Inclusive $B_s \to X_{cs} \mu \nu$: hadronic mass moments at LHCb

Marcello Rotondo

Michel De Cian

Istituto Nazionale di Fisica Nucleare

1

Global fits of inclusive V_{cb} with $B \rightarrow X_c I v$

- Inputs from Belle, BaBar, CLEO, Delphi and CDF
- Moments of the hadronic mass distribution Mx and lepton momentum spectrum
 - Delphi E_{cut}=0
 - CDF Ecut=0.7 GeV
- Hadronic moments not enough for measuring |V_{cb}|, but crucial input to determine non-pert parameters

$B^{-} \rightarrow X_c^0 I v at CDF$

- Hadronic system X_c: split in three contributions
 - D, D*, D** (it is the rest: resonant and non-resonant contributions)
- Differential mass-squared spectrum

$$\begin{aligned} \frac{1}{\Gamma_{sl}} \frac{d\Gamma_{sl}}{ds_H} &= \frac{\Gamma_0}{\Gamma_{sl}} \cdot \delta(s_H - m_{D^0}^2) + \frac{\Gamma_*}{\Gamma_{sl}} \cdot \delta(s_H - m_{D^{*0}}^2) \\ &+ \left(1 - \frac{\Gamma_0}{\Gamma_{sl}} - \frac{\Gamma_*}{\Gamma_{sl}}\right) \cdot f^{**}(s_H), \end{aligned}$$
 SH=m(X_c)²

 Γ^{0} , Γ^{*} , Γ_{sl} known, from PDG need to measure f^{**}(s_H)

Proxy: use only charged modes $D^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -},\,D^{*{\scriptscriptstyle +}}\pi^{\scriptscriptstyle -}$

Basic assumptions

- $D\pi$ + $D^*\pi$ saturate the inclusive
- contributions from decays with neutrals Included assuming isospin factors

PRD71(2005) 051103

CDF and **DELPHI** analyses

PRD71(2005) 051103

CDF Run II L=180pb⁻¹

80

- exploit the most recent knowledge on D**
- Decays $D_1 \rightarrow D \pi \pi$ and observation of $B \rightarrow D(*)\pi \pi I \nu$
- What about B_s?

m_{D**} distribution (GeV/c²)

Why inclusive B_s SL decays?

- Moments of the hadronic B_s have never been measured
- The inclusive decays of the B_s are described by the same OPE as those of the B meson
 - Sensitivity to the spectator quark? possible SU(3)F violation
 - Improve existing semileptonic width of B_s decays
 - Better knowledge of non-perturbative parameters (mainly $\rho_D{}^3$) can improve OPE calculation of the Bs total width
- At LHC B_s production is ¹/₄ of B_d
 - In Run1-2 expected ~1.3M of $D_{s\mu}$ candidates with 90% purity
 - same selection used for |V_{cb}|)
 - At B-Factories B_s production requires special runs at the Y(5S)

```
Y(5S)
~80% BB + B*B + B*B* + BBπ
17.6% B<sub>s</sub>*B<sub>s</sub>*
1.35% B<sub>s</sub>B<sub>s</sub>*
0.5% B<sub>s</sub>B<sub>s</sub>
```

Belle collected 124/fb at Y(5S):

- Semi-inclusive of B_s decays into D_s(*) PRD92(2015) 7, 072013
- Inclusive SL decays PRD87(2013) 7, 072008

How?

- Using approach similar to CDF/Delphi: total rate as sum of exclusive decays
- $B_s \rightarrow D_s X \mu \nu$ dominates
 - Non-resonant $B_s \rightarrow D_s \pi \mu \nu$ production should be suppressed
- $B_s \rightarrow DK \mu v$ form $M(X_{cs})$ above the m(D)+m(K) threshold
 - Both resonant and non-resonant contributions need to be measured

Spectroscopy of (cd) and (cs)

Spectrum of excited D_s^{**} states different with corresponding D^{**} states

					,	*
$D_0^* \ 0^+$	2352 ± 50	261 ± 50	$D\pi$	$D_{s0}^* 0^+ 2317.8 \pm 0.6$	< 3.8	$D_s^+\pi^0$
$D'_1 \ 1^+$	2427 ± 36	384^{+130}_{-105}	$D^*\pi$	$D_{s1}'~1^+~2459.5\pm0.6$	< 3.5	$D_{s}^{*+}\pi^{0}, D_{s}^{+}\gamma, D_{s}^{+}\pi^{+}\pi^{-}$
$D_1 \ 1^+$	2421.3 ± 0.6	27.1 ± 2.7	$D^*\pi, D^0\pi^+\pi^-$	D_{s1} 1 ⁺ 2535.28 ± 0.20	< 2.5	$D^{*+}K^0, D^{*0}K^+$
$D_2^* \ 2^+$	2462.6 ± 0.7	49.0 ± 1.4	$D^*\pi, D\pi$	D_{s2}^{*} 2 ⁺ 2572.6 ± 0.9	20 ± 5	D^0K^+

$B \rightarrow D^{**} \ell v$

• $B \rightarrow D^{**} \ell \nu$ Decay into narrow resonances consistent with prediction

 Decay into wide ½
 states not so clear

 $B \rightarrow D^{**} \ell v \text{ .vs. } B_s \rightarrow D_s^{**} \ell v$

• $B \rightarrow D^{**} \ell \nu$ Decay into narrow resonances consistent with prediction

D_s excited L=1 states are all narrow, so they offer a new path to understand puzzles with the D**

- Moreover SL decays into $D_s(2317)$ and $D_s(2460)$ can shed light on the nature of these states
- SL BF into 3/2 states have been measured by D0 and LHCb
 - Consistent with HQS predictions and B decays

Becirevic et al. PRD87(2013) 054007

Navarra et. al. PRD92(2015) 014031 Zhao et. al. EPJC51 (2017) 601-606

PLB 698 (2011) 14-20 $\frac{\mathcal{B}(\overline{B}_{s}^{0} \to D_{s2}^{*+} X \mu^{-} \overline{\nu})}{\mathcal{B}(\overline{B}_{s}^{0} \to X \mu^{-} \overline{\nu})} = (3.3 \pm 1.0 \pm 0.4)\%$ $\frac{\mathcal{B}(\overline{B}_{s}^{0} \to D_{s1}^{+} X \mu^{-} \overline{\nu})}{\mathcal{B}(\overline{B}_{s}^{0} \to X \mu^{-} \overline{\nu})} = (5.4 \pm 1.2 \pm 0.5)\%$

How to measure moments of M(Xcs)?

• Because of the narrowness of both L = 0 and L = 1 $D_s^{(*,**)}$ states, with high accuracy we can write the semileptonic differential m_{H^2} spectrum

$$\frac{1}{\Gamma_{SL}}\frac{d\Gamma_{SL}}{dm_H^2} = \sum_{L=0}\frac{\Gamma_i}{\Gamma_{SL}}\cdot\delta(m_H^2 - m_i^2) + \sum_{L=1}\frac{\Gamma_i}{\Gamma_{SL}}\cdot\delta(m_H^2 - m_i^2) + \frac{\Gamma_{DK}}{\Gamma_{SL}}\cdot f^{DK}(m_H^2) + \frac{\Gamma_$$

 Moments of <(m_H²)ⁿ> become a weighted sum of the exclusive BF, plus moments of the mass distribution of the "residual" component

$$M_{2n} = \sum_{L=0} \frac{\Gamma_i}{\Gamma_{SL}} \cdot (m_i^2)^n + \sum_{L=1} \frac{\Gamma_i}{\Gamma_{SL}} \cdot (m_i^2)^n + \frac{\Gamma_{DK}}{\Gamma_{SL}} \cdot M_{2n}^{DK}$$

- Monte Carlo study is ongoing:
 - Master thesis at EPFL dedicated to the feasibility study has just started
 - Understand the needed steps to make a measurement

Moments with present knowns

1.
$$\mathcal{B}(B_s \to D_s^+) = (2.49 \pm 0.12 \pm 0.14 \pm 0.16)\%$$

2. $\mathcal{B}(B_s \to D_s^*) = (5.38 \pm 0.25 \pm 0.46 \pm 0.30)\%$, From LHCb $|V_{cb}|$ measurement considering correlations in the toy generation
3. $\mathcal{B}(B_s \to D_{s0}^*) = (0.39 \pm 0.07)\%$, assuming the same decay width of $B^0 \to D_0(2300)\ell\nu$
4. $\mathcal{B}(B_s \to D_{s1}) = (0.18 \pm 0.05)\%$, assuming the same decay width of $B^0 \to D_1'(2430)\ell\nu$ From PDG
5. $\mathcal{B}(B_s \to D_{s1}')/\mathcal{B}(B_s \to X) = (5.4 \pm 1.2 \pm 0.5)\%$ From LHCb: PLB 698 (2011) 14-20
6. $\mathcal{B}(B_s \to D_{s2}^*)/\mathcal{B}(B_s \to X) = (3.3 \pm 1.0 \pm 0.4)\%$ Inclusive SL assuming equal SL decay-width with B
7. Non-resonant DK with a rate consistent with LHCb measurement of fs/fd

11

What has to be improved?

- Largest contribution to uncertainties from B_s→D_s*/B_s→D_s relative BFs: now error is at 10%
- No knowledges on $B_s \rightarrow D_{s0}^*$ and $B_s \rightarrow D'_{s1}$
- Measure their BF's relative to D_s/D_s* seems feasible
 - $D_{s0}^* \rightarrow D_s \pi^0$ access also D_s^* and D'_{s1}^1 through $D'_{s1} \rightarrow D_s^* \pi^0$ with missing photon from D_s^*

- Decays D's1, $D_{s1} \rightarrow D_s \pi^{+}\pi^{-}$ really interesting: expected to be very clean signal
- Some knowledge on D_{s1} and D_{s2}^* already available, further measurements are desirable
- NR DKX and higher mass states contribute to higher order moments, Dedicated measurement would be required

Outlook

- Intermediate steps needed for a -proper- measurement:
 - Determine D_s**'s production relative to D_s
 - Crucial to determine absolute BFs of the various D_s**
 - Belle(II) could give significant improvements on some of the channels involving neutrals
 - $D'_{s1} \rightarrow D_s^* \pi^0$ is known with 20% error
 - Branching fractions of D_{s1} and D^*_{s2} need to measured to go beyond the DK/D*K mode ($D_{s1} \rightarrow DsX$ and $D_{s1} \rightarrow DK\pi$ have been observed)
 - Improve non-resonant and higher mass states contributions
 - Study production of 5 body decays: $B_s \rightarrow D^0 K^+ \pi^- \mu \nu$, $D^0 K_s \pi^- \mu \nu$
 - he contribution to first orders moments M₂, M₄ should be marginal
- Highly rewarding outcomes on the way:
 - 1/2 << 3/2 puzzle can probably be understood with D_s** states (?)
 - The P-wave states are separated in mass, their FFs shape can be extracted "easily"
 - B_s are well suited for $R(D_s^{**})$ measurements
- Similar approach can be applied to Λ_{b}

Bs at B-Factories

• At B-Factories B_s production requires special runs at the Y(5S)

Belle collected the largest sample at Y(5S) L = 121.4 fb⁻¹ corresponding to N(B_s) = 6.53 x 10⁶ σ (Y(10860) \rightarrow B_s(*)B_s(*)) = (53.8 ±1.4 ± 4.0 ± 3.4) pb Compared with σ (Y(4S) \rightarrow BB) = 1.06 nb

Semi-inclusive of Bs decays measurement

$$B_s \to D_s^{(*)} \ell \nu_\ell X$$

PRD92,072013 (2015)