Wayne StatE UNIVERSITY

$\bar{B} \rightarrow X_{u} / \bar{\nu}$ theory

Gil Paz

Department of Physics and Astronomy,
Wayne State University,
Detroit, Michigan, USA

Outline

- Theoretical framework
- Recent progress
- Critical review of current approaches
- Open problems and future progress

Theoretical framework

- For B decays: $5 \mathrm{GeV} \sim m_{b} \gg \Lambda_{\mathrm{QCD}} \sim 0.5 \mathrm{GeV}$ Observables expandable in $\Lambda_{\mathrm{QCD}} / m_{b} \sim 0.1$
- For B decays: $5 \mathrm{GeV} \sim m_{b} \gg \Lambda_{\mathrm{QCD}} \sim 0.5 \mathrm{GeV}$ Observables expandable in $\Lambda_{\mathrm{QCD}} / m_{b} \sim 0.1$
- If we could measure total $\Gamma\left(\bar{B} \rightarrow X_{u} I \bar{\nu}\right)$ we could use a local OPE

$$
d \Gamma \sim \sum_{n} c_{n} \frac{\left\langle O_{n}\right\rangle}{m_{b}^{n}}
$$

c_{n} perturbative, $\left\langle O_{n}\right\rangle$ non-perturbative numbers

- For B decays: $5 \mathrm{GeV} \sim m_{b} \gg \Lambda_{\mathrm{QCD}} \sim 0.5 \mathrm{GeV}$

Observables expandable in $\Lambda_{\mathrm{QCD}} / m_{b} \sim 0.1$

- If we could measure total $\Gamma\left(\bar{B} \rightarrow X_{u} I \bar{\nu}\right)$ we could use a local OPE

$$
d \Gamma \sim \sum_{n} c_{n} \frac{\left\langle O_{n}\right\rangle}{m_{b}^{n}}
$$

c_{n} perturbative, $\left\langle O_{n}\right\rangle$ non-perturbative numbers

- Since $\Gamma\left(\bar{B} \rightarrow X_{c} / \bar{\nu}\right) \gg\left(\bar{B} \rightarrow X_{u} / \bar{\nu}\right)$ total rate cannot be measured Need to cut the charm background: e.g. $M_{X}^{2}<M_{D}^{2} \sim m_{b} \Lambda_{\mathrm{QCD}}$

Reminders

- For B decays: $5 \mathrm{GeV} \sim m_{b} \gg \Lambda_{\mathrm{QCD}} \sim 0.5 \mathrm{GeV}$

Observables expandable in $\Lambda_{Q C D} / m_{b} \sim 0.1$

- If we could measure total $\Gamma\left(\bar{B} \rightarrow X_{u} I \bar{\nu}\right)$ we could use a local OPE

$$
d \Gamma \sim \sum_{n} c_{n} \frac{\left\langle O_{n}\right\rangle}{m_{b}^{n}}
$$

c_{n} perturbative, $\left\langle O_{n}\right\rangle$ non-perturbative numbers

- Since $\Gamma\left(\bar{B} \rightarrow X_{c} / \bar{\nu}\right) \gg\left(\bar{B} \rightarrow X_{u} I \bar{\nu}\right)$ total rate cannot be measured Need to cut the charm background: e.g. $M_{X}^{2}<M_{D}^{2} \sim m_{b} \Lambda_{\mathrm{QCD}}$
- Not inclusive enough for local OPE, but non-local OPE still possible
$M_{X}^{2} \sim m_{b}^{2} \quad$ local OPE
("OPE region")
$M_{X}^{2} \sim m_{b} \Lambda_{\mathrm{QCD}} \quad$ Non local OPE ("end point region")
$M_{X}^{2} \sim \Lambda_{Q C D}^{2} \quad$ No inclusive description ("resonance region")

Reminders

- Need to cut the charm background: e.g. $M_{X}^{2}<M_{D}^{2} \sim m_{b} \Lambda_{\mathrm{QCD}}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$
d \Gamma \sim \sum_{n} c_{n} \frac{\left\langle O_{n}\right\rangle}{m_{b}^{n}}
$$

- c_{n} perturbative
- $\left\langle O_{n}\right\rangle$ non-perturbative functions, called shape functions

Reminders

- Need to cut the charm background: e.g. $M_{X}^{2}<M_{D}^{2} \sim m_{b} \Lambda_{\mathrm{QCD}}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$
d \Gamma \sim \sum_{n} c_{n} \frac{\left\langle O_{n}\right\rangle}{m_{b}^{n}}
$$

- c_{n} perturbative
- $\left\langle O_{n}\right\rangle$ non-perturbative functions, called shape functions
- Shape functions moments are related to HQET parameters:
E.g. leading shape function: $1^{\text {st }}$ moment $\leftrightarrow m_{b}, 2^{\text {nd }}$ moment $\leftrightarrow \mu_{\pi}^{2}$

Reminders

- Need to cut the charm background: e.g. $M_{X}^{2}<M_{D}^{2} \sim m_{b} \wedge_{\mathrm{QCD}}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$
d \Gamma \sim \sum_{n} c_{n} \frac{\left\langle O_{n}\right\rangle}{m_{b}^{n}}
$$

- c_{n} perturbative
- $\left\langle O_{n}\right\rangle$ non-perturbative functions, called shape functions
- Shape functions moments are related to HQET parameters:
E.g. leading shape function: $1^{\text {st }}$ moment $\leftrightarrow m_{b}, 2^{\text {nd }}$ moment $\leftrightarrow \mu_{\pi}^{2}$
- At leading power in $\Lambda_{Q C D} / m_{b}$: only one universal shape function needed ("B-meson pdf")

Reminders

- Need to cut the charm background: e.g. $M_{X}^{2}<M_{D}^{2} \sim m_{b} \wedge_{\mathrm{QCD}}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$
d \Gamma \sim \sum_{n} c_{n} \frac{\left\langle O_{n}\right\rangle}{m_{b}^{n}}
$$

- c_{n} perturbative
- $\left\langle O_{n}\right\rangle$ non-perturbative functions, called shape functions
- Shape functions moments are related to HQET parameters:
E.g. leading shape function: $1^{\text {st }}$ moment $\leftrightarrow m_{b}, 2^{\text {nd }}$ moment $\leftrightarrow \mu_{\pi}^{2}$
- At leading power in $\Lambda_{Q C D} / m_{b}$: only one universal shape function needed ("B-meson pdf")
- The same shape function appears at leading power for $\bar{B} \rightarrow X_{s} \gamma$
- Situation familiar from hard QCD

$$
d \sigma=c \otimes f+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / Q^{2}\right)
$$

c perturbative, f non-perturbative parton distribution function (PDF)

- Situation familiar from hard QCD

$$
d \sigma=c \otimes f+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / Q^{2}\right)
$$

c perturbative, f non-perturbative parton distribution function (PDF)

- Extract the PDF from Deep Inelastic Scattering (DIS) and use it for proton-(anti) proton collisions at the Tevatron and the LHC
- Situation familiar from hard QCD

$$
d \sigma=c \otimes f+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / Q^{2}\right)
$$

c perturbative, f non-perturbative parton distribution function (PDF)

- Extract the PDF from Deep Inelastic Scattering (DIS) and use it for proton-(anti) proton collisions at the Tevatron and the LHC
- Can extract leading power shape function from $\bar{B} \rightarrow X_{s} \gamma$

Lessons from hard QCD

- Situation familiar from hard QCD

$$
d \sigma=c \otimes f+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / Q^{2}\right)
$$

c perturbative, f non-perturbative parton distribution function (PDF)

- Extract the PDF from Deep Inelastic Scattering (DIS) and use it for proton-(anti) proton collisions at the Tevatron and the LHC
- Can extract leading power shape function from $\bar{B} \rightarrow X_{s} \gamma$

BaBar (2012)
Belle (2016)

$\bar{B} \rightarrow X_{u} / \bar{\nu}$ theory

- Situation familiar from hard QCD

$$
d \sigma=c \otimes f+\mathcal{O}\left(\Lambda_{Q \mathrm{CD}}^{2} / Q^{2}\right)
$$

c perturbative, f non-perturbative parton distribution function (PDF)

- Extract the PDF from Deep Inelastic Scattering (DIS) and use it for proton-(anti) proton collisions at the Tevatron and the LHC
- Can extract leading power shape function from $\bar{B} \rightarrow X_{s} \gamma$
- Unlike hadron colliders where $\Lambda_{\mathrm{QCD}}^{2} \ll Q^{2}$, we have $Q^{2}=m_{b}^{2}$
- Situation familiar from hard QCD

$$
d \sigma=c \otimes f+\mathcal{O}\left(\Lambda_{Q C D}^{2} / Q^{2}\right)
$$

c perturbative, f non-perturbative parton distribution function (PDF)

- Extract the PDF from Deep Inelastic Scattering (DIS) and use it for proton-(anti) proton collisions at the Tevatron and the LHC
- Can extract leading power shape function from $\bar{B} \rightarrow X_{s} \gamma$
- Unlike hadron colliders where $\Lambda_{Q C D}^{2} \ll Q^{2}$, we have $Q^{2}=m_{b}^{2}$
- At subleading power in $\Lambda_{Q C D} / m_{b}$:
- Several subleading shape functions (SSF) appear
- Different linear combinations for $\bar{B} \rightarrow X_{u} / \bar{\nu}$ and $\bar{B} \rightarrow X_{s} \gamma$
- $\bar{B} \rightarrow X_{s} \gamma$ has unique SSF ("resolved photon contributions")
- Situation familiar from hard QCD

$$
d \sigma=c \otimes f+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / Q^{2}\right)
$$

c perturbative, f non-perturbative parton distribution function (PDF)

- Extract the PDF from Deep Inelastic Scattering (DIS) and use it for proton-(anti) proton collisions at the Tevatron and the LHC
- Can extract leading power shape function from $\bar{B} \rightarrow X_{s} \gamma$
- Unlike hadron colliders where $\Lambda_{\mathrm{QCD}}^{2} \ll Q^{2}$, we have $Q^{2}=m_{b}^{2}$
- At subleading power in $\Lambda_{\mathrm{QCD}} / m_{b}$:
- Several subleading shape functions (SSF) appear
- Different linear combinations for $\bar{B} \rightarrow X_{u} I \bar{\nu}$ and $\bar{B} \rightarrow X_{s} \gamma$
- $\bar{B} \rightarrow X_{s} \gamma$ has unique SSF ("resolved photon contributions") What are these unique SSF?
- At subleading power in $\Lambda_{\mathrm{QCD}} / m_{b}$:
- $\bar{B} \rightarrow X_{s} \gamma$ has unique SSF ("resolved photon contributions") What are these unique SSF?

Reminder: resolved photon contributions

- At subleading power in $\Lambda_{\mathrm{QCD}} / m_{b}$:
- $\bar{B} \rightarrow X_{s} \gamma$ has unique SSF ("resolved photon contributions") What are these unique SSF?
- For $\bar{B} \rightarrow X_{s} \gamma$ need Effective Hamiltonian
$\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} \lambda_{p}\left(C_{1} Q_{1}^{p}+C_{2} Q_{2}^{p}+\sum_{i=3, \ldots, 10} C_{i} Q_{i}+C_{7 \gamma} Q_{7 \gamma}+C_{8 g} Q_{8 g}\right)+$ h.c.
- At leading power only $Q_{7 \gamma}-Q_{7 \gamma}$ contribute
- At higher orders need other $Q_{i}-Q_{j}$ contributions
- Most important: $Q_{7 \gamma}, Q_{8 g}$, and Q_{1}

$$
\begin{aligned}
Q_{7 \gamma} & =\frac{-e}{8 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) F^{\mu \nu} b \\
Q_{8 g} & =\frac{-g_{s}}{8 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) G^{\mu \nu} b \\
Q_{1}^{q} & =(\bar{q} b)_{v-A}(\bar{s} q)_{v-A} \quad(q=u, c)
\end{aligned}
$$

Reminder: resolved photon contributions

- At subleading power in $\Lambda_{\mathrm{QCD}} / m_{b}$:
- $\bar{B} \rightarrow X_{s} \gamma$ has unique SSF ("resolved photon contributions") What are these unique SSF?

Reminder: resolved photon contributions

- At subleading power in $\Lambda_{Q C D} / m_{b}$:
- $\bar{B} \rightarrow X_{s} \gamma$ has unique SSF ("resolved photon contributions") What are these unique SSF?
- Systematic analysis at $\Lambda_{\mathrm{QCD}} / m_{b}$ [Benzke, Lee, Neubert, GP '10]:

Top line:	$Q_{7 \gamma}-Q_{8 g}$
Bottom left:	$Q_{8 g}-Q_{8 g}$
Bottom right:	$Q_{1}-Q_{7 \gamma}$

- $Q_{1}-Q_{8 g}$ and $Q_{1}-Q_{1}$ give $\Lambda_{Q C D}^{2} / m_{b}^{2}$ effects

Reminder: resolved photon contributions

- Systematic analysis at $\Lambda_{\mathrm{QCD}} / m_{b}$ [Benzke, Lee, Neubert, GP '10]:

Top line:
$Q_{7 \gamma}-Q_{8 g} \Rightarrow g_{78}$
Bottom left:
$Q_{8 g}-Q_{8 g} \Rightarrow g_{88}$
Bottom right: $\quad Q_{1}-Q_{7 \gamma} \Rightarrow g_{17}$

Reminder: resolved photon contributions

- Systematic analysis at $\Lambda_{\mathrm{QCD}} / m_{b}$ [Benzke, Lee, Neubert, GP '10]:

Top line:
Bottom left:

$$
\begin{aligned}
& Q_{7 \gamma}-Q_{8 g} \Rightarrow g_{78} \\
& Q_{8 g}-Q_{8 g} \Rightarrow g_{88}
\end{aligned}
$$

$$
\text { Bottom right: } \quad Q_{1}-Q_{7 \gamma} \Rightarrow g_{17}
$$

- Functions have non-localities in two light-cone directions
- Horizontal: E_{γ} Vertical: unobservable

Reminder: resolved photon contributions

- Systematic analysis at $\Lambda_{\mathrm{QCD}} / m_{b}$ [Benzke, Lee, Neubert, GP '10]:

Top line:
Bottom left:
Bottom right:
$Q_{7 \gamma}-Q_{8 g} \Rightarrow g_{78}$
$Q_{8 g}-Q_{8 g} \Rightarrow g_{88}$
$Q_{1}-Q_{7 \gamma} \Rightarrow g_{17}$

- Functions have non-localities in two light-cone directions
- Horizontal: E_{γ} Vertical: unobservable
- 2010 analyses focused on integrated rate and CP asymmetry

Reminder: resolved photon contributions

- Systematic analysis at $\Lambda_{\mathrm{QCD}} / m_{b}$ [Benzke, Lee, Neubert, GP '10]:

Top line:
Bottom left:
Bottom right: $\quad Q_{1}-Q_{7 \gamma} \Rightarrow g_{17}$

- Functions have non-localities in two light-cone directions
- Horizontal: E_{γ} Vertical: unobservable
- 2010 analyses focused on integrated rate and CP asymmetry
- Moments of $g_{17} \leftrightarrow$ HQET parameters. Can we improve those?

Recent progress

- Dimension 7 and 8 HQET operators contribution to $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]

Power corrections

- Dimension 7 and 8 HQET operators contribution to $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
Dimension 7 and 8 HQET operators extracted from inclusive B decays [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Power corrections

- Dimension 7 and 8 HQET operators contribution to $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ [Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]
Dimension 7 and 8 HQET operators extracted from inclusive B decays [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Table 2
Default fit results: the second and third columns give the central values and standard deviations.

$m_{b}^{\text {kin }}$	4.546	0.021	r_{1}	0.032	0.024
$\bar{m}_{c}(3 \mathrm{GeV})$	0.987	0.013	r_{2}	-0.063	0.037
μ_{π}^{2}	0.432	0.068	r_{3}	-0.017	0.025
μ_{G}^{2}	0.355	0.060	r_{4}	-0.002	0.025
ρ_{D}^{3}	0.145	0.061	r_{5}	0.001	0.025
$\rho_{L S}^{3}$	-0.169	0.097	r_{6}	0.016	0.025
\bar{m}_{1}	0.084	0.059	r_{7}	0.002	0.025
\bar{m}_{2}	-0.019	0.036	r_{8}	-0.026	0.025
\bar{m}_{3}	-0.011	0.045	r_{9}	0.072	0.044
\bar{m}_{4}	0.048	0.043	r_{10}	0.043	0.030
\bar{m}_{5}	0.072	0.045	r_{11}	0.003	0.025
\bar{m}_{6}	0.015	0.041	r_{12}	0.018	0.025
\bar{m}_{7}	-0.059	0.043	r_{13}	-0.052	0.031
\bar{m}_{8}	-0.178	0.073	r_{14}	0.003	0.025
\bar{m}_{9}	-0.035	0.044	r_{15}	0.001	0.025
$\chi^{2} /$ dof	0.46		r_{16}	0.001	0.025
$B R(\%)$	10.652	0.156	r_{17}	-0.028	0.025
$\mathbf{1 0}^{\mathbf{3}}\left\|\mathbf{V}_{\mathbf{c b}}\right\|$	$\mathbf{4 2 . 1 1}$	$\mathbf{0 . 7 4}$	r_{18}	-0.001	0.025

Moments of shape functions and HQET parameters

- How to express moments of shape function(s) in terms of $m_{1}, \ldots m_{9}$ and $r_{1}, \ldots r_{18}$?

Moments of shape functions and HQET parameters

- How to express moments of shape function(s) in terms of $m_{1}, \ldots m_{9}$ and $r_{1}, \ldots r_{18}$?
- Answer given in [Gunawardana, GP, JHEP 1707137 (2017)]
(See also appendix A of [Heinonen, Mannel, arXiv:1609.01334])

Moments of shape functions and HQET parameters

- How to express moments of shape function(s) in terms of $m_{1}, \ldots m_{9}$ and $r_{1}, \ldots r_{18}$?
- Answer given in [Gunawardana, GP, JHEP 1707137 (2017)] (See also appendix A of [Heinonen, Mannel, arXiv:1609.01334])
- Method of [Gunawardana, GP, JHEP 1707137 (2017)] allows to

1) Find such relations
2) List HQET parameters, in principle, to arbitrary dimension
3) Construct NRQED and NRQCD bilinear operators, in principle, to arbitrary dimension

- Example: Spin-dependent dimension 8 HQET operators
- Example: Spin-dependent dimension 8 HQET operators

$$
\begin{aligned}
& \frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} s^{\lambda} h|H\rangle=i \tilde{c}^{(8)} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho} \\
& i \tilde{a}_{12}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{a}_{14}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{2} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{a}_{15}^{(8)} v^{\mu_{3}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{4} \lambda} v_{\rho}+i \tilde{a}_{24}^{(8)} v^{\mu_{3}} \Pi^{\mu_{2} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}+ \\
& +i \tilde{b}_{13}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{3}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{b}_{14}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{3} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{b}_{15}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{34}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{2}} \epsilon^{\rho \mu_{5} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{b}_{35}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{45}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{3} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{2} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{3} \lambda} v_{\rho}\right) .
\end{aligned}
$$

- Example: Spin-dependent dimension 8 HQET operators

$$
\begin{aligned}
& \frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} s^{\lambda} h|H\rangle=i \tilde{c}^{(8)} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho} \\
& i \tilde{a}_{12}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{i}_{14}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{2} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{a}_{15}^{(8)} v^{\mu_{3}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{4} \lambda} v_{\rho}+i \tilde{i}_{24}^{(8)} v^{\mu_{3}} \Pi^{\mu_{2} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}+ \\
& +i \tilde{b}_{13}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{3}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{b}_{14}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{3} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{b}_{15}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{34}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{2}} \epsilon^{\rho \mu_{5} \mu_{1} \lambda} v_{\rho}\right)+ \\
& +i \tilde{b}_{35}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{45}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{3} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{2} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{3} \lambda} v_{\rho}\right) .
\end{aligned}
$$

- Relation to $r_{8}-r_{18}$

$$
\begin{aligned}
& r_{8}=6 \tilde{c}^{(8)}, r_{9}=-6\left[\tilde{b}_{14}^{(8)}+\tilde{b}_{15}^{(8)}-\tilde{b}_{34}^{(8)}-\tilde{b}_{35}^{(8)}-3 \tilde{b}_{45}^{(8)}\right], r_{10}=6\left[3 \tilde{b}_{13}^{(8)}+\tilde{b}_{14}^{(8)}-\tilde{b}_{15}^{(8)}+\tilde{b}_{34}^{(8)}-\tilde{b}_{35}^{(8)}\right], \\
& r_{11}=6\left[\tilde{b}_{13}^{(8)}+3 \tilde{b}_{14}^{(8)}+\tilde{b}_{15}^{(8)}+\tilde{b}_{34}^{(8)}-\tilde{b}_{45}^{(8)}\right], r_{12}=6\left[-\tilde{b}_{13}^{(8)}+\tilde{b}_{15}^{(8)}+\tilde{b}_{34}^{(8)}+3 \tilde{b}_{35}^{(8)}+\tilde{b}_{45}^{(8)}\right], \\
& r_{13}=-6\left[\tilde{b}_{13}^{(8)}-\tilde{b}_{14}^{(8)}-3 \tilde{b}_{15}^{(8)}-\tilde{b}_{35}^{(8)}+\tilde{b}_{45}^{(8)}\right], r_{14}=6\left[\tilde{b}_{13}^{(8)}+\tilde{b}_{14}^{(8)}+3 \tilde{b}_{34}^{(8)}+\tilde{b}_{35}^{(8)}+\tilde{b}_{45}^{(8)}\right], r_{15}=6\left[3 \tilde{a}_{12}^{(8)}-\tilde{a}_{15}^{(8)}+3 \tilde{a}_{24}^{(8)}\right] \\
& r_{16}=6\left[-2 \tilde{a}_{12}^{(8)}+2 \tilde{a}_{14}^{(8)}+3 \tilde{a}_{15}^{(8)}\right], r_{17}=6\left[2 \tilde{a}_{12}^{(8)}+2 \tilde{a}_{14}^{(8)}+3 \tilde{a}_{24}^{(8)}\right], r_{18}=6\left[3 \tilde{a}_{14}^{(8)}+\tilde{a}_{15}^{(8)}+\tilde{a}_{24}^{(8)}\right] .
\end{aligned}
$$

- Example: Spin-dependent dimension 8 HQET operators
$\frac{1}{2 M_{H}}\langle H| \bar{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} s^{\lambda} h|H\rangle=i \tilde{c}^{(8)} v^{\mu_{2}} v^{\mu_{3}} v^{\mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}$
$i \tilde{a}_{12}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{a}_{14}^{(8)}\left(v^{\mu_{3}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{2} \mu_{5} \lambda} v_{\rho}-v^{\mu_{3}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{4} \mu_{1} \lambda} v_{\rho}\right)+$ $+i \tilde{a}_{15}^{(8)} v^{\mu_{3}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{2} \mu_{4} \lambda} v_{\rho}+i \tilde{a}_{24}^{(8)} v^{\mu_{3}} \Pi^{\mu_{2} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}+$
$+i \tilde{b}_{13}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{3}} \epsilon^{\rho \mu_{4} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{3}} \epsilon^{\rho \mu_{2} \mu_{1} \lambda} v_{\rho}\right)+i \tilde{b}_{14}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{4}} \epsilon^{\rho \mu_{3} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{5} \mu_{2}} \epsilon^{\rho \mu_{3} \mu_{1} \lambda} v_{\rho}\right)+$ $+i \tilde{b}_{15}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{1} \mu_{5}} \epsilon^{\rho \mu_{3} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{34}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{4}} \epsilon^{\rho \mu_{1} \mu_{5} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{2}} \epsilon^{\rho \mu_{5} \mu_{1} \lambda} v_{\rho}\right)+$ $+i \tilde{b}_{35}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{3} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{4} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{3} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{2} \lambda} v_{\rho}\right)+i \tilde{b}_{45}^{(8)}\left(v^{\mu_{2}} \Pi^{\mu_{4} \mu_{5}} \epsilon^{\rho \mu_{1} \mu_{3} \lambda} v_{\rho}-v^{\mu_{4}} \Pi^{\mu_{2} \mu_{1}} \epsilon^{\rho \mu_{5} \mu_{3} \lambda} v_{\rho}\right)$.

- Relation to $r_{8}-r_{18}$

$r_{8}=6 \tilde{c}^{(8)}, r_{9}=-6\left[\tilde{b}_{14}^{(8)}+\tilde{b}_{15}^{(8)}-\tilde{b}_{34}^{(8)}-\tilde{b}_{35}^{(8)}-3 \tilde{b}_{45}^{(8)}\right], r_{10}=6\left[3 \tilde{b}_{13}^{(8)}+\tilde{b}_{14}^{(8)}-\tilde{b}_{15}^{(8)}+\tilde{b}_{34}^{(8)}-\tilde{b}_{35}^{(8)}\right]$,
$r_{11}=6\left[\tilde{b}_{13}^{(8)}+3 \tilde{b}_{14}^{(8)}+\tilde{b}_{15}^{(8)}+\tilde{b}_{34}^{(8)}-\tilde{b}_{45}^{(8)}\right], r_{12}=6\left[-\tilde{b}_{13}^{(8)}+\tilde{b}_{15}^{(8)}+\tilde{b}_{34}^{(8)}+3 \tilde{b}_{35}^{(8)}+\tilde{b}_{45}^{(8)}\right]$,
$r_{13}=-6\left[\tilde{b}_{13}^{(8)}-\tilde{b}_{14}^{(8)}-3 \tilde{b}_{15}^{(8)}-\tilde{b}_{35}^{(8)}+\tilde{b}_{45}^{(8)}\right], r_{14}=6\left[\tilde{b}_{13}^{(8)}+\tilde{b}_{14}^{(8)}+3 \tilde{b}_{34}^{(8)}+\tilde{b}_{35}^{(8)}+\tilde{b}_{45}^{(8)}\right], r_{15}=6\left[3 \tilde{a}_{12}^{(8)}-\tilde{a}_{15}^{(8)}+3 \tilde{a}_{24}^{(8)}\right]$,
$r_{16}=6\left[-2 \tilde{a}_{12}^{(8)}+2 \tilde{a}_{14}^{(8)}+3 \tilde{a}_{15}^{(8)}\right], r_{17}=6\left[2 \tilde{a}_{12}^{(8)}+2 \tilde{a}_{14}^{(8)}+3 \tilde{a}_{24}^{(8)}\right], r_{18}=6\left[3 \tilde{a}_{14}^{(8)}+\tilde{a}_{15}^{(8)}+\tilde{a}_{24}^{(8)}\right]$.

- Moments in ω and ω_{1} are related to HQET parameters

$$
\begin{aligned}
& \left\langle\omega^{\prime} \omega_{1}^{k} g_{17}\right\rangle \equiv \int_{-\infty}^{\bar{\Lambda}} d \omega \omega^{\prime} \int_{-\infty}^{\infty} d \omega_{1} \omega^{k} g_{17}\left(\omega, \omega_{1}, \mu\right)=\left(i v^{\rho} \epsilon_{\rho \mu \alpha \perp \lambda} \bar{n}^{\mu}-g_{\alpha \perp \lambda}\right)(-1)^{k} \\
& \times \quad \frac{1}{2 M_{B}}\langle\bar{B}| \bar{h}(i n \cdot D)^{\prime} \underbrace{[i \bar{n} \cdot D,[i \bar{n} \cdot D, \cdots[i \bar{n} \cdot D}_{k \text { times }},\left[i D^{\alpha}, i \bar{n} \cdot D\right] \cdots]] s^{\lambda} h|\bar{B}\rangle .
\end{aligned}
$$

Numerical Results: moments of g_{17}

- Moments in ω and ω_{1} are related to HQET parameters

$$
\begin{array}{r}
\left\langle\omega^{\prime} \omega_{1}^{k} g_{17}\right\rangle \equiv \int_{-\infty}^{\bar{\Lambda}} d \omega \omega^{\prime} \int_{-\infty}^{\infty} d \omega_{1} \omega^{k} g_{17}\left(\omega, \omega_{1}, \mu\right)=\left(i v^{\rho} \epsilon_{\rho \mu \alpha_{\perp} \lambda} \bar{n}^{\mu}-g_{\alpha_{\perp} \lambda}\right)(-1)^{k} \\
\times \frac{1}{2 M_{B}}\langle\bar{B}| \bar{h}(i n \cdot D)^{\prime} \underbrace{[i \bar{n} \cdot D,[i \bar{n} \cdot D, \cdots[i \bar{n} \cdot D}_{k \text { times }},\left[i D^{\alpha}, i \bar{n} \cdot D\right] \cdots]] s^{\lambda} h|\bar{B}\rangle
\end{array}
$$

Numerical Results: moments of g_{17}

- Moments in ω and ω_{1} are related to HQET parameters

$$
\begin{aligned}
& \left\langle\omega^{\prime} \omega_{1}^{k} g_{17}\right\rangle \equiv \int_{-\infty}^{\bar{\Lambda}} d \omega \omega^{\prime} \int_{-\infty}^{\infty} d \omega_{1} \omega^{k} g_{17}\left(\omega, \omega_{1}, \mu\right)=\left(i v^{\rho} \epsilon_{\rho \mu \alpha_{\perp} \lambda} \bar{n}^{\mu}-g_{\alpha_{\perp} \lambda}\right)(-1)^{k} \\
& \quad \times \frac{1}{2 M_{B}}\langle\bar{B}| \bar{h}(i n \cdot D)^{\prime} \underbrace{[i \bar{n} \cdot D,[i \bar{n} \cdot D, \cdots[i \bar{n} \cdot D}_{k \text { times }},\left[i D^{\alpha}, i \bar{n} \cdot D\right] \cdots]] s^{\lambda} h|\bar{B}\rangle .
\end{aligned}
$$

- 2010 analysis only had 2 non-zero moments
[Benzke, Lee, Neubert, GP, JHEP 1008, 099 (2010)]

$$
\left\langle\omega^{0} \omega_{1}^{0} g_{17}\right\rangle=0.237 \pm 0.040 \mathrm{GeV}^{2}, \quad\left\langle\omega^{1} \omega_{1}^{0} g_{17}\right\rangle=0.056 \pm 0.032 \mathrm{GeV}^{3}
$$

Numerical Results: moments of g_{17}

- Moments in ω and ω_{1} are related to HQET parameters

$$
\begin{aligned}
\left\langle\omega^{\prime} \omega_{1}^{k} g_{17}\right\rangle & \equiv \int_{-\infty}^{\bar{\pi}} d \omega \omega^{\prime} \int_{-\infty}^{\infty} d \omega_{1} \omega^{k} g_{17}\left(\omega, \omega_{1}, \mu\right)=\left(i v^{\rho} \epsilon_{\rho \mu \alpha}, \lambda \bar{\lambda}^{\mu}-g_{\alpha_{\perp} \lambda}\right)(-1)^{k} \\
& \times \frac{1}{2 M_{B}}\langle\overline{\mid}| \bar{h}(i n \cdot D)^{\prime} \underbrace{[i \bar{n} \cdot D,[i \bar{n} \cdot D, \cdots[i \bar{n} \cdot D}_{k \text { times }},\left[i D^{\alpha}, i \bar{n} \cdot D\right] \cdots] s^{\lambda}| | \bar{B}\rangle .
\end{aligned}
$$

- 2010 analysis only had 2 non-zero moments
[Benzke, Lee, Neubert, GP, JHEP 1008, 099 (2010)]

$$
\left\langle\omega^{0} \omega_{1}^{0} g_{17}\right\rangle=0.237 \pm 0.040 \mathrm{GeV}^{2}, \quad\left\langle\omega^{1} \omega_{1}^{0} g_{17}\right\rangle=0.056 \pm 0.032 \mathrm{GeV}^{3}
$$

- 2019 analysis added 6 non-zero moments
[Ayesh Gunawardna, GP JHEP 11141 (2019)]
$\left\langle\omega^{0} \omega_{1}^{2} g_{17}\right\rangle=0.15 \pm 0.12 \mathrm{GeV}^{4}, \quad\left\langle\omega^{2} \omega_{1}^{0} g_{17}\right\rangle=0.015 \pm 0.021 \mathrm{GeV}^{4}$
$\left\langle\omega^{3} \omega_{1}^{0} g_{17}\right\rangle=0.008 \pm 0.011 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{1} g_{17}\right\rangle=0.073 \pm 0.059 \mathrm{GeV}^{4}$
$\left\langle\omega^{2} \omega_{1}^{1} g_{17}\right\rangle=-0.034 \pm 0.016 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{2} g_{17}\right\rangle=0.027 \pm 0.014 \mathrm{GeV}^{5}$.

Results: Reducing non-perturbative uncertainties

- 2010 analysis only had 2 non-zero moments
[Benzke, Lee, Neubert, GP, JHEP 1008, 099 (2010)]

$$
\left\langle\omega^{0} \omega_{1}^{0} g_{17}\right\rangle=0.237 \pm 0.040 \mathrm{GeV}^{2}, \quad\left\langle\omega^{1} \omega_{1}^{0} g_{17}\right\rangle=0.056 \pm 0.032 \mathrm{GeV}^{3}
$$

- 2019 analysis added 6 non-zero moments [Ayesh Gunawardna, GP JHEP 11141 (2019)]
$\left\langle\omega^{0} \omega_{1}^{2} g_{17}\right\rangle=0.15 \pm 0.12 \mathrm{GeV}^{4}, \quad\left\langle\omega^{2} \omega_{1}^{0} g_{17}\right\rangle=0.015 \pm 0.021 \mathrm{GeV}^{4}$ $\left\langle\omega^{3} \omega_{1}^{0} g_{17}\right\rangle=0.008 \pm 0.011 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{1} g_{17}\right\rangle=0.073 \pm 0.059 \mathrm{GeV}^{4}$ $\left\langle\omega^{2} \omega_{1}^{1} g_{17}\right\rangle=-0.034 \pm 0.016 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{2} g_{17}\right\rangle=0.027 \pm 0.014 \mathrm{GeV}^{5}$.

Results: Reducing non-perturbative uncertainties

- 2010 analysis only had 2 non-zero moments [Benzke, Lee, Neubert, GP, JHEP 1008, 099 (2010)]

$$
\left\langle\omega^{0} \omega_{1}^{0} g_{17}\right\rangle=0.237 \pm 0.040 \mathrm{GeV}^{2}, \quad\left\langle\omega^{1} \omega_{1}^{0} g_{17}\right\rangle=0.056 \pm 0.032 \mathrm{GeV}^{3}
$$

- 2019 analysis added 6 non-zero moments [Ayesh Gunawardna, GP JHEP 11141 (2019)]
$\left\langle\omega^{0} \omega_{1}^{2} g_{17}\right\rangle=0.15 \pm 0.12 \mathrm{GeV}^{4}, \quad\left\langle\omega^{2} \omega_{1}^{0} g_{17}\right\rangle=0.015 \pm 0.021 \mathrm{GeV}^{4}$
$\left\langle\omega^{3} \omega_{1}^{0} g_{17}\right\rangle=0.008 \pm 0.011 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{1} g_{17}\right\rangle=0.073 \pm 0.059 \mathrm{GeV}^{4}$
$\left\langle\omega^{2} \omega_{1}^{1} g_{17}\right\rangle=-0.034 \pm 0.016 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{2} g_{17}\right\rangle=0.027 \pm 0.014 \mathrm{GeV}^{5}$.
- Using moments we can model these soft functions with an orthonormal basis functions as first suggested in [Ligeti, Stewart, Tackmann, PRD 78114014 (2008)]

Results: Reducing non-perturbative uncertainties

- 2010 analysis only had 2 non-zero moments [Benzke, Lee, Neubert, GP, JHEP 1008, 099 (2010)]

$$
\left\langle\omega^{0} \omega_{1}^{0} g_{17}\right\rangle=0.237 \pm 0.040 \mathrm{GeV}^{2}, \quad\left\langle\omega^{1} \omega_{1}^{0} g_{17}\right\rangle=0.056 \pm 0.032 \mathrm{GeV}^{3}
$$

- 2019 analysis added 6 non-zero moments [Ayesh Gunawardna, GP JHEP 11141 (2019)]
$\left\langle\omega^{0} \omega_{1}^{2} g_{17}\right\rangle=0.15 \pm 0.12 \mathrm{GeV}^{4}, \quad\left\langle\omega^{2} \omega_{1}^{0} g_{17}\right\rangle=0.015 \pm 0.021 \mathrm{GeV}^{4}$
$\left\langle\omega^{3} \omega_{1}^{0} g_{17}\right\rangle=0.008 \pm 0.011 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{1} g_{17}\right\rangle=0.073 \pm 0.059 \mathrm{GeV}^{4}$ $\left\langle\omega^{2} \omega_{1}^{1} g_{17}\right\rangle=-0.034 \pm 0.016 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{2} g_{17}\right\rangle=0.027 \pm 0.014 \mathrm{GeV}^{5}$.
- Using moments we can model these soft functions with an orthonormal basis functions as first suggested in [Ligeti, Stewart, Tackmann, PRD 78114014 (2008)]
- New estimate of uncertainty: Total rate $\downarrow 50 \%$, CP asymmetry $\uparrow 33 \%$ [Ayesh Gunawardna, GP JHEP 11141 (2019)]

Results: Reducing non-perturbative uncertainties

- 2010 analysis only had 2 non-zero moments [Benzke, Lee, Neubert, GP, JHEP 1008, 099 (2010)]

$$
\left\langle\omega^{0} \omega_{1}^{0} g_{17}\right\rangle=0.237 \pm 0.040 \mathrm{GeV}^{2}, \quad\left\langle\omega^{1} \omega_{1}^{0} g_{17}\right\rangle=0.056 \pm 0.032 \mathrm{GeV}^{3}
$$

- 2019 analysis added 6 non-zero moments
[Ayesh Gunawardna, GP JHEP 11141 (2019)]
$\left\langle\omega^{0} \omega_{1}^{2} g_{17}\right\rangle=0.15 \pm 0.12 \mathrm{GeV}^{4}, \quad\left\langle\omega^{2} \omega_{1}^{0} g_{17}\right\rangle=0.015 \pm 0.021 \mathrm{GeV}^{4}$
$\left\langle\omega^{3} \omega_{1}^{0} g_{17}\right\rangle=0.008 \pm 0.011 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{1} g_{17}\right\rangle=0.073 \pm 0.059 \mathrm{GeV}^{4}$
$\left\langle\omega^{2} \omega_{1}^{1} g_{17}\right\rangle=-0.034 \pm 0.016 \mathrm{GeV}^{5}, \quad\left\langle\omega^{1} \omega_{1}^{2} g_{17}\right\rangle=0.027 \pm 0.014 \mathrm{GeV}^{5}$.
- Using moments we can model these soft functions with an orthonormal basis functions as first suggested in [Ligeti, Stewart, Tackmann, PRD 78114014 (2008)]
- New estimate of uncertainty: Total rate $\downarrow 50 \%$, CP asymmetry $\uparrow 33 \%$ [Ayesh Gunawardna, GP JHEP 11141 (2019)]
- Using different models, including some $\Lambda_{Q C D}^{2} / m_{b}^{2}$ corrections and larger m_{c} range, a smaller reduction was found in [Benzke, Hurth PRD 102114024 (2020)]

What about $V_{u b}$?

- Above information not applied yet to the photon spectrum but it can be done

What about $V_{u b}$?

- Above information not applied yet to the photon spectrum but it can be done
- Moments of g_{78} and g_{88} are not related to to these HQET parameters. Very little is known about them, in particular, their E_{γ} dependence

What about $V_{u b}$?

- Above information not applied yet to the photon spectrum but it can be done
- Moments of g_{78} and g_{88} are not related to to these HQET parameters. Very little is known about them, in particular, their E_{γ} dependence
- It is not clear if such modeling of g_{78} and g_{88} is better than assuming a $\Lambda_{\mathrm{QCD}} / m_{b}$ uncertainty on the extraction of the leading shape function from $\bar{B} \rightarrow X_{s} \gamma$

Critical review of current approaches

Reminders

- We need to distinguish between
incorrect statements and differences in what is "reasonable"

Reminders

- We need to distinguish between
incorrect statements and differences in what is "reasonable"
- Example: Version 1 of [Gunawardana, GP, JHEP 1707137 (2017)] did not include possible multiple color structures for dimension ≥ 7 HQET operators (irrelevant for current level of $\left|V_{c b}\right|$ precision)

Reminders

- We need to distinguish between incorrect statements and differences in what is "reasonable"
- Example: Version 1 of [Gunawardana, GP, JHEP 1707137 (2017)] did not include possible multiple color structures for dimension ≥ 7 HQET operators (irrelevant for current level of $\left|V_{c b}\right|$ precision)
- I think it is not "reasonable" to include some $\Lambda_{Q C D}^{2} / m_{b}^{2}$ corrections and not others for estimating the non-perturbative uncertainty for $\bar{B} \rightarrow X_{s} \gamma$

Reminders

- We need to distinguish between incorrect statements and differences in what is "reasonable"
- Example: Version 1 of [Gunawardana, GP, JHEP 1707137 (2017)] did not include possible multiple color structures for dimension ≥ 7 HQET operators (irrelevant for current level of $\left|V_{c b}\right|$ precision)
- I think it is not "reasonable" to include some $\Lambda_{Q C D}^{2} / m_{b}^{2}$ corrections and not others for estimating the non-perturbative uncertainty for $\bar{B} \rightarrow X_{s} \gamma$
- I'll try to distinguish the two in the following

BLNP

- Approach in [Lange, Neubert, Paz PRD 72073006 (2005)]

BLNP

- Approach in [Lange, Neubert, Paz PRD 72073006 (2005)]
- Based on

$$
d \Gamma \sim H \cdot J \otimes S+\frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i}+\ldots
$$

BLNP

- Approach in [Lange, Neubert, Paz PRD 72073006 (2005)]
- Based on

$$
d \Gamma \sim H \cdot J \otimes S+\frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i}+\ldots
$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}\left(\alpha_{s}\right)$
- Subleading shape functions: $H \cdot J \otimes s_{i}$ at $\mathcal{O}\left(\alpha_{s}^{0}\right)$
- $\alpha_{s} / m_{b}^{\{1,2\}}$ and $1 / m_{b}^{2}$ incorporated as naive convolution with LO SF
- S extracted from $\bar{B} \rightarrow X_{s} \gamma, s_{i}$ modeled (~ 700 models)
- Smoothly merges to local OPE when integrated over phase space
- Hard, Jet, and Soft scale separated with NLO resummation

BLNP: possible issues

$$
d \Gamma \sim H \cdot J \otimes S+\frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i}+\ldots
$$

1) s_{i} modeled using normalization and first moment with second moment taken to be $(0.3 \mathrm{GeV})^{3}$

BLNP: possible issues

$$
d \Gamma \sim H \cdot J \otimes S+\frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i}+\ldots
$$

1) s_{i} modeled using normalization and first moment with second moment taken to be $(0.3 \mathrm{GeV})^{3}$

Incorrect: two of the subleading shape functions, u and v, have zero second moment [Bauer, Luke, Mannel PLB 543261 (2002)] Can affect SSF uncertainty

BLNP: possible issues

$$
d \Gamma \sim H \cdot J \otimes S+\frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i}+\ldots
$$

1) s_{i} modeled using normalization and first moment with second moment taken to be $(0.3 \mathrm{GeV})^{3}$

Incorrect: two of the subleading shape functions, u and v, have zero second moment [Bauer, Luke, Mannel PLB 543261 (2002)] Can affect SSF uncertainty
2) Resummation: 2009 Study of implication of $\mathcal{O}\left(\alpha_{s}^{2}\right)$ on $\left|V_{u b}\right|$ [Greub, Neubert, Pecjak, EPJC 65501 (2010)]
"factorization ... perturbative coefficient...into jet and hard functions is not strictly necessary: using ... fixed-order... does not lead to large scale uncertainties ... nor to a poor convergence ..."

BLNP: possible issues

$$
d \Gamma \sim H \cdot J \otimes S+\frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i}+\ldots
$$

3) S has a negative radiative tail for large ω that is "glued": not very elegant

BLNP: possible issues

$$
d \Gamma \sim H \cdot J \otimes S+\frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i}+\ldots
$$

3) S has a negative radiative tail for large ω that is "glued": not very elegant
4) Uses the shape function mass scheme, not easy to switch to other schemes. e.g. kinetic

SIMBA

- Approach in [Ligeti, Stewart, Tackmann PRD 78114014 (2008)]

SIMBA

- Approach in [Ligeti, Stewart, Tackmann PRD 78114014 (2008)]
- Zoltan gives a talk about SIMBA, so I will limit myself to some comments

SIMBA

- Approach in [Ligeti, Stewart, Tackmann PRD 78114014 (2008)]
- Zoltan gives a talk about SIMBA, so I will limit myself to some comments
- A major difference from BLNP is the treatment of the leading shape function using

$$
S\left(\omega, \mu_{\Lambda}\right)=\int d k C_{0}\left(\omega-k, \mu_{\Lambda}\right) F(k)
$$

"where $C_{0}\left(\omega, \mu_{\Lambda}\right)$ is the b quark matrix element of the shape function operator calculated in perturbation theory, and $F(k)$ is a nonperturbative function that can be extracted from data."
[Ligeti, Stewart, Tackmann PRD 78114014 (2008)]

SIMBA

- Approach in [Ligeti, Stewart, Tackmann PRD 78114014 (2008)]
- Zoltan gives a talk about SIMBA, so I will limit myself to some comments
- A major difference from BLNP is the treatment of the leading shape function using

$$
S\left(\omega, \mu_{\Lambda}\right)=\int d k C_{0}\left(\omega-k, \mu_{\Lambda}\right) F(k)
$$

"where $C_{0}\left(\omega, \mu_{\Lambda}\right)$ is the b quark matrix element of the shape function operator calculated in perturbation theory, and $F(k)$ is a nonperturbative function that can be extracted from data."
[Ligeti, Stewart, Tackmann PRD 78114014 (2008)]

- In other words, this is a different factorization scheme from BLNP

SIMBA

- In other words, this is a different factorization scheme from BLNP
- "The advantage of our construction [...] is that the tail automatically turns on in a smooth manner when it dominates over the nonperturbative function $F(k)$ and provides the proper μ dependence for $S(\omega, \mu)$ at any ω."
[Ligeti, Stewart, Tackmann PRD 78114014 (2008)]
- The same paper also suggested to use orthonormal basis functions Among other things it allows to better fit $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum

SIMBA: Possible issues: Positivity

1) The same paper also introduced

$$
S(\omega)=\int d k C_{0}(\omega-k) F(k)=\int d k \hat{C}_{0}(\omega-k) \hat{F}(k)
$$

- "... the moments of $\widehat{F}(k)$ are given by renormalon-free parameters..."

SIMBA: Possible issues: Positivity

1) The same paper also introduced

$$
S(\omega)=\int d k C_{0}(\omega-k) F(k)=\int d k \widehat{C}_{0}(\omega-k) \widehat{F}(k)
$$

- "... the moments of $\widehat{F}(k)$ are given by renormalon-free parameters..."
- "We expect on physical grounds that $\widehat{F}(k)$ is positive..."

SIMBA: Possible issues: Positivity

1) The same paper also introduced

$$
S(\omega)=\int d k C_{0}(\omega-k) F(k)=\int d k \widehat{C}_{0}(\omega-k) \hat{F}(k)
$$

- "... the moments of $\widehat{F}(k)$ are given by renormalon-free parameters..."
- "We expect on physical grounds that $\widehat{F}(k)$ is positive..."
- From [Gunawardana, GP '17] and [Gambino, Healey, Turczyk '16)] $\int d \omega S(\omega)=1, \int d \omega \omega S(\omega)=0, \int d \omega \omega^{2} S(\omega)=\mu_{\pi}^{2} / 3=0.144 \pm 0.023 \mathrm{GeV}^{2}$,
$\int d \omega \omega^{3} S(\omega)=-\rho_{D}^{3} / 3=-0.048 \pm 0.020 \mathrm{GeV}^{3}$,
$\int d \omega \omega^{4} S(\omega)=m_{1} / 5-m_{2} / 3=0.023 \pm 0.017 \mathrm{GeV}^{4}$,
$\int d \omega \omega^{5} S(\omega)=\left(-8 r_{1}+2 r_{2}+2 r_{3}+2 r_{4}+r_{5}+r_{6}+r_{7}\right) / 15=-0.027 \pm 0.015 \mathrm{GeV}^{5}$
- Starting with the third, the moments are not positive

SIMBA: Possible issues: Multiplicity

2) "We expect on physical grounds that $\widehat{F}(k)$ is positive, so we can expand its square root.."

$$
\widehat{F}^{\bmod }(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{2} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}
$$

- Because the equations are quadratic, there can be multiple solutions

SIMBA: Possible issues: Multiplicity

2) "We expect on physical grounds that $\widehat{F}(k)$ is positive, so we can expand its square root.."

$$
\widehat{F}^{\mathrm{mod}}(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{2} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}
$$

- Because the equations are quadratic, there can be multiple solutions
- "... With $\left\{m_{b}^{1 S}, \lambda_{1}\right\}$ we have $\left\{c_{0}, c_{1}, c_{2}\right\}=\{0.949,-0.309,0.064\}$ "

SIMBA: Possible issues: Multiplicity

2) "We expect on physical grounds that $\widehat{F}(k)$ is positive, so we can expand its square root.."

$$
\widehat{F}^{\bmod }(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{2} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}
$$

- Because the equations are quadratic, there can be multiple solutions
- "... With $\left\{m_{b}^{1 S}, \lambda_{1}\right\}$ we have $\left\{c_{0}, c_{1}, c_{2}\right\}=\{0.949,-0.309,0.064\}$ "

Figure 1: The variation of F against k; red curve represent combination $\{\mathrm{c} 0 \rightarrow 0.949031, \mathrm{c} 1 \rightarrow$ $-0.308648, c 2 \rightarrow 0.0638516\}$
[Image by A. Gunawardana, private communication]

SIMBA: Possible issues: Multiplicity

2) "We expect on physical grounds that $\widehat{F}(k)$ is positive, so we can expand its square root.."

$$
\widehat{F}^{\bmod }(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{2} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}
$$

- Because the equations are quadratic, there can be multiple solutions

SIMBA: Possible issues: Multiplicity

2) "We expect on physical grounds that $\widehat{F}(k)$ is positive, so we can expand its square root.."

$$
\widehat{F}^{\bmod }(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{2} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}
$$

- Because the equations are quadratic, there can be multiple solutions
- "... and for $\left\{m_{b}^{\text {kin }}, \lambda_{1}\right\}$ we have $\left\{c_{0}, c_{1}, c_{2}\right\}=\{0.988,-0.120,-0.095\} . "$

SIMBA: Possible issues: Multiplicity

2) "We expect on physical grounds that $\widehat{F}(k)$ is positive, so we can expand its square root.."

$$
\widehat{F}^{\bmod }(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{2} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}
$$

- Because the equations are quadratic, there can be multiple solutions
- "... and for $\left\{m_{b}^{\text {kin }}, \lambda_{1}\right\}$ we have $\left\{c_{0}, c_{1}, c_{2}\right\}=\{0.988,-0.120,-0.095\} . "$

Figure 2: The variation of F against k; blue curve represent combination $\{\mathrm{c} 0 \rightarrow$ $0.988539, \mathrm{c} 1 \rightarrow-0.115211, \mathrm{c} 2 \rightarrow-0.0975604\}$
[Image by A. Gunawardana, private communication]

SIMBA: Possible issues: Small momentum behavior

3) "Due to the short distance subtractions ... to ensure that $S(\omega, \mu)$ goes to zero at $\omega=0$, we need $\widehat{F}(k)$ to go to zero at least as k^{3} for $k \rightarrow 0$ "

SIMBA: Possible issues: Small momentum behavior

3) "Due to the short distance subtractions ... to ensure that $S(\omega, \mu)$ goes to zero at $\omega=0$, we need $\widehat{F}(k)$ to go to zero at least as k^{3} for $k \rightarrow 0$ "

- If we want to include higher moments, we might need to increase the power of k [B. Lange, private communication]

GGOU

- Based on

$$
W_{i} \sim F_{i} \otimes W_{i}^{\text {pert }}
$$

- W_{i} structure functions that give $d \Gamma$
- $W_{i}^{\text {pert }}$ known perturbative quantities
- $F_{i}\left(k_{+}, q^{2}, \mu\right)$ OPE-constrained non-perturbative distribution functions
- uses kinetic scheme, Wilsonian cutoff $\mu \sim 1 \mathrm{GeV}$

GGOU

- Based on

$$
W_{i} \sim F_{i} \otimes W_{i}^{\text {pert }}
$$

- W_{i} structure functions that give $d \Gamma$
- $W_{i}^{\text {pert }}$ known perturbative quantities
- $F_{i}\left(k_{+}, q^{2}, \mu\right)$ OPE-constrained non-perturbative distribution functions
- uses kinetic scheme, Wilsonian cutoff $\mu \sim 1 \mathrm{GeV}$
- F_{i} moments are constrained by OPE

About 100 forms considered in GGOU
Each parameterized by simple 2-parameter functional forms
[Gambino, CKM 2016 talk]

GGOU: Possible issues: Factorization

- Based on

$$
W_{i} \sim F_{i} \otimes W_{i}^{\text {pert }}
$$

- W_{i} structure functions that give $d \Gamma$
- $W_{i}^{\text {pert }}$ known perturbative quantities
- $F_{i}\left(k_{+}, q^{2}, \mu\right)$ OPE-constrained non-perturbative distribution functions
- uses kinetic scheme, Wilsonian cutoff $\mu \sim 1 \mathrm{GeV}$

GGOU: Possible issues: Factorization

- Based on

$$
W_{i} \sim F_{i} \otimes W_{i}^{\text {pert }}
$$

- W_{i} structure functions that give $d \Gamma$
- $W_{i}^{\text {pert }}$ known perturbative quantities
- $F_{i}\left(k_{+}, q^{2}, \mu\right)$ OPE-constrained non-perturbative distribution functions
- uses kinetic scheme, Wilsonian cutoff $\mu \sim 1 \mathrm{GeV}$
- The formula

$$
W_{i} \sim F_{i} \otimes W_{i}^{\text {pert }}
$$

only holds at leading power

GGOU: Possible issues: Factorization

- Based on

$$
W_{i} \sim F_{i} \otimes W_{i}^{\text {pert }}
$$

- W_{i} structure functions that give $d \Gamma$
- $W_{i}^{\text {pert }}$ known perturbative quantities
- $F_{i}\left(k_{+}, q^{2}, \mu\right)$ OPE-constrained non-perturbative distribution functions
- uses kinetic scheme, Wilsonian cutoff $\mu \sim 1 \mathrm{GeV}$
- The formula

$$
W_{i} \sim F_{i} \otimes W_{i}^{\text {pert }}
$$

only holds at leading power

- Power corrections appear with different $W_{i}^{\text {pert }}$

GGOU: Possible issues: Factorization

- Based on

$$
W_{i} \sim F_{i} \otimes W_{i}^{\text {pert }}
$$

- W_{i} structure functions that give $d \Gamma$
- $W_{i}^{\text {pert }}$ known perturbative quantities
- $F_{i}\left(k_{+}, q^{2}, \mu\right)$ OPE-constrained non-perturbative distribution functions
- uses kinetic scheme, Wilsonian cutoff $\mu \sim 1 \mathrm{GeV}$
- The formula

$$
W_{i} \sim F_{i} \otimes W_{i}^{\text {pert }}
$$

only holds at leading power

- Power corrections appear with different $W_{i}^{\text {pert }}$
- I am not familiar with factorization formula that shows such a symmetry for all power corrections

Open problems and Future progress

Open problems and Future progress

- Problem: New calculations in last $10+$ go beyond NLO analyses of the 2000's
Future progress: Implement these in existing or new formalisms

Open problems and Future progress

- Problem: New calculations in last $10+$ go beyond NLO analyses of the 2000's
Future progress: Implement these in existing or new formalisms
- Breaking News: Such work is in progress [Gunawardana, Lange, Mannel, Olschewsky, Vos, GP]

Open problems and Future progress

- Problem: New calculations in last $10+$ go beyond NLO analyses of the 2000's
Future progress: Implement these in existing or new formalisms
- Breaking News: Such work is in progress [Gunawardana, Lange, Mannel, Olschewsky, Vos, GP]
- Problem: (Too) simple parameterization of non-perturbative functions?
Future progress: Use better methods to fit to data
Discussion question: Can all such information be obtained from data?

Open problems and Future progress

- Problem: New calculations in last $10+$ go beyond NLO analyses of the 2000's
Future progress: Implement these in existing or new formalisms
- Breaking News: Such work is in progress [Gunawardana, Lange, Mannel, Olschewsky, Vos, GP]
- Problem: (Too) simple parameterization of non-perturbative functions?
Future progress: Use better methods to fit to data
Discussion question: Can all such information be obtained from data?
- Future progress: Belle II will improve $\bar{B} \rightarrow X_{s} \gamma$ and inclusive $V_{u b}$

Open problems and Future progress

- Problem: New calculations in last $10+$ go beyond NLO analyses of the 2000's
Future progress: Implement these in existing or new formalisms
- Breaking News: Such work is in progress [Gunawardana, Lange, Mannel, Olschewsky, Vos, GP]
- Problem: (Too) simple parameterization of non-perturbative functions?
Future progress: Use better methods to fit to data
Discussion question: Can all such information be obtained from data?
- Future progress: Belle II will improve $\bar{B} \rightarrow X_{s} \gamma$ and inclusive $V_{u b}$

The future looks promising for $\bar{B} \rightarrow X_{u} I \bar{\nu}$ and inclusive $\left|V_{u b}\right|$!

