

-Three Five loop calculations for inclusive semileptonic B decays

Challenges in Semileptonic B decays – Barolo

Matteo Fael | 20 Apr. 2022| with K. Schönwald and M. Steinhauser

www.kit.edu

The Heavy-Quark Expansion

$$\Gamma_{\rm sl} = \Gamma_0 + \Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^2}{m_b^2} + \Gamma_{\mu_G} \frac{\mu_G^2}{m_b^2} + \Gamma_{\rho_D} \frac{\rho_D^3}{m_b^3} + \Gamma_{\rho_{LS}} \frac{\rho_{LS}^3}{m_b^3} + \dots$$

Reviews: Benson, Bigi, Mannel, Uraltsev, Nucl.Phys. B665 (2003) 367; Dingfelder, Mannel, Rev.Mod.Phys. 88 (2016) 035008.

- Γ_i are computed in perturbative QCD.
- The HQE parameters: $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{LS} \sim \langle B | \mathcal{O}_{i}^{\bar{b}b} | B \rangle$
- HQE parameters are extracted from kinematic moments.
 - \longrightarrow see talk M. Bordone, R. van Tonder, M. Rotondo
- Ongoing pilot studies also on the lattice.
 - → see talk S. Hashimoto

Hashimoto, Gambino, Phys.Rev.Lett. 125 (2020) 032001 and hep-lat/2203.11762; Gambino, Melis, Simula, Phys.Rev.D 96 (2017) 014511; Hansen, Meyer, Robaina, Phys.Rev.D 96 (2017) 9, 094513;

		tree	α_{s}	α_{s}^{2}	α_s^{3}	
1		1	1	1	1	- Jezabek, Kuhn, NPB 314 (1989) 1; Gambino et al., NPB 719 (2005) 77; Melnikov, PLB 666 (2008) 336; Pak, Czarnecki, PRD 78 (2008) 114015. ME Schönwald, Steinhauser, PRD 104 (2021) 016003:
$1/m_{b}^{2}$	μ_{π}	1	1			Becher, Boos, Lunghi, JHEP 0712 (2007) 062; Alberti, Ewerth, Gambino, Nandi, NPB 870 (2013) 16
	μ_{G}	1	1			Alberti, Gambino, Nandi, JHEP 1401 (2014) 147; Mannel, Pivovarov, Rosenthal, PRD 92 (2015) 054025.
$1/m_{b}^{3}$	ρ _D ρ _{LS}	\ \	٠ ٠			Mannel, Pivovarov, PRD100 (2019) 093001; Mannel, Moreno, Pivovarov, PRD 105 (2022) 054033.
$1/m_b^{4,5}$		1				Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087, JHEP 1011 (2010) 109 MF, Mannel, Vos, JHEP 02 (2019) 177, JHEP 12 (2019) 067.
$\overline{m}_b - m_b^{ m kin}$			1	1	1	Bigi et al, PRD 56 (1997) 4017; Czarnecki, Melnikov, Uraltsev, PRL 80 (1998) 3189. MF, Steinhauser, Schönwald, PRL 125 (2020) 5, PRD 103 (2021) 014005.

 \checkmark = known fully differential \checkmark = known for selected observables

Third order corrections for $B o X_c \ell u_\ell$

Total semileptonic rate

MF, Schönwald, Steinhauser, PRD 104 (2021) 016003, JHEP 10 (2020) 087

Relation between MS mass and the kinetic mass

MF, Schönwald, Steinhauser, PRL 125 (2020) 052003, PRD 103 (2021) 014005

First glance to the spectral moments.

MF, Schönwald, Steinhauser, in preparation

$lpha_{s}^{3}$ corrections to $b ightarrow X_{c} \ell ar{ u}_{\ell}$ width

$$\Gamma_{\rm sl} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[X_0(\rho) + C_F \sum_{n\geq 1} \left(\frac{\alpha_s}{\pi}\right)^n X_n(\rho) \right]$$

with $\rho = m_c/m_b$

Possible strategies

- Exact analytic result with m_b and m_c only at $O(\alpha_s)$.
- Numerical approach

Melnikov, PLB 666 (2008) 336

Approximation exploiting m_c < m_b Czarnecki, Pak, PRD 78 (2008) 114015

Computational Method

$$\Gamma_{\rm sl} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[1 - 8\rho^2 - 12\rho^4 \log(\rho^2) + 8\rho^6 - \rho^8 \right]$$

where $\rho = m_c/m_b$.

- Optical theorem.
- Multi-loop diagrams with two scales m_c and m_b.
- Use method of regions. Beneke, Smirnov, NPB 522 (1998) 321; Smirnov, Springer Tracts Mod.Phys. 177
- Expansion in $\rho = m_c/m_b$: too difficult to extend at $O(\alpha_s^3)$.
- Expansion in $\delta = 1 m_c/m_b$: Crucial factorization of loop integrals.

 $\bar{\nu}_{\ell}$

Γ_{s1} at tree level

• Each loop momenta can scale as hard or soft.

$$\begin{split} \Gamma_{\mu} &= \Gamma^{(hh)} + \Gamma^{(ss)} + \Gamma^{(hs)} + \Gamma^{(sh)} \\ &= \Gamma_0 \Big[1 - 8\rho^2 - 12\rho^4 \log(\rho^2) + 8\rho^6 - \rho^8 \Big] \end{split}$$

where
$$ho=m_c/m_b$$
 and $\Gamma_0=rac{G_F^2m_b^5}{192\pi^3}|V_{cb}|^2$

$$\begin{split} &\Gamma^{(\mathrm{hh})} \sim 1 - 8\rho^2 - \frac{\rho^4}{12\varepsilon} - 24\rho^4 \log\left(\frac{\mu^2}{m_b^2}\right) - 24\rho^4 + 16\rho^6 - 2\rho^8 \\ &\Gamma^{(\mathrm{hs})} \sim + \frac{\rho^4}{12\varepsilon} + 24\rho^4 \log\left(\frac{\mu^2}{m_b^2}\right) - 12\rho^4 \log(\rho^2) + 24\rho^4 - 8\rho^6 + \rho^8 \\ &\Gamma^{(\mathrm{ss})} = \Gamma^{(\mathrm{sh})} = 0 \end{split}$$

b

c

Second order corrections

$$\Gamma_{\rm sl} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[X_0 + C_F \frac{\alpha_s}{\pi} X_1 + C_F \left(\frac{\alpha_s}{\pi}\right)^2 X_2 + \dots \right]$$

Czarnecki, Pak, PRD 78 (2008) 114015; PRL 100 (2008) 241807.

- Four-loop diagrams.
- Loop momenta hard (m_b) or soft (m_c) .
- 11 different regions.
- 33 four-loop master integrals.

• Expansion depth:
$$O(\rho^7)$$
 ($\rho = m_c/m_b$).

Towards the third order corrections

	α_{s}^{2}		$lpha_{s}^{3}$
n. diagrams	62	\rightarrow	1450
n. loops	4	\rightarrow	5
regions	11	\rightarrow	O(20)
expansion depth	7	\rightarrow	?
master integrals	33	\rightarrow	?

The heavy daughter limit

Dowling, Piclum, Czarnecki, PRD 78 (2008) 074024

Is the most natural expansion parameter also the best one?

$$rac{m_c}{m_b}\sim 0.3$$
 $1-rac{m_c}{m_b}\sim 0.7$

• Heavy daughter limit $m_c \sim m_b$:

$$\delta = 1 - \rho = 1 - \frac{m_c}{m_b} \ll 1$$

• Leading power in δ :

$$\Gamma_{\rm sl} \stackrel{m_c o m_b}{\simeq} rac{G_F^2}{192\pi^3} (m_b - m_c)^5 = rac{G_F^2 m_b^5}{192\pi^3} \delta^5$$

Γ_{sl} Reloaded

- Crucial factorisation in the heavy daughter limit: 5 loops → 3 loops!
- At least one electron's propagator must scale <u>soft</u> to generate an imaginary part $\log(-\delta)$.
- Less regions to consider, e.g. at leading order $\Gamma^{(hh)} = \Gamma^{(sh)} = \Gamma^{(hs)} = 0$

$$C_{F}X_{3}(
ho=0.28)=-91.2\pm0.4~(0.4\%)$$

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 1, 016003

The kinetic scheme

$$\Gamma_{\rm sl} = \frac{G_F^2 |V_{cb}|^2 (m_b^{\rm OS})^5}{192\pi^3} f(0.28) \left[1 - 1.72 \left(\frac{\alpha_s}{\pi}\right) - 13.1 \left(\frac{\alpha_s}{\pi}\right)^2 - 163.3 \left(\frac{\alpha_s}{\pi}\right)^3 \right] + O\left(\frac{1}{m_b^2}\right)^2 + O\left(\frac{1}{m_b^2}$$

See: Bigi, Shifman, Uraltsev, Vainshtein PRD 50 (1994) 2234; Beneke, Braun, NPB 426 (1994) 301; Ball, Beneke, Braun, PRD 52 (1995) 3929; Melnikov, van Ritbergen, PLB 482 (2000) 99.

Meson-quark mass relation

$$m_b = M_B - \overline{\Lambda} - rac{\mu_\pi^2}{2m_b} + \dots$$

- $\overline{\Lambda}$: the *B*-meson binding energy.
- μ_{π} : the kinetic energy induced by the residual motion of the heavy quark.

The relevant parameter in $\Gamma_{\rm sl}$ is m_b^5 , not M_B^5 :

$$\Gamma_{
m sl}\simeq rac{G_F^2|V_{cb}|^5}{192\pi^3}(M_B-\overline{\Lambda})^5$$

Bigi, Shifman, Uraltsev, Vainshtein, PRD 56 (1997) 4017

M. Fael 20.4.2022 Challenges in Semileptonic B decays

The kinetic mass

Bigi, Shifman, Uraltsev, Vainshtein, PRD 56 (1997) 4017. see also: Czarnecki, Melnikov, Uraltsev, PRL 80 (1998) 3189; Gambino, JHEP 09 (2011) 055;

OS.

. .

In pQCD, we can make a short-distance mass definition by identifying:

`

kin/ v

$$egin{aligned} m_b(\mu) & \to m_b^{
m cm}(\mu) & M_B & \to m_b^{
m co} \ & \overline{\Lambda}(\mu) & o [\overline{\Lambda}(\mu)]_{
m pert} & [\mu_\pi^2(\mu)] & o [\mu_\pi^2(\mu)]_{
m pert} \end{aligned}$$

 $m_b^{
m kin}(\mu) = m_b^{
m OS} - [\overline{\Lambda}(\mu)]_{
m pert} - rac{[\mu_\pi^2(\mu)]_{
m pert}}{2m_b^{
m kin}(\mu)} -$

. . .

The Small Velocity Sum Rules

- How to give an operative definition of $\overline{\Lambda}$ and μ_{π}^2 ?
- Moments of the excitation energy:

$$I_n(\vec{q}^2) = \int \mathrm{d}\omega \,\omega^n \frac{d\Gamma}{d\omega d\vec{q}^2}$$

with $\omega = \textit{\textit{E}}_{\textit{X_c}} - \textit{\textit{M}}_{\textit{D}}$ and $\textit{q} = \textit{p}_{\ell} + \textit{p}_{\nu}$

The Small Velocity Sum Rules

Take the limit where the X_c 's velocity is small: $|\vec{v}| = |\vec{q}/m_c| \ll 1$:

$$\begin{split} & l_0(\vec{q}^{\,2}) = |\vec{q}| \frac{G_F^2 |V_{cb}|^2}{8\pi^3} (m_b - m_c)^2 + O\left(|\vec{v}|^2, \frac{\Lambda_{\rm QCD}}{m_b}\right) \\ & l_1(\vec{q}^{\,2}) = l_0 \frac{\vec{v}^2}{2} \,\overline{\Lambda} + O\left(|\vec{v}|^3, \frac{\Lambda_{\rm QCD}^2}{m_b^2}\right) \\ & l_2(\vec{q}\,) = l_0 \frac{\vec{v}^2}{3} \mu_\pi^2 + O\left(|\vec{v}|^3, \frac{\Lambda_{\rm QCD}^2}{m_b^3}\right) \end{split}$$

Let's include radiative corrections ...

$$I_{2}(\vec{q}^{2}) = \int dq_{0} \,\omega^{2} \,\frac{d\Gamma_{\text{tree}}}{d\omega d\vec{q}^{2}} + \int_{0}^{\mu} d\omega \,\omega^{2} \,\frac{d\Gamma_{\alpha_{s}}}{d\omega d\vec{q}^{2}} + \int_{\mu}^{\omega^{\text{max}}} d\omega \,\omega^{2} \,\frac{d\Gamma_{\alpha_{s}}}{d\omega d\vec{q}^{2}}$$

$$use \text{ this to define } \mu_{\pi}^{2}(\mu)$$

$$\mu_{\pi}^{2}(0) = \mu_{\pi}^{2}(\mu) - [\mu_{\pi}^{2}]_{\text{pert}}$$

$$\rho_{D}^{3}(0) = \rho_{D}^{3}(\mu) - [\rho_{D}^{3}]_{\text{pert}}$$

$$\int_{\mu}^{J_{W}} d\omega \,\omega^{2} \,\frac{d\Gamma_{\alpha_{s}}}{d\omega d\vec{q}^{2}} + \int_{\mu}^{\omega^{\text{max}}} d\omega \,\omega^{2} \,\frac{d\Gamma_{\alpha_{s}}}{d\omega d\vec{q}^{2}} = W(\omega, \vec{v})$$

The Small Velocity Sum Rules

• The OPE for the structure function $W(\omega, \vec{v})$ tells us:

$$[\overline{\Lambda}(\boldsymbol{\mu})]_{\text{pert}} = \lim_{\vec{\nu} \to 0} \lim_{m_b \to \infty} \frac{2}{\vec{\nu}^2} \frac{\int_0^{\boldsymbol{\mu}} d\omega \, \omega \, W(\omega, \vec{\nu})}{\int_0^{\boldsymbol{\mu}} d\omega \, W(\omega, \vec{\nu})}$$
$$[\mu_{\pi}^2(\boldsymbol{\mu})]_{\text{pert}} = \lim_{\vec{\nu} \to 0} \lim_{m_b \to \infty} \frac{3}{\vec{\nu}^2} \frac{\int_0^{\boldsymbol{\mu}} d\omega \, \omega^2 \, W(\omega, \vec{\nu})}{\int_0^{\boldsymbol{\mu}} d\omega \, W(\omega, \vec{\nu})}$$

Scattering of a heavy quark on a current
$$J_W$$
 in the SV kinematic.

M. Fael 20.4.2022 Challenges in Semileptonic B decays

The Kinetic Mass as a Threshold Mass

Excite the heavy quark, but just a bit ...

 $y=s-m_b^2\simeq 2m_b\omega\ll m_b^2$

- SV Limit corresponds to **one-particle Threshold limit**.
- Factorization can be understood in terms of Eikonal factorization

$$W(\omega, \vec{v}) \simeq H \cdot U(\omega, \vec{v})$$

Precise $\overline{m}_b - m_b^{\rm kin}$ conversion up to $O(\alpha_s^3)$

Gambino, Schwanda, PRD 89 (2014) 014022 Horizontal error bands superimposed by MF

- Mass relation implemented in (C)RunDec and REvolver Herren, Steinhauser, Comput. Phys.Commun.224, 333 (2018) Hoang, Lepenik, Mateu, Comput. Phys.Commun. 270 108145 (2022)
- Input from FLAG19:
 - $\overline{m}_b(\overline{m}_b) = 4.198(12) \text{ GeV}$
 - $\overline{m}_c(3 \text{ GeV}) = 0.988(7) \text{ GeV}$

 $m_b^{\rm kin}(1~{
m GeV}) = 4.198 + 0.261 + 0.079 + 0.027 = 4.564~{
m GeV}$

- Conversion-uncertainty $\delta m_b = 15$ MeV (half $O(\alpha_s^3)$ correction)
- Uncertainty at $O(\alpha_s^2)$ was $\delta m_b = 40$ MeV

$$m_b^{
m kin}(1~{
m GeV}) = 4.565\,(15)_{
m th}(13)_{
m lat}~{
m GeV} = 4.565\,(20)~{
m GeV}$$

Implications for $\overline{B} o X_c \ell ar{ u}_\ell$

$$\Gamma_{sl} = \frac{G_F^2 m_b^5 |V_{cb}|^2}{192\pi^3} f(\rho) \left[1 + \sum_n Y_n \left(\frac{\alpha_s}{\pi}\right)^n \right]$$
with $\alpha_s \equiv \alpha_s^{(4)}(m_b)$.
 n^{-1} Jecables, Kdm, JSB 314 (1989) 1
 n^{-2} Menkowski, Steinhauser, hep-ph/2011.13654
 $m_b^{OS} : m_c^{OS} = 1 - 1.78 \left(\frac{\alpha_s}{\pi}\right) - 13.1 \left(\frac{\alpha_s}{\pi}\right)^2 - 163.3 \left(\frac{\alpha_s}{\pi}\right)^3$
 $m_b^{Sin}(1 \text{ GeV}) : \overline{m}_c(2 \text{ GeV}) = 1 - 1.24 \left(\frac{\alpha_s}{\pi}\right) - 3.65 \left(\frac{\alpha_s}{\pi}\right)^2 - 1.0 \left(\frac{\alpha_s}{\pi}\right)^3$
 $m_b^{Sin} : m_c \text{ via HQET} = 1 - 1.38 \left(\frac{\alpha_s}{\pi}\right) - 6.32 \left(\frac{\alpha_s}{\pi}\right)^2 - 33.1 \left(\frac{\alpha_s}{\pi}\right)^3$

A new puzzle in V_{ub} ?

•
$$\Gamma_{\rm sl}(B \to X_u \ell \nu_\ell)$$
 from $\rho \to 0$ limit: $C_F X_3^u = -269 \pm 26$.

$$\begin{split} \Gamma_{b \to u}(m_b^{\rm kin}) &= \Gamma_0 \Bigg[1 - 0.020 |_{\alpha_s} + 0.014 |_{\alpha_s^2} + 0.031 |_{\alpha_s^3} \Bigg] \\ \Gamma_{b \to u}^{\rm no\, charm}(m_b^{\rm kin}) &= \Gamma_0 \Bigg[1 - 0.020 |_{\alpha_s} + 0.012 |_{\alpha_s^2} + 0.016 |_{\alpha_s^3} \Bigg] \\ \Gamma_{b \to u}(m_b^{\rm 1S}) &= \Gamma_0 \Bigg[1 - 0.116\epsilon - 0.032\epsilon^2 + 0.002\epsilon^3 \Bigg] \end{split}$$

• Relevant for $|V_{ub}|$ in GGOU scheme

Gambino, Giordano, Ossola, Uraltsev, JHEP 10 (2007) 058

- Large m_c effects at $O(\alpha_s^3)$?
- Kinetic mass not good for $b \rightarrow u$?

Moments of kinematic distributions

$$M^n[w] = \int_{\mathrm{veto}} \mathrm{d}\Phi \, w^n(p_\ell, q, v_B) rac{d\Gamma}{dq_0 dq^2 dE_\ell}$$

Observable	$w(p_\ell, q, v_B)$
Semileptonic rate	1
Electron energy moments	$p_{\ell} \cdot v_B$
Hadronic invariant mass	$(M_B v_B - q)^2$
Leptonic invariant mass	q^2

 Extend computation strategy of Γ_{sl} to moments without cuts.

First glance to α_s^3 corrections for the moments

Centralized moments (no cuts):

$$\left\langle M^n[w] \right
angle = rac{M^n[w]}{M^0[w]} \quad o \quad \left\langle (M[w] - \langle M[w]
angle)^n
ight
angle$$

- QCD corrections up to O(\alpha_s^3) at leading order in the HQE.
- Tree level contribution to $O(1/m_b^2)$ and $O(1/m_b^3)$.
- Results in the kinetic scheme: m_b^{kin} and $\overline{m}_c(3 \text{ GeV})$.

We quote:

- Higher QCD corrections flagged by "αⁿ".
- Power correction up to 1/m³_b flagged by "pw"
- Uncertainties in α_s^n from finite δ expansion.
- Uncertainties from HQE parameters.

Bordone, Capevila, Gambino, PLB 822 (2021) 136679

 q^2 moments: $q_1 = \langle q^2 \rangle$, $q_{n \geq 2} = \langle (q^2 - \langle q^2 \rangle)^n \rangle$

MF, Schönwald, Steinhauser, in preparation

$$\hat{q}_{1} = 0.232947 \Big[1 - 0.0106345_{\alpha_{s}} - 0.008736(15)_{\alpha_{s}^{2}} - 0.00505(13)_{\alpha_{s}^{3}} - 0.0875(97)_{pw} \Big],$$

$$\hat{q}_{2} = 0.0235256 \Big[1 - 0.035937_{\alpha_{s}} - 0.0217035(20)_{\alpha_{s}^{2}} - 0.01118(17)_{\alpha_{s}^{3}} - 0.237(27)_{pw} \Big],$$

$$\hat{q}_{3} = 0.0014511 \Big[1 - 0.0700381_{\alpha_{s}} - 0.035693(73)_{\alpha_{s}^{2}} - 0.01909(12)_{\alpha_{s}^{3}} - 0.726(94)_{pw} \Big],$$

$$\hat{q}_{4} = 0.00120161 \Big[1 - 0.0585199_{\alpha_{s}} - 0.042276(11)_{\alpha_{s}^{2}} - 0.02411(20)_{\alpha_{s}^{3}} - 0.631(77)_{pw} \Big].$$

$$\begin{array}{ll} q_1(q^2>3~{\rm GeV}^2)=6.23\,(8)~{\rm GeV}^2 & (1.3\%) \\ q_2(q^2>3~{\rm GeV}^2)=4.44\,(15)~{\rm GeV}^4 & (3.1\%) \\ q_3(q^2>3~{\rm GeV}^2)=4.13\,(68)~{\rm GeV}^6 & (16\%) \\ q_3(q^2>3~{\rm GeV}^2)=46.6\,(5.6)~{\rm GeV}^8 & (12\%) \end{array}$$

Belle, PRD 104 (2021) 112011

Electron energy:
$$\ell_1 = \langle E_\ell \rangle, \quad \ell_{n \ge 2} = \langle (E_\ell - \langle E_\ell \rangle)^n \rangle$$

MF, Schönwald, Steinhauser, in preparation

$$\hat{\ell}_{1} = 0.315615 \Big[1 - 0.0101064_{\alpha_{s}} - 0.005082(17)_{\alpha_{s}^{2}} - 0.00227(13)_{\alpha_{s}^{3}} - 0.0192(31)_{pw} \Big], \\ \hat{\ell}_{2} = 0.00900585 \Big[1 - 0.01992_{\alpha_{s}} - 0.006152(41)_{\alpha_{s}^{2}} + 0.0002(21)_{\alpha_{s}^{3}} + 0.017(11)_{pw} \Big], \\ \hat{\ell}_{3} = -0.000464269 \Big[1 - 0.0639319_{\alpha_{s}} - 0.035673(10)_{\alpha_{s}^{2}} - 0.0142(46)_{\alpha_{s}^{3}} - 0.175(22)_{pw} \Big], \\ \hat{\ell}_{4} = 0.00020743 \Big[1 - 0.028854_{\alpha_{s}} - 0.00717(23)_{\alpha_{s}^{2}} - 0.(0.25)_{\alpha_{s}^{3}} + 0.(0.021)_{pw} \Big].$$

$$\ell_1(E_{\ell} > 0.4 \text{ GeV}) = 1393.92(6.73)(3.02) \text{ MeV}$$
(0.5%)

$$\ell_2(E_{\ell} > 0.4 \text{ GeV}) = 168.77(3.68)(1.53) \times 10^{-3} \text{ GeV}^2$$
(2.3%)

$$\ell_3(E_{\ell} > 0.4 \text{ GeV}) = -21.04(1.93)(0.66) \times 10^{-3} \text{ GeV}^3$$
(9.6%)

$$\ell_4(E_{\ell} > 0.4 \text{ GeV}) = 64.153(1.813)(0.935) \times 10^{-3} \text{ GeV}^4$$
(3.2%)

Belle, PRD 75 (2007) 032001

Hadronic mass:
$$h_1 = \langle M_X^2 \rangle$$
, $h_{n \ge 2} = \langle (M_X^2 - \langle M_X^2 \rangle)^n \rangle$

MF, Schönwald, Steinhauser, in preparation

$$\begin{split} \hat{h}_1 &= & 0.00899843 \Big[+ 23.4975 & + 1 + 0.4223(15)_{\alpha_s^2} & + 0.147(11)_{\alpha_s^3} & + 0.04(20)_{\rm pw} \Big], \\ \hat{h}_2 &= & 0.000745468 \Big[+ 0.87352 & + 1 + 0.4505(74)_{\alpha_s^2} & + 0.34(43)_{\alpha_s^3} & + 3.33(59)_{\rm pw} \Big], \\ \hat{h}_3 &= & 0.0000915954 \Big[- 0.0729568 & + 1 + 0.165(62)_{\alpha_s^2} & + 2.29(55)_{\alpha_s^3} & + 7.3(1.1)_{\rm pw} \Big], \\ \hat{h}_4 &= & 0.000091207 \Big[+ 0.0100938 & + 1 + 0.51(17)_{\alpha_s^2} & + 1(145)_{\alpha_s^3} & + 0.380(52)_{\rm pw} \Big]. \end{split}$$

$$h_1 = 4.541 (101) \text{ GeV}^2$$
(2%) $h_2 = 1.56 (0.18) (0.16) \text{ GeV}^4$ (15%) $h_3 = 4.05 (0.74) (0.32) \text{ GeV}^6$ (20%) $h_4 = 21.1 (4.5) (2.1) \text{ GeV}^8$ (23%)

DELPHI, EPJ C 45 (2006) 35

Outlook & Conclusions

What is still needed?

- Short term:
 - NNLO corrections to q^2 moments with cuts (also A_{FB} asymmetries?).
 - Fully differential NLO corrections to ρ_D (Gambino, Nandi et al.)
 - Kinetic scheme at higher order in $1/m_b$ (and $O(\alpha_s^4)$?).

Long term:

- N³LO and NNLO $\times 1/m_b^n$ corrections with cuts for selected observables might be doable.
- Improve prediction for $b \rightarrow u \ell \nu$. Charm mass effects.
- Applicability of kinetic scheme to $b \rightarrow u \ell \nu$?