Inclusive Charmless Decays at Belle (II)

Lu Cao

for the Belle & Belle II Collaboration

"Challenges in Semileptonic B Decays" workshop @ Barolo, Italy 22 April 2022

Belle TI

lu.cao@desy.de

Adventure of Inclusive $B \rightarrow X_{"} \ell \nu$

Partial branching fraction & |V_{ub}| PRD 104, 012008 (2021)

Ogoing activities & prospects:

- Lepton spectrum endpoint
- Δ BR, incl. $|V_{ub}|$, moments, etc.
- and more?

Differential branching fractions PRL 127, 261801 (2021)

$\Delta \mathfrak{B} (\mathbf{B} \to \mathbf{X}_{u} \ell^{+} \mathbf{v}) \text{ and } | V_{ub}^{\text{incl.}} |$

PRD 104 , 012008 (2021)

Reconstruction of B \rightarrow X_u ℓv

- Using full Belle dataset of 711 fb⁻¹
- **Hadronic tagging** with Neural Networks (~0.2-0.3% efficiency)
- Use machine learning (BDT) to suppress backgrounds with 11 trainning features, e.g. MM²,#K[±], #K_s, etc.

Partial Branching Fractions of $B \rightarrow X_{\mu} \ell \nu$

- Extract signal using binned likelihood in **3 phase space (PS) regions:**
 - $E_{\rho}^{B} > 1 \text{ GeV}$ (covers 86% of available signal PS)
 - $E_{p}^{B} > 1 \text{ GeV}, M_{\chi} < 1.7 \text{ GeV} (56\%)$
 - $E_{e}^{B} > 1 \text{ GeV}, M_{x} < 1.7 \text{ GeV}, q^{2} > 8 \text{ GeV}^{2} (31\%)$

 \rightarrow Fit either E_{ℓ}^{B} , M_{χ} , q^{2} or 2D (M_{χ} : q^{2})

- Signal yields further corrected for efficiency & acceptance in 3 PS regions
- Split results on e, μ , B⁰, B⁺ modes are provided for $E_{\rho}^{B} > 1$ GeV region

Projection of 2D fit result on M_v and q²(in 1st M_v bin)

 $\Delta \mathfrak{B}(E_{e}^{B} > 1 \text{ GeV}) = (1.59 \pm 0.07_{stat} \pm 0.16_{sys}) \times 10^{-3}$

based on 2D fit

• Convert partial BF in $E_{\ell}^{B} > 1$ GeV of 2D fit result to $|V_{ub}|$

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \,\ell^+ \,\nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \,\ell^+ \,\nu_\ell)}}$$

Based on **four** calculations of the **decay rate**

• Convert partial BF in $E_{\ell}^{B} > 1$ GeV of 2D fit result to $|V_{\mu\nu}|$

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \,\ell^+ \,\nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \,\ell^+ \,\nu_\ell)}}$$

Based on **four** calculations of the **decay rate**

0.60 wrt new JLQCD result [arXiv:2203.04938]

Convert partial BF in $E_{\ell}^{B} > 1$ GeV of 2D fit result to $|V_{\mu b}|$

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \,\ell^+ \,\nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \,\ell^+ \,\nu_\ell)}}$$

Based on **four** calculations of the **decay rate**

0.6σ wrt new [LQCD result [arXiv:2203.04938]

• Rased on four calculations of the decay rate

Our average:

$$|V_{ub}| = (4.10 \pm 0.09_{stat} \pm 0.22_{sys} \pm 0.15_{theo}) \times 10^{-10}$$

compatible with excl. and CKM expectation within **1.3o** and **1.6o** respectively

1.1σ wrt new LCSR calculation [JHEP 07 (2021) 036] 0.6σ wrt new JLQCD result [arXiv:2203.04938]

In the traditional way, all kinematic information of this decay is wrapped into **normalization: decay** rate as input for determining $|V_{ub}|$

 $|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \,\ell^+ \,\nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \,\ell^+ \,\nu_\ell)}}$

\rightarrow model-dependent extraction of $|V_{ub}|$

h-3

- Convert partial BF in $E_{\ell}^{B} > 1$ GeV of 2D fit result to |**V**
- Rased on **four** calculations of the **decay rate**

In the traditional way, all kinematic information of this decay is wrapped into **normalization: decay** rate as input for determining $|V_{ub}|$

 \rightarrow model-dependent extraction of $|V_{ub}|$

Direct & more model-independent extraction:

normalization ⇒ kinematic shapes + normalization

- Exp: measure differential spectra of key kinematic variables and provide full covariance information for them
- Theo+Exp: directly extract coefficients of non-perturbative shape functions (Fermi motion of the b quark inside of B meson) in a global fit and obtain |V_{ub}|; uncertainty can be further shrinked by including other inclusive B decays, e.g B→ X_sγ, B→ X_cℓv (as the shape function in LO is universal)

 $|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \,\ell^+ \,\nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \,\ell^+ \,\nu_\ell)}}$

- Convert partial BF in $E_{\ell}^{B} > 1$ GeV of 2D fit result to $|V_{\ell}|$
- Based on four calculations of the decay rate

In the traditional way, all kinematic information of this decay is wrapped into **normalization: decay** rate as input for determining $|V_{ub}|$

\rightarrow model-dependent extraction of $|V_{ub}|$

Direct & more model-independent extraction:

normalization ⇒ kinematic shapes + normalization

- **Exp:** measure differential spectra of key kinematic variables and provide full covariance information for them
- Theo+Exp: directly extract coefficients of non-perturbative shape functions (Fermi motion of the b quark inside of B meson) in a global fit and obtain |V_{ub}|; uncertainty can be further shrinked by including other inclusive B decays, e.g B→ X_sγ, B→ X_cℓv (as the shape function in LO is universal)

 $|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \,\ell^+ \,\nu_\ell)}{\tau_B \cdot \Delta \Gamma(B \to X_u \,\ell^+ \,\nu_\ell)}}$

Differential $\Delta \mathfrak{B} (B \rightarrow X_u \ell^+ v)$

PRL 127, 261801 (2021)

Differential BF of $B \rightarrow X_{\mu}\ell^{+}v$

Background-subtracted spectra

• We measure the following 6 kinematic variables in the phase space of $E_1^B > 1$ GeV:

 \mathbf{q}^2 , $\mathbf{E}_{\mathbf{I}}^{\mathbf{B}}$, $\mathbf{M}_{\mathbf{X}}^{\mathbf{2}}$, $\mathbf{P}_{\mathbf{T}}^{\mathbf{2}}$, $\mathbf{P}_{\mathbf{T}}^{\mathbf{T}}$ (light-cone momenta: $\mathbf{P}_{\pm} = \mathbf{E}_{\mathbf{X}} \mp |\mathbf{p}_{\mathbf{X}}|$)

- Selection and reconstruction inherited from the partial BR measurement presented previously
- Additional selections on |E_{miss} P_{miss}| < 0.1 GeV and reconstructed M_x < 2.4 GeV to improve resolution and reduce background shape uncertainty
- Background subtraction done via M_x fit; subtracted spectra are shown as below

- Full bkg-sub. uncertainties are propagated

- **Overlaid MC** signal hybrid X_u (& normalised to fitted signal yields)

Unfolding

	X :	true	distri	bution
--	------------	------	--------	--------

- The detector response is represented by a migration matrix *M*
- *M*(*i*, *j*) indicates the probability (%) to observe an event in bin *i* if it had a generator-level value in bin *j*

True P_ [GeV]

Direct solution for X is

$\boldsymbol{X} = \boldsymbol{M}^{-1}\boldsymbol{Y}$

• Singular-Value-Decomposition (SVD) [NIMA 372:469(1996)] is used in this analysis

Differential Spectra of $\mathbf{B} \rightarrow \mathbf{X}_{\mu} \boldsymbol{\ell}^+ \mathbf{v}$

$$\Delta^{i}\mathscr{B}\left(B \to X_{u}\mathscr{C}^{+}\nu_{\mathscr{C}}; \operatorname{PS}\right) = \frac{\widehat{\eta}_{\operatorname{unfolded}}^{i} \cdot \left(\widehat{\epsilon_{\operatorname{tag}}^{i} \cdot \epsilon_{\operatorname{Sel}}^{i}}\right)^{-1} \cdot \widehat{\epsilon_{\Delta\mathscr{B}}^{i}(\operatorname{PS})}}{4 \cdot N_{B\bar{B}}}$$

- Differential branching fractions ($E_1^B > 1$ GeV) are measured for the first time
- Necessary input for future model-independent determinations of |V_{ub}| (e.g. <u>NNVub</u>, <u>SIMBA</u>)

All MC shapes are normalised to 1.59 x 10⁻³ [Belle, PRD 104 , 012008 (2021)]

Correlations of All Measured Δ33

- Full experimental correlations of differential Δ³ are extracted (important for global fit)
- Summed $\Delta \mathcal{B}$ agree well with (1.59 ± 0.07 ± 0.16)x10⁻³ from (M_x: q²) fit result of [1]

Extracted Moments

- The **first to third moments** of all measured kinematic varialbes are provided in suppl. material
- Accuracy of using binned spectra is checked by comparing with unbinned treatment
- Biases are found negligible, resulting biases seen in M_x are included in total uncertainty (due to fine peaks of resonances)

Extracted Moments

- The **first to third moments** of all measured kinematic varialbes are provided in suppl. material
- Accuracy of using **binned spectra** is checked by comparing with **unbinned** treatment
- Biases are found negligible, resulting biases seen in M_X are included in total uncertainty (due to fine peaks of resonances)

A quick look at the comparision of recent HQE prediction [JHEP 09 (2021) 051]

Lepton Momentum Endpoint

arXiv:2103.02629, shown in Beauty2020 & EPS-HEP2021

Why endpoint?

- Clear separation only possible in certain kinematic regions, e.g.
 lepton endpoint or low M_x
- Excellent resolution for lepton momentum/energy

BaBar: PRD 95, 072001 (2017)

• Sensitive to the shape of inclusive decays in this phase space

$B \rightarrow X_u ev Endpoint @ Belle II$ with early data 34.6 fb⁻¹

- Untagged measurement
- Reconstruct signal with one energetical electron based on particle identification
- Significance of the yield is found as 3σ

Further Ongoing Studies @ Belle II

Belle II Prospects

- Inherit successful recipe from the recent Belle measurements
- Potential to benefit from higher tagging eff. with FEI algorithm (arXiv:1807.08680)
- Implementation of GGOU into EvtGen is planned (collaborating with Paolo and Bernat)
- Further improvements are on track (signal selection scheme, unfolding, etc.)

Observations Menu

- Partial & differential branching ratios
- Kinematic moments (event-wise treatment)
- Pion multiplicity (links excl. & incl. information, see next slide)
- A_FB in $B \rightarrow X_{\mu}\ell^{+}\nu$
- $B \rightarrow X_{u} \tau^{+} \nu$, LFU test, $R(X_{u}),...$
- ... tell us your wishlist

Combined Exclusive/Inclusive |V_{ub}|

ongoing, very preliminary

- Charged pion multiplicity measured by Belle shows a good agreement in data/MC
- Final state with single pion is promising to be disentangled with the rest of X₁₁

Combined Excl./Incl. |V_{ub}|

ongoing, very preliminary

- Extract excl. /incl. $|V_{ub}|$ ratio in a simultaneous fit on $b \rightarrow u$ components yields and $B \rightarrow \pi \ell v$ form factor (q² shape)
- Several syst. uncertainties cancelled in ratio (e.g. tagging, lepID, etc)
- Attempt to demystify "Vub puzzle" from a new perspective

Fermilab/MILC: PRD 92, 014024 (2015)

 $\chi^2 = \chi^2_{\rm exp} + \chi^2_{\rm LOCD}$

	π ⁰	π^{\pm}	K ^{othe} u	^r bkg	-	FF: I	b+ ₀₋₃			FF:	b0 ₀₋₃	
$\Lambda \mathscr{R}(B \to X^{\text{other}} \ell \bar{\mu}_{\ell}) + \mathscr{R}(B \to \pi^{+,0} \ell \bar{\mu}_{\ell}) - \Lambda \mathscr{R}(B \to X \ell \bar{\mu}_{\ell})$	1.00	0.22	0.06	0.11	-0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\Delta \mathcal{O}(\mathbf{D}^{\prime},\mathbf{A}_{u}^{\prime},\mathbf{U},\mathbf{V}_{\ell}^{\prime}) + \mathcal{O}(\mathbf{D}^{\prime},\mathbf{A}^{\prime},\mathbf{U},\mathbf{V}_{\ell}^{\prime}) = \Delta \mathcal{O}(\mathbf{D}^{\prime},\mathbf{A}_{u}^{\prime},\mathbf{V}_{\ell}^{\prime})$	0.22	1.00	-0.00	0.17	0.00	0.01	-0.01	-0.01	0.00	0.00	0.00	0.00
	0.06	-0.00	1.00	-0.06	-0.01	-0.02	0.02	0.02	0.00	-0.00	-0.00	-0.00
$\int \mathscr{B}(B \to \pi^{+,0} \mathscr{C}^+ \nu_{\mathscr{C}}) $	0.11	0.17	-0.06	1.00	0.00	0.01	-0.01	-0.01	-0.00	0.00	0.00	-0.00
$V_{\mu b}^{\text{excl}} = \sqrt{\tau_B^{0,+} \cdot \Gamma(B \to \pi^{+,0}\ell^+\nu_\ell)} \leftarrow FF$	-0.00	0.00	-0.01	0.00	1.00	0.14	-0.45	-0.34	0.22	0.17	0.05	-0.03
	0.00	0.01	-0.02	0.01	0.14	1.00	-0.78	-0.87	-0.07	0.14	0.02	-0.01
$\begin{vmatrix} V_{ub}^{\text{incl}} \end{vmatrix} \qquad \qquad \Delta \mathscr{B}(B \to X_u \mathscr{C} + \nu_{\mathscr{C}})$	0.00	-0.01	0.02	-0.01	-0.45	-0.78	1.00	0.87	-0.05	-0.25	0.10	0.23
$\sqrt{\frac{1}{\tau_{R}} \cdot \Delta \Gamma(B \to X, \ell^+ \nu_{\ell})}$	0.00	-0.01	0.02	-0.01	-0.34	-0.87	0.87	1.00	0.08	0.04	0.02	-0.20
$V_B = (2 - 2u^2 + 2t)$	0.00	0.00	0.00	-0.00	0.22	-0.07	-0.05	0.08	1.00	-0.04	-0.60	-0.39
	0.00	0.00	-0.00	0.00	0.17	0.14	-0.25	0.04	-0.04	1.00	-0.41	-0.75
	0.00	0.00	-0.00	0.00	0.05	0.02	0.10	0.02	-0.60	-0.41	1.00	0.45
	0.00	0.00	-0.00	-0.00	-0.03	-0.01	0.23	-0.20	-0.39	-0.75	0.45	1.00

Summary

- New results imply a smaller excl. & incl. tension, continuous efforts and futher confirmation from experiment and theory are still needed
- Recent Belle measurement provided important input for more model-independent extraction
- Beyond these important results, the accumulated knowledge on MC modelling, analysis techniques, etc. will be beneficial for future measurements by e.g. Belle II or LHCb
- Many exciting studies from Belle II are on the way!!

Vxb puzzle: ~3σ tension between excl. & incl. determinations

Thank You

lu.cao@desy.de

More Details

Expected Exp. Uncertainty for |V_{ub}|

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8

The expected relative uncertainties (in percent) for inclusive |Vub| measurements at Belle II [The Belle II Physics Book, PTEP 2019 (2019)596 123C01, arXiv:1808.10567]

29

30

4.0

Efficiency & Acceptance Corrections

- Correct spectra for tagging & selection efficiency and phase-space acceptance in of $E_1^B > 1$ GeV
- Propagate full uncertainty to final result

Systematic uncertainties of the correction factors due to signal modelling are extracted simultaneously for selection eff. & PS acceptance

Relative uncertainty (%):

M_X [GeV]	0-0.3	0.3-0.6	0.6-0.9	0.9-1.2	1.2 - 1.5	1.5-1.8	1.8-2.1	2.1 - 4.0
Tracking efficiency	0.55	0.56	0.82	0.86	0.95	1.05	1.15	1.19
Tagging calibration	3.69	3.69	3.65	3.64	3.64	3.57	3.79	3.66
Slow pion efficiency	0.00	0.07	0.04	0.05	0.04	0.04	0.06	0.04
K_s^0	0.04	0.05	0.04	0.02	0.04	0.03	0.02	0.05
eID	0.72	0.83	0.74	0.69	0.73	0.74	0.94	1.22
μ ID	1.59	1.25	1.34	1.29	1.44	1.35	1.09	0.70
K/π ID	0.39	0.67	0.68	0.74	0.81	1.02	1.27	1.24
$\mathcal{B}(B \to X_u \ell \nu)$	0.18	0.44	0.07	0.59	0.82	0.69	0.73	0.46
$\mathcal{B}(B \to \pi \ell \nu)$	0.42	0.45	0.45	0.14	0.05	0.04	0.05	0.05
$\mathcal{B}(B \to \rho \ell \nu)$	0.42	1.00	0.61	0.56	0.33	0.16	0.22	0.15
$\mathcal{B}(B \to \omega \ell \nu)$	0.42	0.39	0.65	0.12	0.11	0.06	0.11	0.10
$\mathcal{B}(B \to \eta \ell \nu)$	0.41	1.16	0.46	0.11	0.06	0.03	0.03	0.14
$\mathcal{B}(B \to \eta' \ell \nu)$	0.42	0.39	0.46	0.24	0.30	0.03	0.14	0.11
$B \to \pi \ell \nu$ FF	0.98	3.08	1.52	0.53	1.05	0.37	0.36	0.38
$B \to \rho \ell \nu \ \mathrm{FF}$	2.77	8.54	3.96	2.94	1.65	0.59	0.83	0.89
$B \to \omega \ell \nu$ FF	2.40	9.71	1.10	0.90	1.41	0.70	0.65	1.32
$B \to \eta \ell \nu$ FF	0.71	3.58	0.09	0.09	0.51	0.28	0.27	0.07
$B \to \eta' \ell \nu$ FF	0.69	3.65	0.16	0.27	0.48	0.29	0.32	0.15
Hybrid model	0.21	5.86	5.08	4.01	0.50	1.97	2.02	6.13
DFN parameters	0.18	3.66	1.01	1.38	1.64	0.87	0.50	1.35
γ_s	0.47	4.17	2.36	3.98	3.08	4.10	9.31	3.60
π^+ multiplicity modeling	0.57	0.42	0.45	4.15	7.98	4.78	3.98	2.34
$N_{B\bar{B}}$	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Background subtraction	5.97	26.93	8.23	25.15	29.65	16.80	73.36	126.64
MC stat. (migration matrix)	4.04	11.22	3.54	6.85	4.30	4.71	6.85	8.22
Total syst. uncertainty	9.36	33.77	12.32	27.56	31.62	19.21	74.55	127.23
Total stat. uncertainty	11.11	32.64	10.77	24.99	21.88	16.54	46.24	66.76
Total uncertainty	14.53	46.97	16.36	37.20	38.45	25.35	87.73	143.68

The generator-level MC illustrates the hybrid model of excl. and incl. components.

(providing some hints on sys., but keep in mind: the systematics is a combined effect of three parts....)

Pion Multiplicity

Status of |V_{xb}|

Vub Nob (No P)

0.035

0.003

0.0025

0.002

34

global SM UTfit

0.045

V

cb

Incl. V_{cb}

Excl. V_{cb}

0.04