${\rm B_s^0}\!\rightarrow{\rm K^-}\mu^+\nu_\mu$ @ LHCb

Basem Khanji

Tu Dortmund University

Challenges in Semileptonic B Decays, Barolo, April 21, 2022

 $B_{o}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu} @ LHCb$

- The purpose of these slides is to provoke discussions and spark ideas not to present formal LHCb statements
- My (messy) slides are the discussion which follows a formal talk ... not the actual talk!
 - Formal LHCb results are shown at CKM 2021
 - Slides assume you are aware of $B^0_s\to K^-\mu^+\nu_\mu$ results @ LHCb and familiar/aware with LHCb Upgrades plans
- Slides contain combination of theory work(not all of them), formal results and personal projections [Please do not qoute them outside the workshop]

$B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$: Constrain CKM picture

- eta and $V_{
 m ub}/V_{
 m cb}$ over-constrain the same side of ${
 m B}^0$ unitary angle
- Tensions are a clear sign for New Physics

$B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$: V_{ub} exclusive/inclusive

- $\mathrm{b}
 ightarrow \mathrm{u}$ transition: measure V_{ub}
- Inclusive & exclusive measurements are in disagreement ($\sim 3\sigma$)

HFLAV 2021

$B^0_s \rightarrow K^- \mu^+ \nu_\mu$: V_{ub} Golden mode

- Better Lattice precision for $|V_{
 m ub}|$ due to favorable Kaon mass for the Lattice
- Comparison from Phys. Rev. D 91, 074510 (2015)

$B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$: Control penguins

- Upgrade era: need to control penguin contributions for CPV phases very precisely
- Semileptonic deferential decay rates can be used to control penguins!
 - 1 Cross check penguin pollution for $B^0 \rightarrow J/\psi K_S^0$ (sin(2 β)) using new strategy[arxiv.2010.14423]
 - 2~ Provide better strategy [arxiv.1608.00901] to precisely control penguins for $B^0_s \to K^+K^-~(\phi_s)$
- These strategies requires measurement of the decay rate shape at $q^2=m_{{
 m J}/\psi}(m_{{
 m K}^+})$

6/1

$B^0_s \rightarrow K^- \mu^+ \nu_{\mu}$: Form Factor disagreement

• Solve long-standing disagreement between LCSR and some LQCD calculations

 $|V_{
m ub}|/|V_{
m cb}|$ in ${
m B}^0_{
m s} o {
m K}^-\mu^+
u_\mu$ [Phys. Rev. Lett. 126 (2021) 081804]

• Measure of BRs ratio of $B^0_s \to K^- \mu^+ \nu_\mu$ & $B^0_s \to D^-_s \mu^+ \nu_\mu$

$$\underbrace{\frac{\mathcal{B}(B_{s}^{0} \to K^{-} \mu^{+} \nu_{\mu})}{\mathcal{B}(B_{s}^{0} \to D_{s}^{-} \mu^{+} \nu_{\mu})}}_{\text{experiment}} = \frac{|V_{ub}|^{2}}{|V_{cb}|^{2}} \times \underbrace{\frac{d\Gamma(B_{s}^{0} \to K^{-} \mu^{+} \nu_{\mu})/dq^{2}}{d\Gamma(B_{s}^{0} \to D_{s}^{-} \mu^{+} \nu_{\mu})/dq^{2}}_{\text{theory input}}$$

• Convert to $|V_{\rm ub}|/|V_{\rm cb}|$: requires calculations of Form Factors

- Theory input: Complementary approaches, decay rates predicted as a function of q^2 ($\mu\nu$ invariant mass)
 - $B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$: LCSR(precise at low q^2) & LQCD(precise at high q^2)
 - $B_s^0 \rightarrow D_s^- \mu^+ \nu_{\mu}$: LQCD(precise over full q^2 spectrum)

 $|V_{
m ub}|/|V_{
m cb}|$ in ${
m B_s^0}
ightarrow{
m K}^-\mu^+
u_\mu$ [Phys. Rev. Lett. 126 (2021) 081804]

1~ Ratio of Branching fractions of $B^0_s \to K^-\mu^+\nu_\mu$ & $B^0_s \to D^-_s\mu^+\nu_\mu$

$$\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_{\mu})}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_{\mu})}$$

- 2 Two partial BRs ratios:
 - Split in two q^2 regions for $B^0_s \rightarrow K^- \mu^+ \nu_\mu \ (q^2_{B^0_s \rightarrow K^- \mu^+ \nu_\mu} < (>)7 \text{ GeV}^2)$

• Use the full
$$q^2$$
 spectrum of ${
m B}^0_{
m s} o {
m D}^-_{
m s} \mu^+
u_\mu$

$$\frac{\mathcal{B}(B^0_s \to K^- \mu^+ \nu_{\mu})_{q^2 < 7}}{\mathcal{B}(B^0_s \to D^-_s \mu^+ \nu_{\mu})_{\text{Full } q^2}} \quad , \quad \frac{\mathcal{B}(B^0_s \to K^- \mu^+ \nu_{\mu})_{q^2 > 7}}{\mathcal{B}(B^0_s \to D^-_s \mu^+ \nu_{\mu})_{\text{Full } q^2}}$$

- q^2 Bin choice: balance visible yields with theory uncertainty ightarrow worse FF uncertainty
- Will be optimized in future (full Run1+Run2 data) to exploit the precise FF prediction at very high q²

Results: $\mathcal{B}(B^0_s
ightarrow K^- \mu^+
u_\mu)$ [Phys. Rev. Lett. 126 (2021) 081804]

$$\begin{split} |V_{\rm ub}| / |V_{\rm cb}| ({\rm low}) &= 0.0607 \pm 0.0015 ({\rm stat}) \pm 0.0013 ({\rm syst}) \pm 0.0008 ({\rm D_s}) \pm 0.0030 ({\rm FF}) \\ |V_{\rm ub}| / |V_{\rm cb}| ({\rm high}) &= 0.0946 \pm 0.0030 ({\rm stat})^{+0.0024}_{-0.0025} ({\rm syst}) \pm 0.0013 ({\rm D_s}) \pm 0.0068 ({\rm FF}) \end{split}$$

• $|V_{\rm ub}|/|V_{\rm cb}|$ (high): compatible with $\Lambda_{\rm b} \rightarrow p\mu^{-}\nu_{\mu}$, similar experimental uncertainties

• Discrepancy $|V_{ub}|/|V_{cb}|$ (low): clash in theory predictions \rightarrow solved when measuring full q^2 shape of $B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$

B. Khanji (Dortmund)

$|V_{\rm ub}|/|V_{\rm cb}|$ @ LHCb: Strategy [Phys. Rev. Lett. 126 (2021) 081804]

- Analysis requires q^2 reconstruction:
 - $\begin{array}{l} 1 \hspace{0.1 cm} \text{Infer} \hspace{0.1 cm} P_{\nu} \hspace{0.1 cm} \text{from} \hspace{0.1 cm} B_s^0 \hspace{0.1 cm} \text{topology} \rightarrow \text{two-fold} \\ \text{ambiguity} \end{array}$
 - 2 Use linear regression (JHEP 02 (2017) 021) to choose correct P_{ν} solution

•
$$B_s^0 \to K^- \mu^+ \nu_\mu$$
 & $B_s^0 \to D_s^- \mu^+ \nu_\mu$

- Fit data using "corrected mass"
- $M_{corr} = \sqrt{M_{X\mu}^2 + p_\perp^2 + p_\perp}$
- Similar vetoes to select/reconstruct $B_s^0 \rightarrow K^- \mu^+ \nu_\mu \& B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu$

• Use inclusive
$$D_s^- \rightarrow K^+ K^- \pi^-$$
 decays

 $B_{-}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ @ LHCb

Yields: $B^0_s \to K^- \mu^+ \nu_\mu \& B^0_s \to D^-_s \mu^+ \nu_\mu$ [Phys. Rev. Lett. 126 (2021) 081804]

- Statistical uncertainty is dominated by $B^0_s \to K^- \mu^+ \nu_\mu$
- Analysis uses only 2 $\,{
 m fb}^{-1}$ of LHCb data, \sim 20% of available data
 - Potential for ×2 improvement on statistical uncertainty
- Large backgrounds contributions reduce fit sensitivity
 - New method is currently underway to reduce it

Systematics breakdown [Phys. Rev. Lett. 126 (2021) 081804]

Uncertainty	$\frac{\mathcal{B}(B_{s} \to K\mu\nu)}{\mathcal{B}(B_{s} \to D_{s}\mu\nu)} \ [\%]$		
	No q^2 sel.	low q^2	high q^2
Tracking	2.0	2.0	2.0
Trigger	1.4	1.2	1.6
Particle ID	1.0	1.0	1.0
$m_{\rm corr}$ error	0.5	0.5	0.5
Isolation	0.2	0.2	0.2
Charged BDT	0.6	0.6	0.6
Neutral BDT	1.1	1.1	1.1
q^2 migration		2.0	2.0
ε gen& reco	1.2	1.6	1.6
Fit template	$^{+2.3}_{-2.9}$	$^{+1.8}_{-2.4}$	$^{+3.0}_{-3.4}$
Total	$^{+4.0}_{-4.3}$	$^{+4.3}_{-4.5}$	$+5.0 \\ -5.3$
$\mathcal{B}(D_s^- \to K^- K^+ \pi^-)$	2.8	2.8	2.8

- Better strategy is developed to reduce the number of systematic sources
- Multiple Systematic sources for ϵ relies on $B^+ \rightarrow J/\psi K^+$ as control channel \rightarrow reducible with larger data sets
- Fit systematics dominated by simulation size \rightarrow we produced $\sim 10 \times$ larger sample to reduce this effect
- BESIII: Plans to better measure ${\cal B}(D_s^- \to K^- K^+ \pi^-) \to \sim 1.5\%$ on $|V_{ub}|/|V_{cb}|$

Form Factor systematic

 Recent average from FLAG in 2021: http://cds.cern.ch/record/2791030/files/2111.09849.pdf

- Our choice of bins for high q^2 caused higher FF uncertainty
- Next measurement will have finer bins any way

Form Factor systematic

• At CKM 2021: reduction of FF uncertainty by 40%@ high q^2

LCSR low q^2 (Khodjamirian & Rusov 2017) Lattice QCD high q^2 (FNAL/MILC 2019)

Lattice QCD low q^2 (FLAG 2021) Lattice QCD high q^2 (FLAG 2021)

We plan to use FLAG average instead of individual results in future measurements

Form Factor measurement

- Measuring the partial Decay rate for $B^0_s
 ightarrow K^- \mu^+
 u_\mu$ in more bins of q^2
- This will enable determining the shape similarly to BaBar and Belle approach
 - At LHCb we have to nrmalize to a known channel, ${
 m B}^+
 ightarrow {
 m J}\!/\!\psi {
 m K}^+$?
 - B^+ Lifetime as input (possibly f_s/f_d)
- Run 2 has enough stats. to devide the q^2 into 6-8 bins
- Important feed-back to theory community and our simulation and for ...

Extreme precision on $|V_{\rm ub}|/|V_{\rm cb}|$

- $B^0_s \to K^- \mu^+ \nu_\mu$ is dubbed "Golden-mode" for lattice QCD due to precise FF calculations
- Those are quite precise in the "last" bin of the q^2 spectrum
- Plots below inform us (Phys. Rev. D 100, 034501 (2019)):
 - Current estimation: 3.5% in the bin 17-23 $\,{\rm GeV}\!/\!c^2$ using ${\rm B}^0_{\rm s}\!\to {\rm K}^-\mu^+\nu_\mu$
 - Current estimation: 1.5% in the bin 17-23 $\,{\rm GeV}\!/\!c^2$ using ${\rm B_s^0}\!\to{\rm K}^-\tau^+\nu^-_{\tau}$
- That bin has little stat.(O(100)) with Run1 + Run2 data
- for $B^0_s \to K^- \mu^+ \nu_\mu$: Run 3 provides the needed statistics (~ 10× current) to be at theory level

Extreme precision on $|V_{\rm ub}|/|V_{\rm cb}|$

- Future Lattice QCD plans(numbers extracted from Belle II Physics book):
 - $\sim 1\%$ in the bin 17-23 $\,{\rm GeV}\!/\!c^2$ using ${\rm B_s^0}\!\to {\rm K}^-\mu^+\nu_\mu$
 - < .5% in the bin 17-23 $\,{\rm GeV}\!/\!c^2$ using ${\rm B}^0_{\rm s}\!\to {\rm K}^-\tau^+\nu_\tau$
- For the $B_s^0 \to K^- \tau^+ \nu_{\tau}$ mode: we need to wait till the end of HL-LHC to be as good as the future theory projections
- Experimentally $B_s^0 \to K^- \tau^+ \nu_{\tau}$ is quite challenging but still feasible as demonstrated by measurements of $\mathcal{R}(D^{*-})$ -and-friends at LHCb

About LHCb upgrade ...

• LHCb Upgrades document [arXiv:1808.08865] provide projections for $V_{
m ub}$

- $|V_{\rm ub}|/|V_{\rm cb}|$: for Upgradel $\sigma \sim$ 3%, while Upgrade II $\sigma \sim$ 1% (total experimental uncertainty)
- Improvement of PID(TORCH) and enhancement of VELO design will improve Mcorr variable greatly

Lepton Flavour Universality in $b \rightarrow u \ell \nu_{\ell}$ transitions

- LFU anomalies in $\mathrm{b} \to \mathrm{c}\ell\nu_\ell$ transitions $(R(\mathrm{D}^{*-}), R(\mathrm{D}^{-}))$
- SM versus NP [1], [2], [3] , [4] + other I probably forgot!

•
$$R(K^{-})_{SL}^{SM} = \frac{B_{s}^{0} \rightarrow K^{-} \tau^{+} \nu_{\tau}}{B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}} = 0.836 \pm 0.034$$

• $R(K^{-})_{SL}^{NP} = \frac{B_{s}^{0} \rightarrow K^{-} \tau^{+} \nu_{\tau}}{B_{\tau}^{0} \rightarrow K^{-} \mu^{+} \nu_{\tau}} = 1.133 \pm 0.104$

- Stat. are needed to prob the $R(K^-)_{SL}$ in full and (per-bin of) q^2 spectrum
- Need Upgradae II to be at the level of theory

20/1

Conclusion

- It has been two years since we published $|V_{ub}|/|V_{cb}|$ using $B_s^0 \rightarrow K^- \mu^+ \nu_{\mu}$ and $B_s^0 \rightarrow D_s^- \mu^+ \nu_{\mu}$ in two q^2 regions
 - The Form Factor measurement of $B^0_s \! \to K^- \mu^+ \nu_\mu$ is starting
 - But slowly ...
- $B^0_s \to K^- \mu^+ \nu_\mu$ program and LHCb upgrades need each other:
 - Form Factors, extreme precision on $|V_{\rm ub}|/|V_{\rm cb}|$ and LFU ideal place to look for NP
 - $B_s^0 \to K^- \mu^+ \nu_\mu$ is also crucial to control penguins for mixing phases ϕ_s , sin(2 β) at Upgrade era
 - + $B_s^0 \rightarrow K^{*-} \mu^+ \nu_\mu$ and $B^+ \rightarrow \phi \mu^+ \nu_\mu$
 - HI-LHC era is the ideal place to perfrom such measurements
- However start is complicated by:
 - Demanding activities around Run 3 (hardware, software)
 - Availability of resources