## B ightarrow X au u measurements at LHCb

## Greg Ciezarek, on behalf of the LHCb collaboration

April 20, 2022





▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# $B \rightarrow D^{(*)} \tau \nu$



- In the Standard model, the only difference between  $B \rightarrow D^{(*)} \tau \nu$  and  $B \rightarrow D^{(*)} \mu \nu$  is the mass of the lepton
  - Form factors mostly cancel in the ratio of rates (except helicity suppressed amplitude)
- Ratio  $R(D^{(*)}) = B(B \rightarrow D^{(*)}\tau\nu) / B(B \rightarrow D^{(*)}\mu\nu)$  is sensitive to e.g charged Higgs, leptoquark

## Where do we stand?



- Plus  $R_{J/\psi}$
- Plus  $R_{\Lambda_b}$  see talk from Patrick later
- Updates long overdue...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### 3. Ongoing measurements

## What are we working on?

- Update for muonic  $\mathcal{R}(D^*)$ :  $D^0\ell
  u$  vs  $D^{*+}\ell
  u$ 
  - Backgrounds not so much worse than in  $D^{*+}\mu X$
  - Significant improvement in precision
- Similar measurement with  $D^+\ell
  u X$
- Update hadronic  $\mathcal{R}(D^*)$  (before  $D\tau\nu$ )
  - Also, a  $D^{*+}$  polarisation measurement
- $B_s \rightarrow D_s^{(*)} \tau \nu$ 
  - Main difference to  $B \rightarrow D^{(*)} \tau \nu$ : feed-down mostly via neutrals
- $B 
  ightarrow D^{**} au 
  u$  (narrow states)
- $\Lambda_b \rightarrow \Lambda_c^{(**)} \tau \nu$ 
  - Different spin structure to meson modes  $\rightarrow$  different physics sensitivity
- Update  $R_{J\!/\psi}$

## Experimental challenge



- Difficulty: neutrinos 2 for  $(\tau \rightarrow \pi \pi \pi \nu)\nu$ , 3 for  $(\tau \rightarrow \mu \nu \nu)\nu$ 
  - No narrow peak to fit (in any distribution)
- Main backgrounds: partially reconstructed B decays
  - $B \to D^* \mu \nu, B \to D^{**} \mu \nu, B \to D^* D(\to \mu X) X \dots$
  - $B \rightarrow D^* \pi \pi \pi X$ ,  $B \rightarrow D^* D (\rightarrow \pi \pi \pi X) X$  ...
- Also combinatorial, misidentified background

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

4. Muonic  $\mathcal{R}(D^*)$  measurement

Isolation

Phys. Rev. Lett. 115 (2015) 111803

イロト 不得 トイヨト イヨト

э



- Reject physics backgrounds with additional charged tracks
- MVA output distribution for  $B \to D^{**} \mu^+ \nu$  background (hatched) and signal (solid)
- Inverting the cut gives a sample hugely enriched in background  $\rightarrow$  control samples

## Fit strategy

Phys. Rev. Lett. 115 (2015) 111803





- Can use *B* flight direction to measure transverse component of missing momentum
- No way of measuring longitudinal component  $\rightarrow$  use approximation to access rest frame kinematics
  - Assume  $\gamma \beta_{z, visible} = \gamma \beta_{z, total}$
  - $\sim$ 20% resolution on *B* momentum, long tail on high side
- Can then calculate rest frame quantities  $m^2_{missing}$ ,  $E_{\mu}$ ,  $q^2$

## Fit strategy

Phys. Rev. Lett. 115 (2015) 111803

< ロ > < 同 > < 回 > < 回 >



- Three dimesional template fit in  $E_{\mu}$  (left),  $m_{missing}^2$  (middle), and  $q^2$ 
  - Projections of fit to isolated data shown
- All uncertainties on template shapes incorporated in fit:
  - Continuous variation in e.g different form factor parameters
- (Understanding agreement between simulation and data also essential)

# Background strategy

- All major backgrounds modelled using control samples in data
  - Dedicated samples for different backgrounds  $(D^*\pi, D^*\pi\pi, D^*DX)$
  - Quality of fit used to justify modelling
  - Data-driven systematic uncertainties
- All combinatorial or misidentified backgrounds taken from data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $B \rightarrow D^{**} (\rightarrow D^{*+} \pi) \mu \nu$  control sample



- Isolation MVA selects one track,  $M_{D^{*+}\pi}$  around narrow  $D^{**}$  peak  $\rightarrow$  select a sample enhanced in  $B \rightarrow D^{**}\mu^+\nu$ 
  - Use this to constrain form factors, justify  $B \to D^{**} \mu^+ \nu$  shape for light  $D^{**}$  states
  - Also fit above, below narrow D<sup>\*\*</sup> peak region to check all regions of M<sub>D<sup>\*+</sup>π</sub> are modelled correctly in data

 $B 
ightarrow D^{**} (
ightarrow D^{*+} \pi \pi) \mu 
u$  control sample



• Also look for two tracks with isolation MVA  $\rightarrow$  study  $B \rightarrow D^{**}(\rightarrow D^{*+}\pi\pi)\mu\nu$  in data

Can control shape of this background

ヘロト 人間 ト 人 ヨト 人 ヨト

э

## $B \rightarrow D^* DX$ control sample



• Isolation MVA selects a track with loose kaon ID  $\rightarrow$  select a sample enhanced in  $B \rightarrow D^*DX$ 

(日)

э

• Use this to constrain, justify  $B \rightarrow D^* DX$  shape

 $\mathcal{R}(D^*)$  with  $au o \pi\pi\pi
u$ 



- Compared to muonic  $\mathcal{R}(D^*)$ :
  - Large  $B 
    ightarrow D^* \mu 
    u$ ,  $B 
    ightarrow D^{**} \mu^+ 
    u$  backgrounds absent
  - Additional  $B \rightarrow D^* \pi \pi \pi X$  backgrounds
  - $B \rightarrow D^* DX$  with  $D \rightarrow \pi \pi \pi X$
- Control experimental efficiencies by measuring rate relative to  $B \rightarrow D^* \pi \pi \pi$

## Removing $B \rightarrow D^* \pi \pi \pi X$

LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



- Can use decay topology to remove direct  $B \rightarrow D^* \pi \pi \pi X$  decays:
- If the  $\pi\pi\pi$  vertex is displaced from the B vertex, cannot be direct  $B \to D^*\pi\pi\pi X$
- · Can remove a large, poorly measured background
  - And control the remainder
- $B \rightarrow D^* DX$  major physics background remaining

## Dealing with $B \rightarrow D^* D X$

### LHCb-PAPER-2017-017, LHCb-PAPER-2017-027



- $[\pi\pi\pi]$  lifetime discriminates between tau and  $B \rightarrow D^*DX$
- Can use partial reconstruction techniques to reconstruct D peak in  $B \rightarrow D^{*+}D$  (not  $B \rightarrow D^*DX$ )
- $\tau \to \pi \pi \pi \nu$  is mostly a1(1260),  $D \to \pi \pi \pi X$  mostly isn't
  - Use the  $\pi\pi\pi$  (sub) structure to separate  $B \rightarrow D^* \tau \nu$  from  $B \rightarrow D^* DX$
  - Shown: control region for  $D_s \to \pi \pi \pi X$
- Put everything in an MVA: kinematics, Dalitz, partial reconstruction, neutral isolation

Dealing with  $B \rightarrow D^* DX$ 



- Use data to control  $B \rightarrow D^*DX$  modelling
- Can use  $D_{(s)} \to \pi\pi\pi$  mass peak to select a pure  $B \to D^*DX$  sample
- This controls the  $B 
  ightarrow D^* DX$  modelling, but not the  $D 
  ightarrow \pi\pi\pi X$

・ロト・西ト・西ト・日・ 日・ シック

 $D \to \pi \pi \pi X$ 

### LHCb-PAPER-2017-017, LHCb-PAPER-2017-027



Again, use data to control background modelling

• Use low BDT region to control  $D_s \rightarrow \pi \pi \pi X$  substructure

э

### LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

ヘロト 人間ト 人間ト 人間ト

æ.



• 3D template fit in BDT,  $q^2$ , tau lifetime to determine signal yield



- If we establish a new physics signal in  $b \rightarrow c \tau \nu$ , would really want to test the flavour structure:  $b \rightarrow u \tau \nu$ 
  - $b \rightarrow c \tau \nu$  hard enough to measure, before extra suppression  $\rightarrow$  background levels challenging
  - Requires very careful choice of channel to give us any hope
- $B \rightarrow p\overline{p}\tau\nu$  with  $\tau \rightarrow \mu\nu\nu$ 
  - Experimentally the cleanest, Theoretically not so good...
  - Will make detailed measurements of corresponding  $B 
    ightarrow p \overline{p} \mu 
    u$  mode
- $\Lambda_b \rightarrow p \tau \nu$  with  $\tau \rightarrow \pi \pi \pi \nu$ ?
  - Lattice calculations used to measure  $|V_{\rm ub}|$  with equivalent  $\Lambda_b \rightarrow p\mu\nu$ mode  $\rightarrow$  already have a good theory prediction

## Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Measuring  $B \rightarrow X \tau \nu$  is hard, takes time and care to do properly
- Updates will come
- Will transition into angular analyses
- Lots to look forward to