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Theoretical framework
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Reminders

• For B decays: 5 GeV ∼ mb � ΛQCD ∼ 0.5 GeV
Observables expandable in ΛQCD/mb ∼ 0.1

• If we could measure total Γ(B̄ → Xu l ν̄) we could use a local OPE

dΓ ∼
∑
n

cn
〈On〉
mn

b

cn perturbative, 〈On〉 non-perturbative numbers

• Since Γ(B̄ → Xc l ν̄)� (B̄ → Xu l ν̄) total rate cannot be measured
Need to cut the charm background: e.g. M2

X < M2
D ∼ mbΛQCD

• Not inclusive enough for local OPE, but non-local OPE still possible

M2
X ∼ m2

b local OPE (“OPE region”)

M2
X ∼ mbΛQCD Non local OPE (“end point region”)

M2
X ∼ Λ2

QCD No inclusive description (“resonance region”)
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Reminders

• Need to cut the charm background: e.g. M2
X < M2

D ∼ mbΛQCD

• Not inclusive enough for local OPE, but non-local OPE still possible

dΓ ∼
∑
n

cn
〈On〉
mn

b

- cn perturbative

- 〈On〉 non-perturbative functions, called shape functions

• Shape functions moments are related to HQET parameters:

E.g. leading shape function: 1st moment ↔ mb, 2nd moment ↔ µ2
π

• At leading power in ΛQCD/mb: only one universal shape function
needed (“B-meson pdf”)

• The same shape function appears at leading power for B̄ → Xs γ
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Lessons from hard QCD

• Situation familiar from hard QCD

dσ = c ⊗ f +O
(
Λ2

QCD/Q
2
)

c perturbative, f non-perturbative parton distribution function (PDF)

• Extract the PDF from Deep Inelastic Scattering (DIS) and use it for
proton-(anti) proton collisions at the Tevatron and the LHC

• Can extract leading power shape function from B̄ → Xs γ
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QCD � Q2, we have Q2 = m2

b

• At subleading power in ΛQCD/mb:

- Several subleading shape functions (SSF) appear

- Different linear combinations for B̄ → Xu l ν̄ and B̄ → Xs γ

- B̄ → Xs γ has unique SSF (“resolved photon contributions”)

What are these unique SSF?
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Reminder: resolved photon contributions

• At subleading power in ΛQCD/mb:

- B̄ → Xs γ has unique SSF (“resolved photon contributions”)

What are these unique SSF?

• For B̄ → Xs γ need Effective Hamiltonian

Heff =
GF√

2

∑
p=u,c

λp

C1Q
p
1 + C2Q

p
2 +

∑
i=3,...,10

CiQi + C7γQ7γ + C8gQ8g

+ h.c.

- At leading power only Q7γ − Q7γ contribute

- At higher orders need other Qi − Qj contributions

• Most important: Q7γ ,Q8g , and Q1

Q7γ =
−e
8π2

mb s̄σµν(1 + γ5)Fµνb

Q8g =
−gs
8π2

mb s̄σµν(1 + γ5)Gµνb

Qq
1 = (q̄b)V−A(s̄q)V−A (q = u, c)
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Reminder: resolved photon contributions

• At subleading power in ΛQCD/mb:
- B̄ → Xs γ has unique SSF (“resolved photon contributions”)

What are these unique SSF?

• Systematic analysis at ΛQCD/mb [Benzke, Lee, Neubert, GP ’10]:

Top line: Q7γ − Q8g

Bottom left: Q8g − Q8g

Bottom right: Q1 − Q7γ

• Q1 − Q8g and Q1 − Q1 give Λ2
QCD/m

2
b effects
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Reminder: resolved photon contributions

• Systematic analysis at ΛQCD/mb [Benzke, Lee, Neubert, GP ’10]:

Top line: Q7γ − Q8g ⇒ g78

Bottom left: Q8g − Q8g ⇒ g88

Bottom right: Q1 − Q7γ ⇒ g17

• Functions have non-localities in two light-cone directions

- Horizontal: Eγ Vertical: unobservable

• 2010 analyses focused on integrated rate and CP asymmetry

• Moments of g17 ↔ HQET parameters. Can we improve those?
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Recent progress

Gil Paz (Wayne State University) B̄ → Xu l ν̄ theory 11



Power corrections

• Dimension 7 and 8 HQET operators contribution to B̄ → Xc`ν̄`
[Mannel, Turczyk, Uraltsev JHEP 1011, 109 (2010)]

Dimension 7 and 8 HQET operators extracted from inclusive B decays
[Gambino, Healey, Turczyk PLB 763, 60 (2016)]
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Moments of shape functions and HQET parameters

• How to express moments of shape function(s)

in terms of m1, ...m9 and r1, ...r18?

• Answer given in [Gunawardana, GP, JHEP 1707 137 (2017)]

(See also appendix A of [Heinonen, Mannel, arXiv:1609.01334])

• Method of [Gunawardana, GP, JHEP 1707 137 (2017)] allows to

1) Find such relations

2) List HQET parameters, in principle, to arbitrary dimension

3) Construct NRQED and NRQCD bilinear operators,

in principle, to arbitrary dimension
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• Example: Spin-dependent dimension 8 HQET operators

1

2MH

〈H|h̄ iDµ1 iDµ2 iDµ3 iDµ4 iDµ5 sλh|H〉 = i c̃(8)vµ2 vµ3 vµ4 ε
ρµ1µ5λvρ

i ã
(8)
12

(
vµ3 Πµ1µ2 ε

ρµ4µ5λvρ − vµ3 Πµ4µ5 ε
ρµ2µ1λvρ

)
+ i ã

(8)
14

(
vµ3 Πµ1µ4 ε

ρµ2µ5λvρ − vµ3 Πµ5µ2 ε
ρµ4µ1λvρ

)
+

+i ã
(8)
15 vµ3 Πµ1µ5 ε

ρµ2µ4λvρ + i ã
(8)
24 vµ3 Πµ2µ4 ε

ρµ1µ5λvρ +

+i b̃
(8)
13

(
vµ2 Πµ1µ3 ε

ρµ4µ5λvρ − vµ4 Πµ5µ3 ε
ρµ2µ1λvρ

)
+ i b̃

(8)
14

(
vµ2 Πµ1µ4 ε

ρµ3µ5λvρ − vµ4 Πµ5µ2 ε
ρµ3µ1λvρ

)
+

+i b̃
(8)
15

(
vµ2 Πµ1µ5 ε

ρµ3µ4λvρ − vµ4 Πµ1µ5 ε
ρµ3µ2λvρ

)
+ i b̃

(8)
34

(
vµ2 Πµ3µ4 ε

ρµ1µ5λvρ − vµ4 Πµ3µ2 ε
ρµ5µ1λvρ

)
+

+i b̃
(8)
35

(
vµ2 Πµ3µ5 ε

ρµ1µ4λvρ − vµ4 Πµ3µ1 ε
ρµ5µ2λvρ

)
+ i b̃

(8)
45

(
vµ2 Πµ4µ5 ε

ρµ1µ3λvρ − vµ4 Πµ2µ1 ε
ρµ5µ3λvρ

)
.

• Relation to r8 − r18

r8 = 6c̃(8)
, r9 = −6

[
b̃

(8)
14 + b̃

(8)
15 − b̃

(8)
34 − b̃

(8)
35 − 3b̃

(8)
45

]
, r10 = 6

[
3b̃

(8)
13 + b̃

(8)
14 − b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
35

]
,

r11 = 6
[
b̃

(8)
13 + 3b̃

(8)
14 + b̃

(8)
15 + b̃

(8)
34 − b̃

(8)
45

]
, r12 = 6

[
−b̃

(8)
13 + b̃

(8)
15 + b̃

(8)
34 + 3b̃

(8)
35 + b̃

(8)
45

]
,

r13 = −6
[
b̃

(8)
13 − b̃

(8)
14 − 3b̃

(8)
15 − b̃

(8)
35 + b̃

(8)
45

]
, r14 = 6

[
b̃

(8)
13 + b̃

(8)
14 + 3b̃

(8)
34 + b̃

(8)
35 + b̃

(8)
45

]
, r15 = 6

[
3ã

(8)
12 − ã

(8)
15 + 3ã

(8)
24

]
,

r16 = 6
[
−2ã

(8)
12 + 2ã

(8)
14 + 3ã

(8)
15

]
, r17 = 6

[
2ã

(8)
12 + 2ã

(8)
14 + 3ã

(8)
24

]
, r18 = 6

[
3ã

(8)
14 + ã

(8)
15 + ã
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(8)
12

(
vµ3 Πµ1µ2 ε

ρµ4µ5λvρ − vµ3 Πµ4µ5 ε
ρµ2µ1λvρ

)
+ i ã

(8)
14

(
vµ3 Πµ1µ4 ε

ρµ2µ5λvρ − vµ3 Πµ5µ2 ε
ρµ4µ1λvρ

)
+

+i ã
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Numerical Results: moments of g17

• Moments in ω and ω1 are related to HQET parameters

〈ωl ωk
1 g17〉 ≡

∫ Λ̄

−∞
dω ωl

∫ ∞
−∞

dω1 ω
k g17(ω, ω1, µ) =

(
ivρερµα⊥λn̄

µ − gα⊥λ
)

(−1)k

×
1

2MB
〈B̄|h̄ (in · D)l

[
i n̄ · D,

[
i n̄ · D, · · · [i n̄ · D︸ ︷︷ ︸
k times

,
[
iDα, i n̄ · D

]
· · ·
]]
sλh|B̄〉.

• 2010 analysis only had 2 non-zero moments
[Benzke, Lee, Neubert, GP, JHEP 1008, 099 (2010)]

〈ω0 ω0
1 g17〉 = 0.237± 0.040 GeV2, 〈ω1 ω0

1 g17〉 = 0.056± 0.032 GeV3

• 2019 analysis added 6 non-zero moments
[Ayesh Gunawardna, GP JHEP 11 141 (2019)]

〈ω0 ω2
1 g17〉 = 0.15± 0.12 GeV4, 〈ω2 ω0

1 g17〉 = 0.015± 0.021 GeV4

〈ω3 ω0
1 g17〉 = 0.008± 0.011 GeV5, 〈ω1 ω1

1 g17〉 = 0.073± 0.059 GeV4

〈ω2 ω1
1 g17〉 = −0.034± 0.016 GeV5, 〈ω1 ω2

1 g17〉 = 0.027± 0.014 GeV5.
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Results: Reducing non-perturbative uncertainties

• 2010 analysis only had 2 non-zero moments
[Benzke, Lee, Neubert, GP, JHEP 1008, 099 (2010)]
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1 g17〉 = 0.237± 0.040 GeV2, 〈ω1 ω0
1 g17〉 = 0.056± 0.032 GeV3

• 2019 analysis added 6 non-zero moments
[Ayesh Gunawardna, GP JHEP 11 141 (2019)]

〈ω0 ω2
1 g17〉 = 0.15± 0.12 GeV4, 〈ω2 ω0

1 g17〉 = 0.015± 0.021 GeV4

〈ω3 ω0
1 g17〉 = 0.008± 0.011 GeV5, 〈ω1 ω1

1 g17〉 = 0.073± 0.059 GeV4

〈ω2 ω1
1 g17〉 = −0.034± 0.016 GeV5, 〈ω1 ω2

1 g17〉 = 0.027± 0.014 GeV5.

• Using moments we can model these soft functions with an
orthonormal basis functions as first suggested in

[Ligeti, Stewart, Tackmann, PRD 78 114014 (2008)]

• New estimate of uncertainty: Total rate ↓ 50%, CP asymmetry ↑ 33%

[Ayesh Gunawardna, GP JHEP 11 141 (2019)]

• Using different models, including some Λ2
QCD/m

2
b corrections and

larger mc range, a smaller reduction was found in

[Benzke, Hurth PRD 102 114024 (2020)]
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What about Vub?

• Above information not applied yet to the photon spectrum

but it can be done

• Moments of g78 and g88 are not related to to these HQET parameters.

Very little is known about them, in particular, their Eγ dependence

• It is not clear if such modeling of g78 and g88 is better than assuming
a ΛQCD/mb uncertainty on the extraction of the leading shape
function from B̄ → Xs γ
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Critical review of current approaches
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Reminders

• We need to distinguish between

incorrect statements and differences in what is “reasonable”

• Example: Version 1 of [Gunawardana, GP, JHEP 1707 137 (2017)]

did not include possible multiple color structures for dimension ≥ 7
HQET operators (irrelevant for current level of |Vcb| precision)

• I think it is not “reasonable” to include some Λ2
QCD/m

2
b corrections

and not others for estimating the non-perturbative uncertainty for
B̄ → Xs γ

• I’ll try to distinguish the two in the following
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BLNP

• Approach in [Lange, Neubert, Paz PRD 72 073006 (2005)]

• Based on

dΓ ∼ H · J ⊗ S +
1

mb

∑
i

H · J ⊗ si + ...

- Leading power H · J ⊗ S at O(αs)

- Subleading shape functions: H · J ⊗ si at O(α0
s )

- αs/m
{1,2}
b and 1/m2

b incorporated as naive convolution with LO SF

- S extracted from B̄ → Xsγ, si modeled (∼ 700 models)

- Smoothly merges to local OPE when integrated over phase space

- Hard, Jet, and Soft scale separated with NLO resummation
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BLNP: possible issues

dΓ ∼ H · J ⊗ S +
1

mb

∑
i

H · J ⊗ si + ...

1) si modeled using normalization and first moment with second
moment taken to be (0.3GeV)3

Incorrect: two of the subleading shape functions, u and v , have zero
second moment [Bauer, Luke, Mannel PLB 543 261 (2002)]

Can affect SSF uncertainty

2) Resummation: 2009 Study of implication of O(α2
s ) on |Vub|

[Greub, Neubert, Pecjak, EPJC 65 501 (2010)]

“factorization ... perturbative coefficient...into jet and hard functions
is not strictly necessary: using ... fixed-order... does not lead to large
scale uncertainties ... nor to a poor convergence ...”
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BLNP: possible issues

dΓ ∼ H · J ⊗ S +
1

mb

∑
i

H · J ⊗ si + ...

3) S has a negative radiative tail for large ω that is “glued”:

not very elegant

4) Uses the shape function mass scheme,

not easy to switch to other schemes. e.g. kinetic
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SIMBA

• Approach in [Ligeti, Stewart, Tackmann PRD 78 114014 (2008)]

• Zoltan gives a talk about SIMBA, so I will limit myself to some
comments

• A major difference from BLNP is the treatment of the leading shape
function using

S(ω, µΛ) =

∫
dk C0(ω − k , µΛ)F (k)

“where C0(ω, µΛ) is the b quark matrix element of the shape function
operator calculated in perturbation theory, and F (k) is a
nonperturbative function that can be extracted from data.”

[Ligeti, Stewart, Tackmann PRD 78 114014 (2008)]

• In other words, this is a different factorization scheme from BLNP
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SIMBA

• In other words, this is a different factorization scheme from BLNP

• ”The advantage of our construction [...] is that the tail automatically
turns on in a smooth manner when it dominates over the
nonperturbative function F (k) and provides the proper µ dependence
for S(ω, µ) at any ω.”

[Ligeti, Stewart, Tackmann PRD 78 114014 (2008)]

• The same paper also suggested to use orthonormal basis functions

Among other things it allows to better fit B̄ → Xs γ photon spectrum
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SIMBA: Possible issues: Positivity
1) The same paper also introduced

S(ω) =

∫
dk C0(ω − k)F (k) =

∫
dk Ĉ0(ω − k) F̂ (k)

- “... the moments of F̂ (k) are given by renormalon-free parameters...”

• “We expect on physical grounds that F̂ (k) is positive...”

• From [Gunawardana, GP ’17] and [Gambino, Healey, Turczyk ’16)]∫
dω S(ω) = 1,

∫
dω ω S(ω) = 0,

∫
dω ω2 S(ω) = µ2

π/3 = 0.144± 0.023 GeV2,∫
dω ω3 S(ω) = −ρ3

D/3 = −0.048± 0.020 GeV3,∫
dω ω4 S(ω) = m1/5−m2/3 = 0.023± 0.017 GeV4,∫

dω ω5 S(ω) = (−8r1 + 2r2 + 2r3 + 2r4 + r5 + r6 + r7) /15 = −0.027± 0.015 GeV5

• Starting with the third, the moments are not positive
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SIMBA: Possible issues: Multiplicity
2) “We expect on physical grounds that F̂ (k) is positive, so we can

expand its square root..”

F̂mod(k) =
1

λ

[ 2∑
n=0

cn fn
(k
λ

)]2

• Because the equations are quadratic, there can be multiple solutions

• “... With {m1S
b , λ1} we have {c0, c1, c2} = {0.949, −0.309, 0.064}”

[Image by A. Gunawardana, private communication]
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SIMBA: Possible issues: Small momentum behavior

3) “Due to the short distance subtractions ... to ensure that S(ω, µ)
goes to zero at ω = 0, we need F̂ (k) to go to zero at least as k3 for
k → 0”

• If we want to include higher moments, we might need to increase the
power of k [B. Lange, private communication]
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GGOU

• Based on
Wi ∼ Fi ⊗W pert

i

- Wi structure functions that give dΓ

- W pert
i known perturbative quantities

- Fi (k+, q
2, µ) OPE-constrained non-perturbative distribution functions

- uses kinetic scheme, Wilsonian cutoff µ ∼ 1 GeV

• Fi moments are constrained by OPE

About 100 forms considered in GGOU

Each parameterized by simple 2-parameter functional forms

[Gambino, CKM 2016 talk]
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GGOU: Possible issues: Factorization

• Based on
Wi ∼ Fi ⊗W pert

i

- Wi structure functions that give dΓ

- W pert
i known perturbative quantities

- Fi (k+, q
2, µ) OPE-constrained non-perturbative distribution functions

- uses kinetic scheme, Wilsonian cutoff µ ∼ 1 GeV

• The formula
Wi ∼ Fi ⊗W pert

i

only holds at leading power

• Power corrections appear with different W pert
i

• I am not familiar with factorization formula that shows such a
symmetry for all power corrections
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Open problems and Future progress
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Open problems and Future progress

• Problem: New calculations in last 10+ go beyond NLO analyses of
the 2000’s

Future progress: Implement these in existing or new formalisms

• Breaking News: Such work is in progress

[Gunawardana, Lange, Mannel, Olschewsky, Vos, GP]

• Problem: (Too) simple parameterization of non-perturbative
functions?

Future progress: Use better methods to fit to data

Discussion question: Can all such information be obtained from data?

• Future progress: Belle II will improve B̄ → Xs γ and inclusive Vub

The future looks promising for B̄ → Xu l ν̄ and inclusive |Vub|!
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