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Semi-leptonic B decay

exclusive particular final states (D, DY, ...)

inclusive sum over final states
so far computed by perturbation theory (or OPE)

<§ Gambino and SH, arXiv:2005.13730

Inclusive rate can be evaluated from two-current
inserted matrix element.
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Basic idea

Lattice calculation of Euclidean matrix elements (like those for form factors)
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corresponding to all possible final states

The necessary info were there; but summed with unwanted weights e B




Inclusive semi-leptonic rate P

b q
Differential decay rate: B { : ' } X (w)
Al ~ |V |2 1MW,

Structure function (or hadronic tensor):
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Total decay rate:
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kinematical (phase-space) factor




Energy integral to be evaluated:




Ap p rOXi m atio n example of the Chebyshev approx:

- Backus-Gilbert method  Hansen, Lupo, Tantalo (2019)
- Chebyshev polynomial  Bailas, SH, Ishikawa (2000)
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- “best” approx (= maximal deviation is minimal)
- only smooth functions can be approximated.

- constraint ITj(z)l < 1 helps stabilize.

(shifted) Chebyshev polynomials
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Phase-space factor as a kernel
upper limit
K(w) ~ e (mp — w)' .;

kinematical

smear by sigmoid with a width o;
Need to take the o— 0 limit
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Inclusive decay rate

® Prototype lattice calculation differential rate / |q]|
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Inclusive decay rate
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Analysis with Backus-Gilbert (by Smecca et al)

® Backus-Gilbert works equally well
e o—0 limit is taken (with different smearings)
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Sum over states: dangerous game?

Sum over states with a kernel K(s) : / ds K (s)p(s)
0

Crucially depends on our ability to approximate the energy integral.

- Possible to treat any K(s) ?

- Probably not, because K(s) = 0(s) leads us back to the ill-posed problem
(reconstruction of full spectral function from lattice data!)

- Then, what is the limitation?
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Kernel approximation: an example

narrow smearing (o = 0.02) medium (o = 0.056)

3.0 ! 20
I — Kernel - Heaviside : —— Kernel - Heaviside
! —— Kernel - Sigmoid ! —— Kernel - Sigmoid
2.5 - | Approximation N= 10 2:3 - i Approximation N= 10
| I
| _ 2.0 1 I _
2.0 - I N =10 /\ N=10
: I
; 3
I 53 1.5 - '
; Sy I
S | X I
Sd 15 . / I
=8 ! 1.0 1 !
. : |
/ | :
1.0 A | 0.5 |
| 1
l |
! 0.0 ! e P S
0.5 - I 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
I k w
|
|
[
0.0 - : N e
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
A W
A

upper limit

lowest energy state



Kernel approximation: an example  [K(w) ~ €% (mp — w)'0(mpg -

narrow smearing (o = 0.02) Good news:
3.0 i —— ® Error cancels due to the oscillating
. T Kemel Somod approximation (Chebyshev polynomial)
i when the states distribute evenly.
2.0 - i N=10
| v )
215 E" *gc Bad news:
) e 5 5 ® Physical spectrum may not be flat. (A
g % large gap between ground and excited
03 ; = states, for instance.)
0.0 ® The integral range gets narrower for
A larger g2. The problem gets harder.
A upper limit (But we can keep the ground state only,
there.)

lowest energy state



Prospects

“The devil is in the details.”

- Still in the early stage. Concerning the errors, | am optimistic, but more studies are
necessary for various kinematical setups.

- Real calculation of B> X, Xy at physical masses still to be done.
® Many potential applications

- DandB

- Not just total rate, e.g. semi-leptonic moments <My2>, <E;>

see 2203.11762
- Comparison with OPE, then to determine MEs
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From 2203.11762
OPE calculation by Gambino and Machler

® PT including O(as), OPE up to O(1/m3)

® Hadronic parameters ux2 etc are taken
from the phono analysis.

® b quark mass is adjusted to match the
lattice calculations.

® OPE breaks down near the g2 endpoint.

v Good agreement.

v Error of OPE is from the hadronic
parameters. Large because of small mp.

V' Better for moments <Mx2>, <E;>, ...



Better use of the phase space?

Two measurement strategies:
® Exclusive, with lattice FF

< ® Inclusive, with OPE (or lattice)
g 4o But, anything in between and more?
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