv \frac{1}{12}\left[\bar{f}_{l o}(t)-\bar{f}_{u p}(t)\right]^{2}+\frac{1}{3}\left[C_{L L}(t)+C_{U U}(t)+C_{L U}(t)\right]$

* kinematical constraint: $\quad f_{+}(0)=f_{0}(0)$
for each event $k=1,2, \ldots, N_{\text {boot }}:\left.\quad f(0)\right|_{l o} \leq f(0) \leq\left.\left. f(0)\right|_{u p} \quad f_{0}(0)\right|_{l o}=\max \left(\left.f_{0}(0)\right|_{l o},\left.f_{+}(0)\right|_{l o}\right)$

$$
\left.f_{0}(0)\right|_{u p}=\min \left(\left.f_{0}(0)\right|_{u p},\left.f_{+}(0)\right|_{u p}\right)
$$

addition of one (common) point at $q^{2}=0$ in the dispersion matrices of $f_{0}$ and $f_{+}$uniformely distributed in $\left[\left.f(0)\right|_{l o},\left.f(0)\right|_{u p}\right]$

* when the percentage of events satisfying the unitarity and/or kinematical constraints is too low, the reliability of the DM bands may become questionable and we apply a procedure to recover a larger percentage of events passing the filters
skeptical procedure (from D'Agostini, arXiv: 2001.03466)

1. modify the standard deviations $\sigma_{\mathrm{i}}$ of the input data by a factor $r_{i}$ while keeping fixed the averages $f_{i}$ (a common value $r$ is typically enough)
2. enlarge the number of bootstraps by extracting Nr values of $r$ distributed according to a exponential distribution
3. select the the events passing the filters and compute their average value $r^{*}$
4. select the event with r closest to $\mathrm{r}^{*}$
iterative procedure [arXiv:2109.15248]
5. recalculate the mean values and the covariance matrix of the subset of inpout data passing the filters
6. generate a new multivariate distribution
7. check unitarity and kinematical constraints
8. repeat steps 1-3 until convergence of the percentage of events passing the filters is reached

simpler and more effective procedure

## hadronic form factors in semileptonic $B \rightarrow D^{(*)} \ell \nu_{\ell}$ decays

$$
\frac{d \Gamma\left(B \rightarrow D \ell \nu_{\ell}\right)}{d q^{2}}=\frac{G_{F}^{2}}{24 \pi^{3}} \eta_{E W}^{2}\left|V_{c b}\right|^{2} p_{D}^{3} f_{+}^{2}\left(q^{2}\right) \quad \text { for massless leptons }
$$



$$
\begin{array}{rrr}
g(w) & = & \frac{1}{r \sqrt{w^{2}-1}} \frac{H_{+}(w)-H_{-}(w)}{2 m_{B}^{2}} \\
f(w) & = & \frac{H_{+}(w)+H_{-}(w)}{2} \\
F_{1}(w) & = & m_{B} \sqrt{1-2 r w+r^{2}} H_{0}(w)
\end{array}
$$

for massive leptons one should add $f_{0}\left(q^{2}\right)$ for $B \rightarrow D$ and $P_{1}(w)$ for $B \rightarrow D^{*}$

## experimental data for $B \rightarrow D^{*} \ell \nu_{\ell}$ decays

- two sets of data from Belle collaboration arXiv:1702.01521 and arXiv:1809.03290
- four different differential decay rates $d \Gamma / d x$ where $x=\left\{w, \cos \theta_{v}, \cos \theta_{\ell}, \chi\right\}: 10$ bins for each variable
*** we do not mix theoretical calculations with experimental data to describe the shape of the FFs ***

$$
\left|V_{c b}\right|_{i} \equiv \sqrt{\frac{(d \Gamma / d x)_{i}^{e x p}}{(d \Gamma / d x)_{i}^{t h}}} \quad i=1, \ldots, N_{b i n s}
$$

* issue with the covariance matrix $C_{i j}^{\text {exp }}$ of the Belle data: $\Gamma^{\exp } \equiv \sum_{i=1}^{10}\left(\frac{d \Gamma}{d x}\right)_{i}^{\text {exp }}$ should be the same for all the variables x
- we recover the above property by evaluating the correlation matrix of the experimental ratios

$$
\frac{1}{\Gamma \exp }\left(\frac{d \Gamma}{d x}\right)_{i}^{\exp }
$$

and by considering the new covariance matrix of the experimental data given by (see arXiv:2105.08674)

$$
\widetilde{C}_{i j}^{\text {exp }} \rightarrow \rho_{i j}^{\text {ratios }} \sqrt{C_{i i}^{\text {exp. }} C_{j j}^{\text {exp }}}
$$

## extraction of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $B \rightarrow D^{*} \ell \nu_{\ell}$ decays

original covariance matrix of Belle data



blue data: Belle 1702.01521
red data: Belle 1809.03290
bands are (correlated) weighted averages

$$
\begin{aligned}
& \left|V_{c b}\right|=\frac{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}\left|V_{c b}\right|_{j}}{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}}, \\
& \sigma_{\left|V_{c b}\right|}^{2}=\frac{1}{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}}, \\
& \quad\left|V_{c b}\right| \cdot 10^{3}=40.5 \pm 1.7
\end{aligned}
$$

## BGL approach

* the hadronic form factors corresponding to definite spin-parity can be represented as an expansion, originating from unitarity, analyticity and crossing symmetry, in terms of the conformal variable $\mathrm{z}(|z| \leq 1)$

$$
f_{+}\left(q^{2}\right)=\sqrt{\frac{n_{I}}{\chi_{1-}\left(q_{0}^{2}\right)}} \frac{1}{\phi_{+}\left(z\left(q^{2}\right), q_{0}^{2}\right) P_{+}\left(z\left(q^{2}\right)\right)} \sum_{n=0}^{\infty} a_{n} z^{n}\left(q^{2}\right) \quad z(t) \equiv \frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}} \quad \begin{aligned}
& t_{0} \rightarrow t_{-} \\
& t_{ \pm} \equiv\left(m_{B} \pm m_{D}\right)^{2}
\end{aligned}
$$

$\phi_{+}\left(z\left(q^{2}\right), q_{0}^{2}\right)=$ kinematical function $\quad\left(q_{0}^{2}=\right.$ auxiliary quantity $)$
$P_{+}\left(z\left(q^{2}\right)\right)=$ Blaschke factor including resonances below the pair-production threshold $t_{+}$
$n_{I}=$ factor counting the number of spectator quarks

$$
\chi_{1}-\left(q_{0}^{2}\right)=\text { transverse vector susceptibility } \equiv \frac{1}{2} \frac{\partial^{2}}{\partial\left(q_{0}^{2}\right)^{2}}\left[q_{0}^{2} \Pi_{1-}\left(q_{0}^{2}\right)\right]=\frac{1}{\pi} \int_{0}^{\infty} d s \frac{s \operatorname{Im} \Pi_{1-}(s)}{\left(s-q_{0}^{2}\right)^{3}}
$$

calculable nonperturbatively from appropriate 2-point lattice correlators (see arXiv:2105.07851)

$$
\text { unitarity constraint: } \quad \sum_{n=0}^{\infty} a_{n}^{2} \leq 1
$$

$$
\begin{gathered}
\Gamma_{i}: \text { mean values } \bar{\Gamma}_{i} \text { and covariance matrix } C_{i j} \quad i, j=1, \ldots, N \\
\Gamma=\sum_{i=1}^{N} \Gamma_{i} \\
\text { mean value } \bar{\Gamma}=\sum_{i=1}^{N} \bar{\Gamma}_{i} \text { and variance } \sigma_{\Gamma}^{2}=\sum_{i, j=1}^{N} C_{i j} \\
\sum_{i, j=1}^{N} C_{i j}=\sum_{i, j=1}^{N}\left\langle\left(\Gamma_{i}-\bar{\Gamma}_{i}\right)\left(\Gamma_{j}-\bar{\Gamma}_{j}\right)\right\rangle=\left\langle\left[\sum_{i=1}^{N}\left(\Gamma_{i}-\bar{\Gamma}_{i}\right)\right]^{2}\right\rangle=\left\langle(\Gamma-\bar{\Gamma})^{2}\right\rangle \equiv \sigma_{\Gamma}^{2}
\end{gathered}
$$

$$
\Gamma_{i}=r_{i} \cdot \Gamma \quad i=1, \ldots, N
$$

$r_{i}$ : mean values $\bar{r}_{i}$ and covariance matrix $R_{i j}$
$\Gamma:$ mean value $\bar{\Gamma}$ and variance $\sigma_{\Gamma}^{2} \quad$ uncorrelated with all the $r_{i}^{\prime} s$

$$
\begin{aligned}
& \Gamma_{i}: \text { mean values } \bar{\Gamma}_{i}=\bar{r}_{i} \cdot \bar{\Gamma} \text { and covariance matrix } C_{i j}=R_{i j} \cdot\left[\bar{\Gamma}^{2}+\sigma_{\Gamma}^{2}\right]+\bar{r}_{i} \bar{r}_{j} \sigma_{\Gamma}^{2} \\
& r_{i}=\bar{r}_{i}+\sqrt{R_{i i}} \sum_{k=1}^{N} U_{i k}^{T} \sqrt{\lambda_{k}} \cdot \xi_{k} \quad \quad R_{i j}=\sqrt{R_{i i} R_{j j}} \sum_{k=1}^{N} U_{i k}^{T} \lambda_{k} U_{k j} \\
& \xi_{\Gamma} \text { : uncorrelated variable with all the } \xi_{k} \text { variables } \\
& \left\langle\xi_{\Gamma}\right\rangle=0 \text { and }\left\langle\xi_{\Gamma}^{2}\right\rangle=1,\left\langle\xi_{\Gamma} \xi_{k}\right\rangle=0 \\
& C_{i j}=\left\langle( r _ { i } \cdot \Gamma - \overline { r } _ { i } \cdot \overline { \Gamma } ) \left( r_{j} \cdot \Gamma-\bar{r}_{j} \cdot \bar{\Gamma}>=\sqrt{R_{i i} R_{j j}} \sum_{k=1}^{N} U_{i k}^{T} \lambda_{k} U_{j k}^{T}\left[\bar{\Gamma}^{2}+\sigma_{\Gamma}^{2}\right]+\bar{r}_{i} \bar{r}_{j} \sigma_{\Gamma}^{2}=R_{i j}\left[\bar{\Gamma}^{2}+\sigma_{\Gamma}^{2}\right]+\bar{r}_{i} \bar{r}_{j} \sigma_{\Gamma}^{2}\right.\right.
\end{aligned}
$$

* LHCb ratios from arXiv:2003.08453

$$
\Delta r_{j}=\frac{\Delta \Gamma_{j}\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)}{\Gamma\left(B_{s} \rightarrow D_{s}^{*} \mu \nu_{\mu}\right)} \quad j=1, \ldots, 7
$$

- constrain $\sum_{j=1}^{7} \Delta r_{j}=1$

1) one null eigenvalue of the covariance matrix $R_{i j}^{\mathrm{LHCb}}$ (six independent ratios)
2) $\sum_{i, j} R_{i j}^{\mathrm{LHCb}}=0$ (null variance for the sum)

- experimental covariance matrix $R_{i j}^{\mathrm{LHCb}}$ :
eigenvalues $\quad \lambda_{j}=\{0.072,0.21,0.33,0.53,0.73,1.03,2.33\} \cdot 10^{-4}$ and $\sum_{i, j} R_{i j}^{\mathrm{LLCb}}=1.45 \cdot 10^{-3}$ quadrature) to the error of the total decay rate
- modified covariance matrix $\widetilde{R}_{i j}^{\mathrm{LHCb}}: \widetilde{\Delta r_{j}}=\Delta r_{j} / \sum_{k=1}^{7} \Delta r_{k}$
eigenvalues $\quad \tilde{\lambda}_{j}=\{0.0,0.073,0.22,0.34,0.53,0.74,1.14\} \cdot 10^{-4}$ and $\sum_{i, j} \widetilde{R}_{i j}^{\mathrm{LHCb}}=0$

