Inclusive $B_{s} \rightarrow X_{c s} \mu \nu:$ hadronic mass moments at LHCb

Marcello Rotondo
Michel De Cian

Istituto Nazionale di Fisica Nucleare

Global fits of inclusive V_{cb} with B

- Inputs from Belle, BaBar, CLEO, Delphi and CDF
- Moments of the hadronic mass distribution Mx and lepton momentum spectrum
- Delphi Ecut=0
- CDF Ecut $=0.7 \mathrm{GeV}$
- Hadronic moments not enough for measuring $\left|\mathrm{V}_{\mathrm{cb}}\right|$, but crucial input to determine non-pert parameters

$\mathrm{B}^{-} \rightarrow \mathrm{X}_{\mathrm{c}}{ }^{0} \mid v$ at CDF

- Hadronic system X_{c} : split in three contributions
- $\mathrm{D}, \mathrm{D}^{*}, \mathrm{D}^{* *}$ (it is the rest: resonant and non-resonant contributions)
- Differential mass-squared spectrum

$$
\begin{aligned}
\frac{1}{\Gamma_{s l}} \frac{d \Gamma_{s l}}{d s_{H}}= & \frac{\Gamma_{0}}{\Gamma_{s l}} \cdot \delta\left(s_{H}-m_{D^{0}}^{2}\right)+\frac{\Gamma_{*}}{\Gamma_{s l}} \cdot \delta\left(s_{H}-m_{D^{* 0}}^{2}\right) \\
& +\left(1-\frac{\Gamma_{0}}{\Gamma_{s l}}-\frac{\Gamma_{*}}{\Gamma_{s l}}\right) \cdot f^{* *}\left(s_{H}\right)
\end{aligned}
$$

$$
\mathrm{S}_{\mathrm{H}}=\mathrm{m}\left(\mathrm{X}_{\mathrm{c}}\right)^{2}
$$

$\Gamma^{0}, \Gamma^{*}, \Gamma_{\mathrm{s} /}$ known, from PDG need to measure $\mathrm{f}^{* *}\left(\mathrm{~S}_{\mathrm{H}}\right)$

Proxy: use only charged modes $\mathrm{D}^{+} \pi^{-}, \mathrm{D}^{\star+} \pi^{-}$

Basic assumptions

- D $\pi+D^{*} \pi$ saturate the inclusive
- contributions from decays with neutrals Included assuming isospin factors

CDF and DELPHI analyses

PRD71(2005) 051103

EPJC45(2006) 35

LHCb can repeat these measurements

- exploit the most recent knowledge on D**

- Decays $\mathrm{D}_{1} \rightarrow \mathrm{D} \pi \tau$ and observation of $\mathrm{B} \rightarrow \mathrm{D}\left(^{*}\right) \pi \pi \mathrm{I} v$

What about B_{s} ?

Why inclusive Bs SL decays?

- Moments of the hadronic B_{s} have never been measured
- The inclusive decays of the B_{s} are described by the same OPE as those of the B meson
- Sensitivity to the spectator quark? possible SU(3)F violation
- Improve existing semileptonic width of B_{s} decays
- Better knowledge of non-perturbative parameters (mainly $\rho_{D^{3}}$) can improve OPE calculation of the B_{s} total width
- At LHC B_{s} production is $1 / 4$ of B_{d}
- In Run1-2 expected $\sim 1.3 \mathrm{M}$ of $\mathrm{D}_{\mathrm{s}} \mu$ candidates with 90% purity
- same selection used for $\left|\mathrm{V}_{\mathrm{cb}}\right|$)
- At B-Factories Bs production requires special runs at the $\mathrm{Y}(5 \mathrm{~S})$

$\mathrm{Y}(5 \mathrm{~S})$

$\sim 80 \% B B+B^{*} B+B^{*} B^{*}+B B \pi$
$17.6 \% \mathrm{~B}_{\mathrm{s}}{ }^{*} \mathrm{~B}_{\mathrm{s}}{ }^{*}$ $1.35 \% \mathrm{~B}_{\mathrm{s}} \mathrm{B}^{*}$
$0.5 \% \mathrm{~B}_{\mathrm{s}} \mathrm{B}_{\mathrm{s}}$

Belle collected 124/fb at $Y(5 S)$:

- Semi-inclusive of B_{s} decays into $\mathrm{D}_{\mathrm{s}}\left({ }^{*}\right)$ PRD92(2015) 7, 072013
- Inclusive SL decays

PRD87(2013) 7, 072008

- Using approach similar to CDF/Delphi: total rate as sum of exclusive decays
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{X} \mu \nu$ dominates
- Non-resonant $B_{s} \rightarrow D_{s} \tau \mu v$ production should be suppressed
- $B_{s} \rightarrow D K \mu v$ form $M\left(X_{c s}\right)$ above the $m(D)+m(K)$ threshold
- Both resonant and non-resonant contributions need to be measured

Spectroscopy of (cd) and (c sss)

Spectrum of excited $D_{s}{ }^{* *}$ states different with corresponding $D^{* *}$ states
Courtesy of S. Slaver

J^{P} Mass (MeV) Width (MeV) Observed decays

$D_{0}^{*} 0^{+}$	2352 ± 50	261 ± 50	$D \pi$

J^{P}	Mass (MeV)	Width (MeV)	Observed decays
$D_{s 0}^{*}$	0^{+}	2317.8 ± 0.6	<3.8
$D_{s}^{+} \pi^{0}$			

$D_{1}^{\prime} 1^{+} \quad 2427 \pm 36 \quad 384_{-105}^{+130} \quad D^{*} \pi$
$D_{1} 1^{+} \quad 2421.3 \pm 0.6 \quad 27.1 \pm 2.7 \quad D^{*} \pi, D^{0} \pi^{+} \pi^{-}$
$D_{s 1}^{\prime} 1^{+} \quad 2459.5 \pm 0.6<3.5$ $D_{s}^{*+} \pi^{0}, D_{s}^{+} \gamma, D_{s}^{+} \pi^{+} \pi^{-}$
$D_{s 1} 1^{+} 2535.28 \pm 0.20<2.5$
$D^{*+} K^{0}, D^{* 0} K^{+}$
$D_{2}^{*} 2^{+} \quad 2462.6 \pm 0.7 \quad 49.0 \pm 1.4 \quad D^{*} \pi, D \pi$
$D_{s 2}^{*} 2^{+} \quad 2572.6 \pm 0.9 \quad 20 \pm 5$
$D^{0} K^{+}$

- $\mathrm{B} \rightarrow \mathrm{D}^{* *} \mathcal{C}_{v}$ Decay into narrow resonances consistent with prediction
- Decay into wide $1 / 2$ states not so clear

$\mathrm{B} \rightarrow \mathrm{D}^{* *} \rho v$. vs. $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{* *} \rho v$
- $\mathrm{B} \rightarrow \mathrm{D}^{* *} \mathcal{C}_{\nu}$ Decay into narrow resonances consistent with prediction
- Decay into wide $1 / 2$ states not so clear

Becirevic et al. PRD87(2013) 054007

$$
\begin{array}{r}
\text { PLB } 698 \text { (2011) 14-20 LHCb } \\
\frac{\mathcal{H}\left(\bar{B}_{s}^{0} \rightarrow D_{s 2}^{*+} X \mu^{-}-\bar{\nu}\right)}{\mathcal{B}\left(\overline{B_{s}^{0}} \rightarrow X \mu^{-} \bar{\nu}\right)}=(3.3 \pm 1.0 \pm 0.4) \% \\
\frac{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s 1}^{+} X \mu^{-} \bar{\nu}\right)}{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow X \mu^{-} \bar{\nu}\right)}=(5.4 \pm 1.2 \pm 0.5) \% ;
\end{array}
$$

Navarra et. al. PRD92(2015) 014031
Zhao et. al. EPJC51 (2017) 601-606

- D_{s} excited $L=1$ states are all narrow, so they offer a new path to understand puzzles with the $\mathrm{D}^{* *}$ - Moreover SL decays into $D_{s}(2317)$ and $D_{s}(2460)$ can shed light on the nature of these states
- SL BF into $3 / 2$ states have been measured by D0 and LHCb
- Consistent with HQS predictions and B decays

Zhao et. al. EPJC51 (2017) 601-606

How to measure moments of $M\left(X_{c s}\right.$

- Because of the narrowness of both $L=0$ and $L=1 D_{s}{ }^{\left({ }^{*}, *\right)}$ states, with high accuracy we can write the semileptonic differential mH^{2} spectrum
$\frac{1}{\Gamma_{S L}} \frac{d \Gamma_{S L}}{d m_{H}^{2}}=\sum_{L=0} \frac{\Gamma_{i}}{\Gamma_{S L}} \cdot \delta\left(m_{H}^{2}-m_{i}^{2}\right)+\sum_{L=1} \frac{\Gamma_{i}}{\Gamma_{S L}} \cdot \delta\left(m_{H}^{2}-m_{i}^{2}\right)+\frac{\Gamma_{D K}}{\Gamma_{S L}} \cdot f^{D K}\left(m_{H}^{2}\right):$
- Moments of $\left\langle\left(\mathrm{mH}^{2}\right)^{n}\right\rangle$ become a weighted sum of the exclusive BF, plus moments of the mass distribution of the "residual" component

$$
M_{2 n}=\sum_{L=0} \frac{\Gamma_{i}}{\Gamma_{S L}} \cdot\left(m_{i}^{2}\right)^{n}+\sum_{L=1} \frac{\Gamma_{i}}{\Gamma_{S L}} \cdot\left(m_{i}^{2}\right)^{n}+\frac{\Gamma_{D K}}{\Gamma_{S L}} \cdot M_{2 n}^{D K}
$$

- Monte Carlo study is ongoing:
- Master thesis at EPFL dedicated to the feasibility study has just started
- Understand the needed steps to make a measurement

Moments with present knowns

1. $\mathcal{B}\left(B_{s} \rightarrow D_{s}^{+}\right)=(2.49 \pm 0.12 \pm 0.14 \pm 0.16) \%$
2. $\mathcal{B}\left(B_{s} \rightarrow D_{s}^{*}\right)=(5.38 \pm 0.25 \pm 0.46 \pm 0.30) \%$,

From LHCb $\left|\mathrm{V}_{\mathrm{cb}}\right|$ measurement considering correlations in the toy generation
3. $\mathcal{B}\left(B_{s} \rightarrow D_{s 0}^{*}\right)=(0.39 \pm 0.07) \%$, assuming the same decay width of $B^{0} \rightarrow D_{0}(2300) \ell \nu$
4. $\mathcal{B}\left(B_{s} \rightarrow D_{s 1}\right)=(0.18 \pm 0.05) \%$, assuming the same decay width of $B^{0} \rightarrow D_{1}^{\prime}(2430) \ell \nu$

From PDG

5. $\mathcal{B}\left(B_{s} \rightarrow D_{s 1}^{\prime}\right) / \mathcal{B}\left(B_{s} \rightarrow X\right)=(5.4 \pm 1.2 \pm 0.5) \% \quad$ From LHCb: PLB 698 (2011) 14-20
6. $\mathcal{B}\left(B_{s} \rightarrow D_{s 2}^{*}\right) / \mathcal{B}\left(B_{s} \rightarrow X\right)=(3.3 \pm 1.0 \pm 0.4) \%$. Inclusive SL assuming equal SL decay-width with B
7. Non-resonant DK with a rate consistent with LHCb measurement of $\mathrm{fs} / \mathrm{fd}$

$$
\begin{array}{ll}
& \mathrm{M}_{2}=4.28 \pm 0.32 \quad \mathrm{GeV}^{2} \\
\text { CDF } & \mathrm{M}_{2}=4.440 \pm 0.078 \mathrm{GeV}^{2}
\end{array}
$$

What has to be improved?

- Largest contribution to uncertainties from $B_{s} \rightarrow D_{s}{ }^{*} / B_{s} \rightarrow D_{s}$ relative BFs: now error is at 10\%
- No knowledges on $B_{s} \rightarrow D_{s 0}{ }^{*}$ and $B_{s} \rightarrow D^{\prime}{ }_{s 1}$
- Measure their BF's relative to $\mathrm{D}_{\mathrm{s}} / \mathrm{D}_{\mathrm{s}}{ }^{*}$ seems feasible
- $D_{s 0}{ }^{*} \rightarrow D_{s} \pi^{0}$ access also $D_{s}{ }^{*}$ and $D_{s 1}^{\prime} 1$ through $D_{s}^{\prime} 1 \rightarrow D_{s}{ }^{*} \pi^{0}$ with missing photon from $D_{s}{ }^{*}$

$D_{s 0}^{*}$	$D_{s 1}$	
2317.8 ± 0.5	2459.5 ± 0.6	
< 3.8	< 3.5	
$D_{s}^{+} \pi^{0} \quad 100_{-20}^{+0}$	$D_{s}^{*} \pi^{0}$	48 ± 11
$D_{s}^{+} \gamma \quad<5$	$D_{s}^{+} \gamma$	18 ± 4
$D_{s}^{*} \gamma \quad<6$	$D_{s}^{+} \pi+\pi^{-}$	4.3 ± 1.3
$D_{s}^{*} \gamma \quad<6$	$D_{s}^{*} \gamma$	<8
	$D_{s 0}^{*} \gamma$	$3.7_{-2.4}^{+5.0}$

- Decays $\mathrm{D}^{\prime}{ }_{1}, \mathrm{D}_{\mathrm{s} 1} \rightarrow \mathrm{D}_{\mathrm{s}} \pi^{+} \pi^{-}$really interesting: expected to be very clean signal
- Some knowledge on $D_{s 1}$ and $D_{s 2}{ }^{*}$ already available, further measurements are desirable
- NR DKX and higher mass states contribute to higher order moments, Dedicated measurement would be required

Outlook

- Intermediate steps needed for a -proper- measurement:
- Determine $D_{s}{ }^{* *}$'s production relative to D_{s}
- Crucial to determine absolute BFs of the various $\mathrm{D}_{\mathrm{s}}{ }^{* *}$
- Belle(II) could give significant improvements on some of the channels involving neutrals
- $D_{s}^{\prime} 1 \rightarrow D_{s}{ }^{*} \pi^{0}$ is known with 20% error
- Branching fractions of $D_{s 1}$ and D^{*} s2 need to measured to go beyond the DK/D*K mode ($\mathrm{D}_{\mathrm{s} 1} \rightarrow \mathrm{DsX}$ and $\mathrm{D}_{\mathrm{s} 1} \rightarrow \mathrm{DK} \pi$ have been observed)
- Improve non-resonant and higher mass states contributions
- Study production of 5 body decays: $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}^{\circ} \mathrm{K}^{+} \pi-\mu \nu, \mathrm{D}^{\circ} \mathrm{K}_{s} \pi-\mu \nu$
- he contribution to first orders moments $\mathrm{M}_{2}, \mathrm{M}_{4}$ should be marginal
- Highly rewarding outcomes on the way:
- $1 / 2$ << $3 / 2$ puzzle can probably be understood with $D_{s}^{* *}$ states (?)
- The P-wave states are separated in mass, their FFs shape can be extracted "easily"
- B_{s} are well suited for $R\left(D_{s}^{* *}\right)$ measurements
- Similar approach can be applied to Λ_{b}

Bs at B-Factories

- At B-Factories B_{s} production requires special runs at the $Y(5 S)$


```
    Y(4S)
~100% BB
    Y(5S)
~80% BB + B*B + B*B* + BB\pi
17.6% Bs*Bs*
1.35% Bs\mp@subsup{B}{s}{*}}
0.5% BsBs
```

$$
\mathrm{m}\left(\mathrm{~B}_{\mathrm{s}}{ }^{*}\right)-\mathrm{m}\left(\mathrm{~B}_{\mathrm{s}}\right) \approx 50 \mathrm{MeV}
$$

Belle collected the largest sample at $Y(5 S)$ $\mathrm{L}=121.4 \mathrm{fb}^{-1}$ corresponding to $\mathrm{N}\left(\mathrm{B}_{\mathrm{s}}\right)=6.53 \times 10^{6}$ $\sigma\left(\mathrm{Y}(10860) \rightarrow \mathrm{Bs}_{\mathrm{s}}\left({ }^{*}\right) \mathrm{B}_{\mathrm{s}}\left(^{*}\right)\right)=(53.8 \pm 1.4 \pm 4.0 \pm 3.4) \mathrm{pb}$ Compared with $\sigma(Y(4 S) \rightarrow B \bar{B})=1.06 \mathrm{nb}$

Semi-inclusive of Bs decays measurement

$$
B_{s} \rightarrow D_{s}^{(*)} \ell \nu_{\ell} X
$$

PRD92,072013 (2015)

