Inclusive decays on the lattice

Shoji Hashimoto (KEK, SOKENDAI)
@ Barolo 2022

Based on the collaborations of

- Gambino, SH, PRL 125 (2020) 032001; 2005.13730
- Gambino, SH, Machler. Panero, Sanfilippo, Simula, Smecca, Tantalo, 2203.11762
- Barone (Southampton), Kellerman (SOKENDAI), SH, Kaneko (KEK), Juttner (CERN), work in progress but the talk is full of my own prejudice/opinions
$\underbrace{\mathrm{SO}_{K E} \mathrm{ND}^{A 1}}$

Semi-leptonic B decay

exclusive particular final states (D, D^{*}, \ldots)
inclusive sum over final states
so far computed by perturbation theory (or OPE)

Gambino and SH, arXiv:2005.13730
Inclusive rate can be evaluated from two-current inserted matrix element.

$$
\begin{array}{c:c}
\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) & \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle \\
& \text { all possible final states }
\end{array}
$$

Basic idea

Lattice calculation of Euclidean matrix elements (like those for form factors)

$$
\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \quad \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle \sim A_{0} e^{-E_{0} t}+A_{1} e^{-E_{1} t}+A_{2} e^{-E_{2} t}+\cdots
$$

corresponding to all possible final states

The necessary info were there; but summed with unwanted weights $e^{-E t}$

To evaluate the inclusive rate, each state has to be summed according to the (semi-leptonic) kinematics.

Inclusive semi-leptonic rate

Differential decay rate:

$$
d \Gamma \sim\left|V_{c b}\right|^{2} l^{\mu \nu} W_{\mu \nu}
$$

Structure function (or hadronic tensor):

$$
W_{\mu \nu}=\frac{\sum_{X}(2 \pi)^{2} \delta^{4}\left(p_{B}-q-p_{X}\right) \frac{1}{2 M_{B}}\left\langle B\left(p_{B}\right)\right| J_{\mu}^{\dagger}(0)|X\rangle\langle X| J_{\nu}(0)\left|B\left(p_{B}\right)\right\rangle}{\longrightarrow\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \delta(\omega-\hat{H}) \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle}
$$

Total decay rate:

$$
\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max }^{2}} d \boldsymbol{q} \int_{\sqrt{m_{D}^{2}+\boldsymbol{q}^{2}}}^{m_{B}-\sqrt{\boldsymbol{q}^{2}}} d \omega K\left(\omega ; \boldsymbol{q}^{2}\right)\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega-\hat{H}) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Energy integral to be evaluated:

$$
\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max }^{2}} d \boldsymbol{q} \int_{\sqrt{m_{D}^{2}+\boldsymbol{q}^{2}}}^{m_{B}-\sqrt{\boldsymbol{q}^{2}}} d \omega K\left(\omega ; \boldsymbol{q}^{2}\right)\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega-\hat{H}) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

$$
=\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) K\left(\hat{H} ; \boldsymbol{q}^{2}\right) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Compton amplitude obtained on the lattice:

$$
\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \quad \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle \longrightarrow\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) e^{-\hat{H} t} \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Need an approx

$$
K(\hat{H})=k_{0}+k_{1} e^{-\hat{H}}+k_{2} e^{-2 \hat{H}}+\cdots+k_{N} e^{-k_{N} \hat{H}}
$$

Approximation

- Backus-Gilbert method

Hansen, Lupo, Tantalo (2019)

- Chebyshev polynomial

Bailas, SH, Ishikawa (2000)

$$
K(\hat{H}) \simeq \sum_{j=0}^{N} c_{j} T_{j}\left(e^{-\hat{H}}\right)
$$

- "best" approx (= maximal deviation is minimal)
example of the Chebyshev approx:
- only smooth functions can be approximated.
- constraint $\left|\mathrm{T}_{\mathrm{j}}(\mathrm{z})\right|<1$ helps stabilize.

$$
\begin{aligned}
& \hline \text { (shifted) Chebyshev polynomials } \\
& T_{0}^{*}(x)=1 \\
& T_{1}^{*}(x)=2 x-1 \\
& T_{2}^{*}(x)=8 x^{2}-8 x+1 \\
& \quad \vdots \\
& T_{j+1}^{*}(x)=2(2 x-1) T_{j}^{*}(x)-T_{j-1}^{*}(x) \\
& \hline
\end{aligned}
$$

Phase-space factor as a kernel

upper limit

$$
K(\omega) \sim e^{2 \omega t_{0}} \frac{\left(m_{B}-\omega\right)^{l} \theta\left(m_{B}-|\mathbf{q}|-\omega\right)}{\text { kinematical }}
$$

smear by sigmoid with a width σ;
Need to take the $\sigma \rightarrow 0$ limit

Inclusive decay rate

- Prototype lattice calculation
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{Xc}$
- the b quark is lighter than physical.
- Decay rate in each channel
- VV and AA
- parallel or perpendicular to the recoil momentum
- compared to "exclusive" (dashed lines)
- $V_{\text {|| }}$ is dominated by $B \rightarrow D$
- Others are by $B \rightarrow D^{*}$
differential rate / |q|

Inclusive decay rate

From 2203.11762
Analysis with Backus-Gilbert (by Smecca et al)

- Backus-Gilbert works equally well
- $\sigma \rightarrow 0$ limit is taken (with different smearings)

ETMC data from
Gambino et al., 2203.11762

- calculated at many \mathbf{q}^{2} points
- lighter b quark

Sum over states: dangerous game?

Sum over states with a kernel $K(s): \quad \int_{0}^{\infty} d s K(s) \rho(s)$

Crucially depends on our ability to approximate the energy integral.

- Possible to treat any $K(s)$?
- Probably not, because $K(s)=\delta(s)$ leads us back to the ill-posed problem (reconstruction of full spectral function from lattice data!)
- Then, what is the limitation?

Kernel approximation: an example
narrow smearing $(\sigma=0.02)$

$K(\omega) \sim e^{2 \omega t_{0}}\left(m_{B}-\omega\right)^{l} \theta\left(m_{B}-|\mathbf{q}|-\omega\right)$
medium $(\sigma=0.056)$

Smearing:

- Too wide = away from the true func
- Too narrow = bad approx

Kernel approximation: an example
$K(\omega) \sim e^{2 \omega t_{0}}\left(m_{B}-\omega\right)^{l} \theta\left(m_{B}-|\mathbf{q}|-\omega\right)$
narrow smearing $(\sigma=0.02)$

Good news:

- Error cancels due to the oscillating approximation (Chebyshev polynomial) when the states distribute evenly.

Bad news:

- Physical spectrum may not be flat. (A large gap between ground and excited states, for instance.)
- The integral range gets narrower for larger \mathbf{q}^{2}. The problem gets harder. (But we can keep the ground state only, there.)

Prospects

"The devil is in the details."

- Still in the early stage. Concerning the errors, I am optimistic, but more studies are necessary for various kinematical setups.
- Real calculation of $B \rightarrow X_{c}, X_{u}$ at physical masses still to be done.
- Many potential applications
- D and B
- Not just total rate, e.g. semi-leptonic moments $\left\langle\mathrm{Mx}^{2}\right\rangle$, $\langle\mathrm{E} \mid\rangle$
- Comparison with OPE, then to determine MEs

- SM JLQCD
- SM OPE

From 2203.11762
OPE calculation by Gambino and Machler

- PT including $O\left(\alpha_{s}\right)$, OPE up to $O\left(1 / m^{3}\right)$
- Hadronic parameters $\mu_{\pi^{2}}$ etc are taken from the phono analysis.
- b quark mass is adjusted to match the lattice calculations.
- OPE breaks down near the \mathbf{q}^{2} endpoint.
\checkmark Good agreement.
\checkmark Error of OPE is from the hadronic parameters. Large because of small m_{b}.
$\sqrt{ }$ Better for moments $\left\langle\mathrm{Mx}^{2}\right\rangle,\left\langle\mathrm{E}_{\mathrm{l}}\right\rangle, \ldots$

Better use of the phase space?

Two measurement strategies:

- Exclusive, with lattice FF
- Inclusive, with OPE (or lattice)

But, anything in between and more?

Possible?

Minimize the uncertainty by choosing
a weight function: like the moments, but
there is more freedom
Smooth weight functions preferred for lattice inclusive
XXXX preferred for exp't... ?

