$B ightarrow X_s \gamma$ and $|V_{ub}|$ from SIMBA Zoltan Ligeti

- Model independent shape function treatment
- Results: $B \to X_s \gamma$

(F. Bernlochner, H. Lacker, ZL, I. Stewart, F. Tackmann, K. Tackmann, PRL 127 (2021) 10, 102001 [2007.04320])

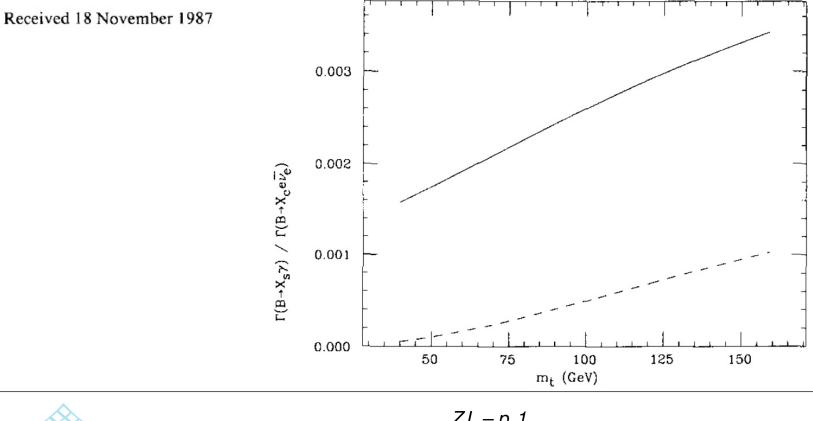
- Ongoing: $B \to X_u \ell \bar{\nu}$
- Conclusions

Decades of sophisticated efforts: impacted multi-loop techniques, HQE, BSM

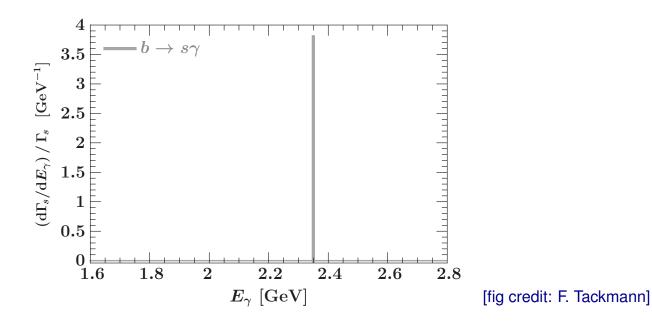
EFFECTIVE HAMILTONIAN FOR WEAK RADIATIVE B-MESON DECAY *

Benjamin GRINSTEIN¹, Roxanne SPRINGER and Mark B. WISE²

California Institute of Technology, Pasadena, CA 91125, USA

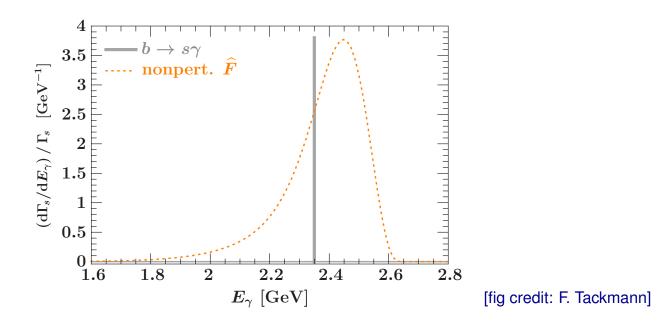


THEORETICAL PHYSICS



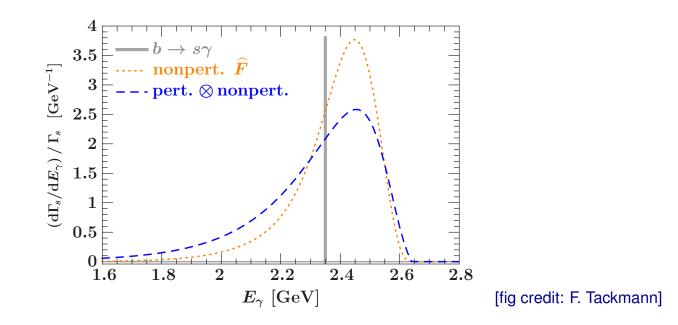
Parton level: $d\Gamma/dE_{\gamma} = |C_7|^2 \delta(E_{\gamma} - m_b/2)$

ZL – p. 2



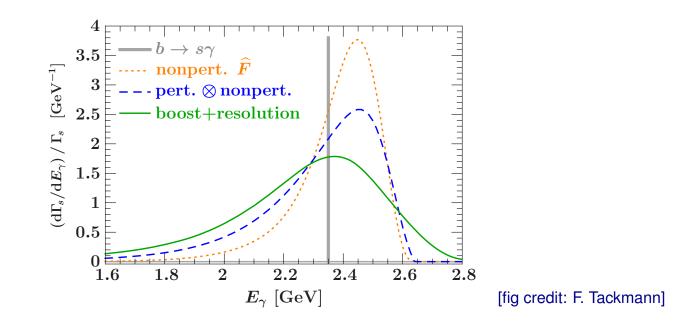
Parton level: $d\Gamma/dE_{\gamma} = |C_7|^2 \,\delta(E_{\gamma} - m_b/2)$

Hadron level: spectrum determined by nonpert. *b*-quark distribution function



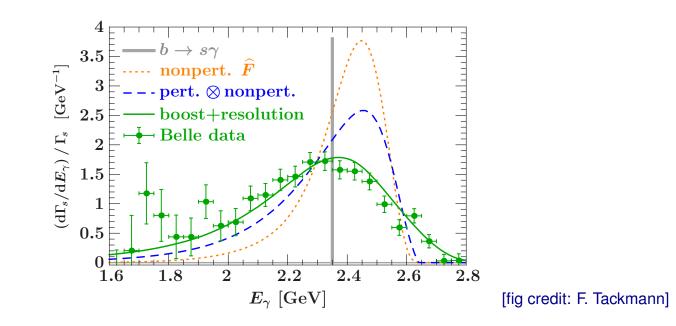
Parton level: $d\Gamma/dE_{\gamma} = |C_7|^2 \,\delta(E_{\gamma} - m_b/2)$

Hadron level: spectrum determined by nonpert. *b*-quark distribution function Small E_{γ} tail (and integral down to it) mostly perturbative



Parton level: $d\Gamma/dE_{\gamma} = |C_7|^2 \,\delta(E_{\gamma} - m_b/2)$

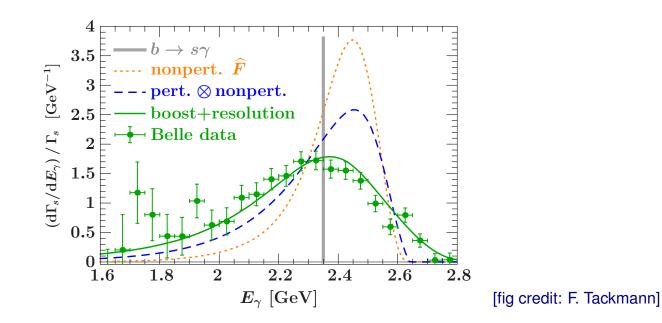
Hadron level: spectrum determined by nonpert. *b*-quark distribution function Small E_{γ} tail (and integral down to it) mostly perturbative Further smeared by *B* boost from $\Upsilon(4S)$ decay and resolution



Parton level: $d\Gamma/dE_{\gamma} = |C_7|^2 \,\delta(E_{\gamma} - m_b/2)$

Hadron level: spectrum determined by nonpert. *b*-quark distribution function Small E_{γ} tail (and integral down to it) mostly perturbative Further smeared by *B* boost from $\Upsilon(4S)$ decay and resolution Experimental data most precise in the peak region

Traditional approach to $B o X_s \gamma$



Past: compare calculations and data for integrated rates, e.g., $\mathcal{B}(E_{\gamma} > 1.6 \,\text{GeV})$

- Data most precise in peak region, this precision is not fully exploited
- Integrating to lower E_{γ} reduces theory uncertainties but increases experimental ones
- Extrapolation from higher to lower cuts induces hard-to-quantify model dependence

Features & goals of SIMBA

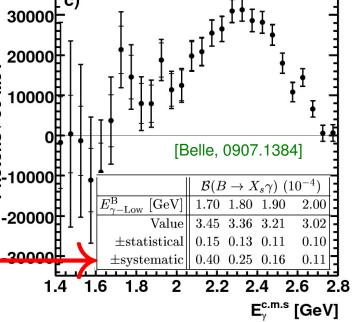
- Optimally combine all measurements (consistently treat uncertainties & correlations)
- Theory:
 - Consistent theory description across E_{γ} spectrum
 - Model-independent treatment of shape function(s)
- Data:
 - Utilize all $B \to X_s \gamma$ ($B \to X_u \ell \bar{\nu}$) spectra or partial rates
 - Include other constraints on m_b , λ_1 , etc.
- Simultaneously determine:
 - Normalization sensitive to short-distance physics: $|C_7^{\text{incl}}|$, $|V_{ub}|$
 - Nonperturbative parameters: m_b , shape function(s)
- Same strategy as for inclusive $|V_{cb}|$, just a lot more complicated...

Theory ingredients

Regions of $B o X_s \gamma$ photon spectrum

• Peak around
$$E_{\gamma} \sim 2.3 \,\text{GeV}$$
 $(m_B - 2E_{\gamma} \sim 0.8 \,\text{GeV})$
Three cases: 1) $\Lambda_{\text{QCD}} \sim m_B - 2E_{\gamma} \ll m_B$ ["SCET"]
2) $\Lambda_{\text{QCD}} \ll m_B - 2E_{\gamma} \ll m_B$ ["MSOPE"]
3) $\Lambda_{\text{QCD}} \ll m_B - 2E_{\gamma} \sim m_B$
Expansions and theory uncertainties differ in the 3 regions
Neither 1) nor 2) is fully appropriate
Denid increase of even events of even set for event for even

Rapid increase of exp. systematic error for smaller $E_{\gamma}^{
m cut}$



• At tree level:
$$\delta(E_{\gamma} - m_b/2) \rightarrow S(E_{\gamma} - m_b/2)$$

where $S(\omega) = \langle B | \bar{b} \, \delta(\omega - iD_+) \, b \, | B \rangle$

Moments of $S(\omega)$ given by local operators' matrix elements $\{1, 0, -\frac{1}{3}\lambda_1, -\frac{1}{3}\rho_1, ...\}$

The shape function (b quark PDF in B)

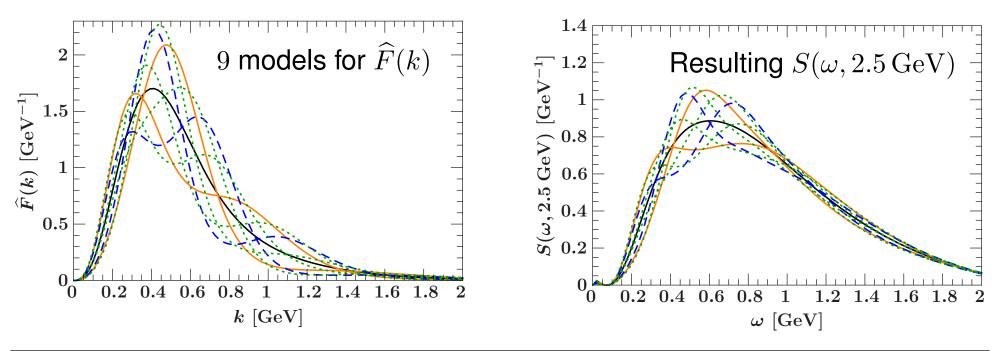
The shape function $S(\omega, \mu)$ contains nonperturbative physics and obeys an RGE Even if $S(\omega, \mu_{\Lambda})$ has exponentially small tail, RGE $\mu_{\Lambda}=2.5~{
m GeV}$ 1.5 $S(\omega, 2.5 \text{ GeV}) [\text{GeV}^{-1}]$ running gives long tail and divergent moments $\mu_{\Lambda} = 1.8 \, {
m GeV}$ $\mu_{\Lambda} = 1.3 \, \text{GeV}$ 1 $S(\omega, \mu_i) = \int \mathrm{d}\omega' U_S(\omega - \omega', \mu_i, \mu_\Lambda) S(\omega', \mu_\Lambda)$ $\mu_{\Lambda} = 1.0 \text{ GeV}$ 0.5 [Balzereit, Mannel, Kilian] 0 Constraint: moments (OPE) + $B \rightarrow X_s \gamma$ shape perturbative non/pert. -0.5• Derive: $S(\omega, \mu_{\Lambda}) = \int dk C_0(\omega - k, \mu_{\Lambda}) F(k)$ 0 0.51.5 $\mathbf{2.5}$ 1 2 ω [GeV] [ZL, Stewart, Tackmann, 0807.1926] Model $\begin{cases} S & (dash) \\ F & (solid) \end{cases}$ run to 2.5GeV - Can use any (mass) scheme, work to any order - Stable results for varying μ_{Λ} (SF modeling scale, part of uncertainty, often ignored)

- Similar to how all matrix elements are defined [e.g., $B_K(\mu) = \widehat{B}_K \times [\alpha_s(\mu)]^{2/9}(1 + ...)$]
- Consistent to impose moment constraints on F(k), but not on $S(\omega, \mu_{\Lambda})$ w/o cutoff

Shape function: the bottom line

$$S(\omega,\mu_\Lambda)=\int\!\mathrm{d}k\,\widehat{F}(k)\,\widehat{C}_0(\omega-k,\mu_\Lambda)$$

 \widehat{F} : nonperturbative determines peak region well-defined moments fit from data \widehat{C}_0 : perturbatively calculable generates tail consistent with RGE divergent moments solves question of model scale



Master formula for decay rate

• Write decay rate as:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\gamma}} = \frac{G_F^2 \widehat{m}_b^2}{8\pi^3} \frac{\alpha_{\mathrm{em}}}{4\pi} |V_{tb}V_{ts}|^2 E_{\gamma}^3 \int \mathrm{d}k \Big[\widehat{P}(k) \mathcal{F}(m_B - 2E_{\gamma} - k) + (\text{subleading}) \Big]$$

Perturbatively calculable:

$$\widehat{P}(k) = |C_7^{\text{incl}}|^2 \left[W_{77}^{\text{s}}(k) + W_{77}^{\text{ns}}(k) \right] + 2 \operatorname{Re} C_7^{\text{incl}} \sum_{i \neq 7} \mathcal{C}_i W_{7i}^{\text{ns}}(k) + \sum_{i, j \neq 7} \mathcal{C}_i \mathcal{C}_j W_{ij}^{\text{ns}}(k)$$

- $W_{77}^{\rm s}(k) \sim HJ \otimes \widehat{C}_0$ contains factorized singular contributions
 - Resummed using SCET to NNLL' + NNLO
 - Use profile scales to turn off resummation away from endpoint
- Non-singular terms are suppressed in the peak region

Split matching and C_7^{incl}

Decouple perturbative series above and below $\mu=m_b$ [Lee, ZL, Stewart, Tackmann, '05–'06]

$$C_7^{\text{incl}} = \overline{C}_7(\mu) + \sum_{i \neq 7} \overline{C}_i(\mu) \Big[s_i(\mu, \widehat{m}_b) + r_i(\mu, \widehat{m}_b, \widehat{m}_c) \Big]$$

The s_i terms cancel the μ -dependence of $\overline{C}_7(\mu)$ and satisfy $s_i(\widehat{m}_b, \widehat{m}_b) = 0$

The $C_i r_i$ contain all virtual corrections $\propto C_{i\neq 7}$ that give singular contributions

- Integrate out *b* and *c* quarks at the hard scale $\mu = m_b$ Consistent with measurements removing charm states as backgrounds; simplifies SCET setup
- Better to compare theory and data for $|C_7^{\text{incl}}|$ than for $\mathcal{B}(E_{\gamma} > 1.6 \,\text{GeV})$
- From Misiak *et al.* (SM, NNLO): $|C_7^{\text{incl}}|_{\text{SM}} = 0.3624 \pm 0.0128_{c\bar{c}} \pm 0.0080_{\text{scale}}$

Nonsingular contributions

- $C_7^{
 m incl}$ captures all singular and some nonsingular terms $\propto C_{i
 eq7}$
 - Remainder gives W_{i7}^{ns} and W_{ij}^{ns} , numerically subdominant
 - Include ij = 78 to $\mathcal{O}(\alpha_s^2)$; all others for i = 1, 2, 8 to $\mathcal{O}(\alpha_s^2\beta_0)$
- Relevant for tails, especially W^{ns}₇₇(k), included to O(α²_s)
 Precise form depends on whether overall E³_γ is kept exact
 If expanded, E³_γ dependence arises as cancellations between sing. and nonsing.
 Better to keep as prefactor, effectively resums some kinematic power corrections
- Not trivial to extract W_{i7}^{ns} and W_{ij}^{ns} , e.g.,

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\gamma}}\Big|_{7i} = \frac{\alpha_s}{\pi} \Big[r_i^{(1)} \delta(k) + w_{7i}^{\mathrm{ns}(1)}(k) \Big] + \frac{\alpha_s^2}{\pi^2} \Big\{ r_i^{(2)} \delta(k) + r_i^{(1)} \Big[w_{77}^{sing(1)}(k) + w_{77}^{\mathrm{ns}(1)}(k) \Big] + w_{7i}^{\mathrm{ns}(2)}(k) \Big\}$$

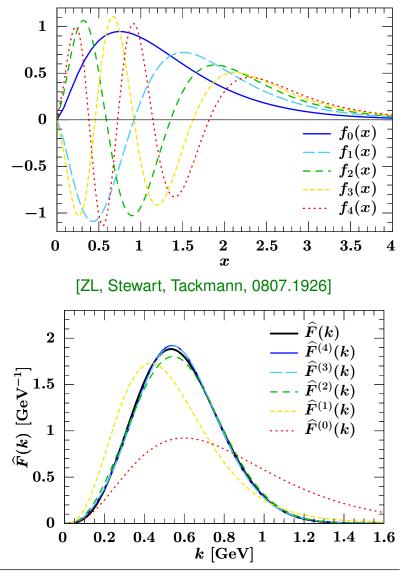
Basis expansion: designer orthonormal functions

- Devise suitable orthonormal basis functions
 - $\mathcal{F}(k) = \frac{1}{\lambda} \Big[\sum c_n f_n(\frac{k}{\lambda}) \Big]^2, \text{ n th moment} \sim \Lambda_{\text{QCD}}^n$ $f_n(x) \sim P_n[y(x)] \leftarrow \text{Legendre polynomials}$
- Can construct an orthonormal basis, where f_0 is any model shape function

Better to add a new term in an orthonormal basis than a new parameter to a model:

- less parameter correlations
- uncertainties easier to quantify

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." (John von Neumann)



Global fit

Theory inputs to fit

• $\mathcal{F}(k) = \sum c_m c_n F_{mn}(k)$ enters the spectra linearly $F_{mn}(k) = \frac{1}{\lambda} f_m(\frac{k}{\lambda}) f_n(\frac{k}{\lambda})$ \Rightarrow can calculate independently the contribution of $f_m f_n$ in the expansion of $\mathcal{F}(k)$:

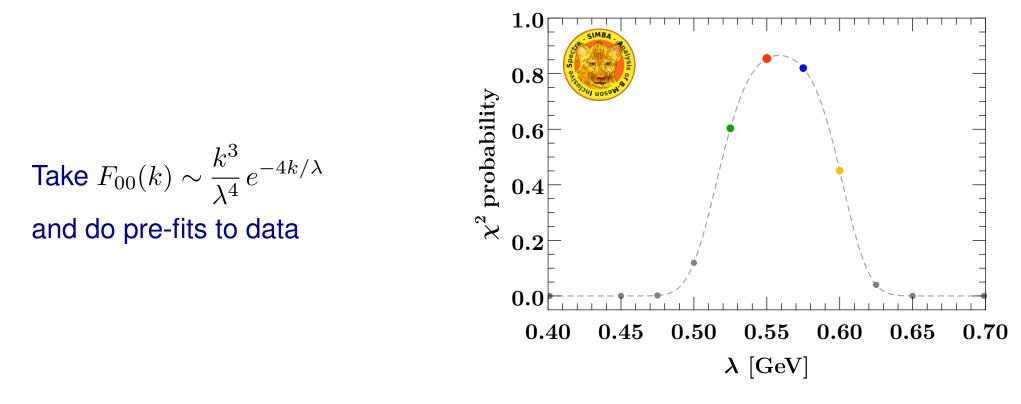
$$\mathrm{d}\Gamma = \sum_{m,n=0}^{N} \underbrace{c_m c_n}_{\mathrm{fit}} \underbrace{\mathrm{d}\Gamma_{mn}}_{\mathrm{compute}}$$

Precompute $d\Gamma_{ij}$ for each measured bin, using fixed theory inputs (In subleading terms use SM values for $C_{i\neq7}$ and SM sign for C_7^{incl})

- Fit $|C_7^{\text{incl}}|$ and c_i coefficients from all data (similar to inclusive $|V_{cb}|$ fit) Redo fit with different theory inputs to estimate theory uncertainties
- Perturbative uncertainties dominate on the theory side
 - Independently vary hard, jet, soft, nonsingular scales, profile parameter
 - Consider all possible $3^5 = 243$ variations

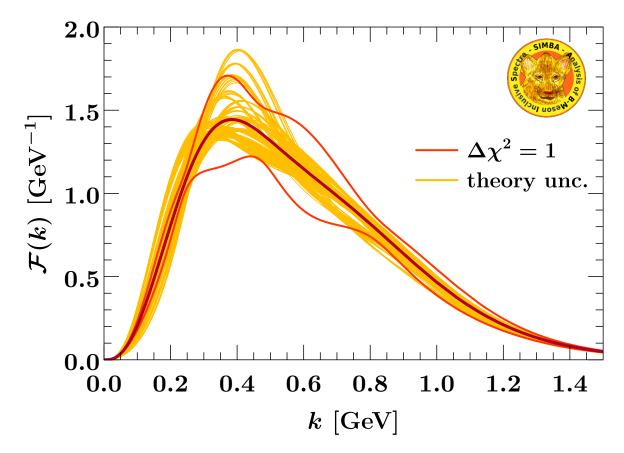
Choosing a basis

• Want $\mathcal{F}(k)$ well approximated by $F_{00}(k) \Rightarrow$ quick convergence with small N

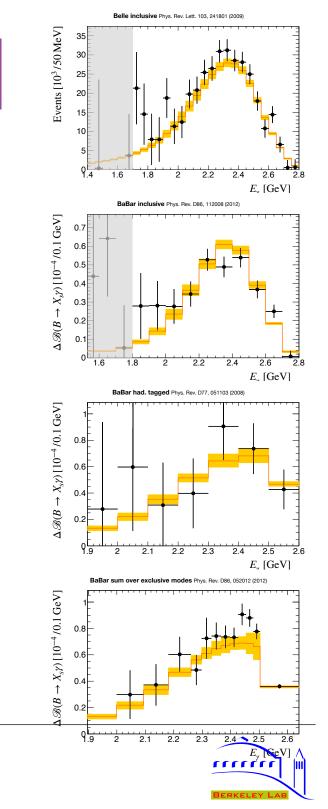


• Use as default $\lambda = 0.55 \,\text{GeV}$, and $\lambda = 0.525, 0.575, 0.6 \,\text{GeV}$ to test the basis independence

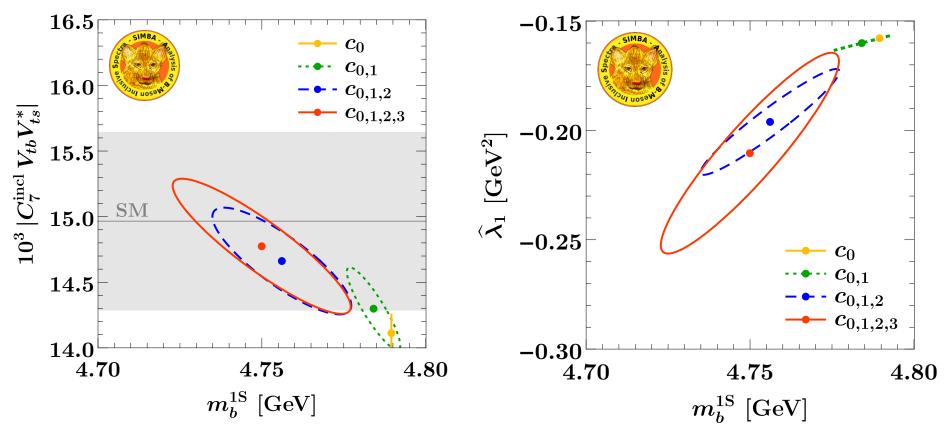
Fits to
$$B o X_s \gamma$$



Using moment relations for $\mathcal{F}(k)$, can obtain fit results for m_b , λ_1 , etc.



Fit results for $B o X_s \gamma$

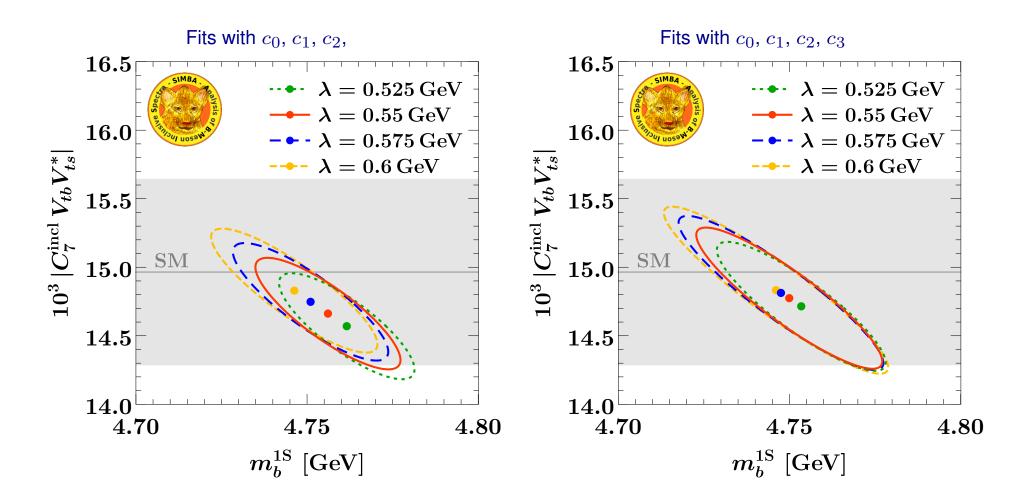


Increase N until no significant improvement in fit quality, use nested hypothesis test

$$|C_7^{\text{incl}} V_{tb} V_{ts}| = (14.77 \pm 0.51_{\text{fit}} \pm 0.59_{\text{theory}} \pm 0.08_{\text{param}}) \times 10^{-3} \text{ Larger uncert. than HFLAV}$$
$$m_b^{1S} = (4.750 \pm 0.027_{\text{fit}} \pm 0.033_{\text{theory}} \pm 0.003_{\text{param}}) \text{ GeV}$$
$$\widehat{\lambda}_1 = (-0.210 \pm 0.046_{\text{fit}} \pm 0.040_{\text{theory}} \pm 0.056_{\text{param}}) \text{ GeV}^2$$

Verify basis independence

• Fits with 4 different values of λ :

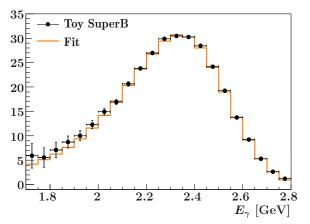


Future of $B o X_s \gamma$

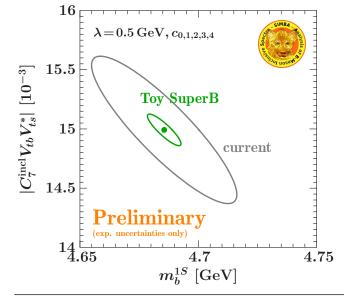
• Toy fits few years ago for 75/ab:

5 coefficients $\lambda = 0.5 \,\mathrm{GeV}$

Theory uncert. will dominate



[BELLE2-NOTE-0021]	Statistical	Systematic	Total Exp
	(reducible, irreducible)		
$\mathcal{B}(B \to X_s \gamma)$ inclusive (untagged)			
605 fb^{-1}	4.2	(10.3, 5.3)	12.3
5 ab^{-1}	1.5	(3.6, 5.3)	6.6
50 ab^{-1}	0.5	(1.1, 5.3)	5.4
$\mathcal{B}(B \to X_s \gamma)$ inclusive (hadron tagged)		
210 fb ^{-1†}	23.2	(15.7, 4.8)	28.4
5 ab^{-1}	4.8	(3.2, 4.8)	7.5
50 ab^{-1}	1.5	(1.0, 4.8)	5.1



We assumed factor of 3 reduction in systematic uncertainty, slightly (but not vastly) optimistic

High precision data can be used to fit with more coefficients and constrain subleading effects

THEORETICAL PHYSICS

$$B o X_u \ell ar{
u}$$

Everything below are preliminary & based on (old) toys

V_{ub} — the beginning

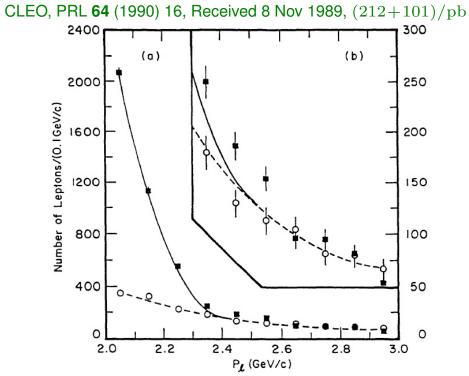


FIG. 1. Sum of the e and μ momentum spectra for ON data (filled squares), scaled OFF data (open circles), the fit to the OFF data (dashed line), and the fit to the OFF data plus the $b \rightarrow clv$ yield (solid line). Note the different vertical scales in (a) and (b).

" $|V_{ub}/V_{cb}|$... is approximately 0.1; it is sensitive to the theoretical model."

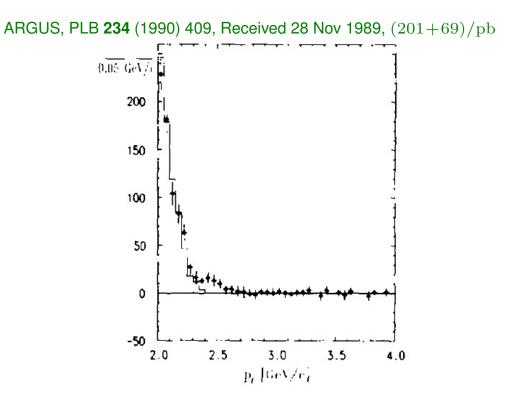
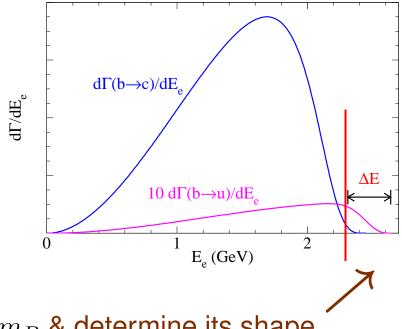


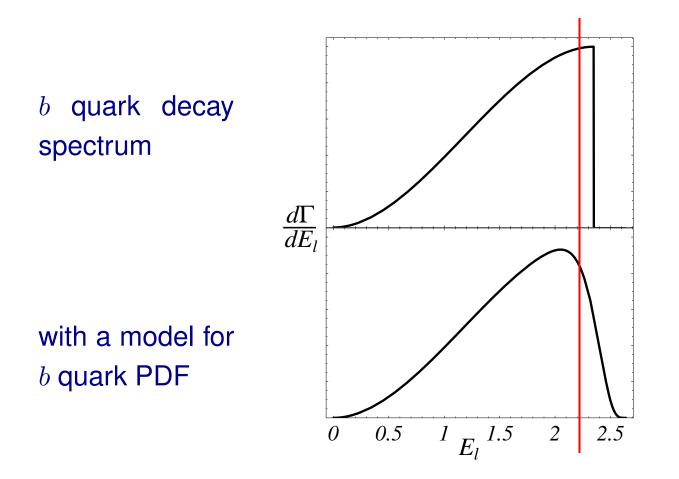
Fig. 5. Combined lepton momentum spectrum for direct $\Upsilon(4S)$ decays: the histogram is a b \rightarrow c contribution normalized in the region 2.0-2.3 GeV/c.

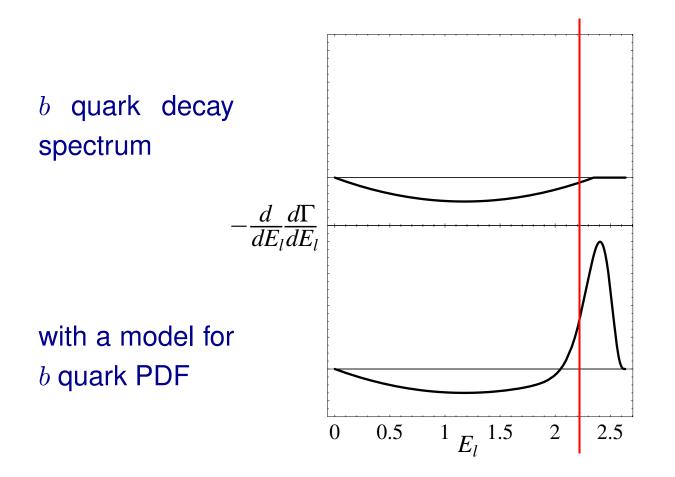
"If interpreted as a signal of $b \rightarrow u$ coupling ..., $|V_{ub}/V_{cb}|$ of about 10%."

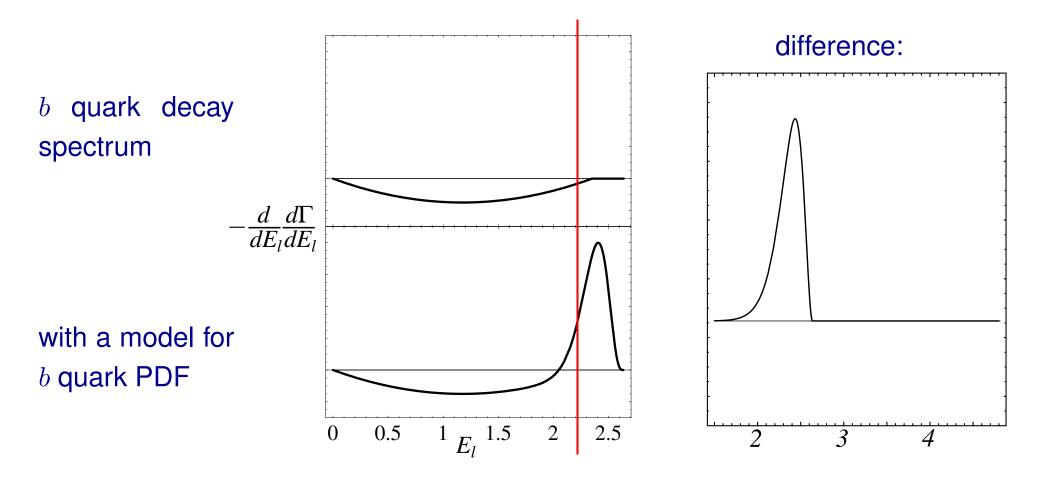
The challenge of inclusive $|V_{ub}|$ measurements

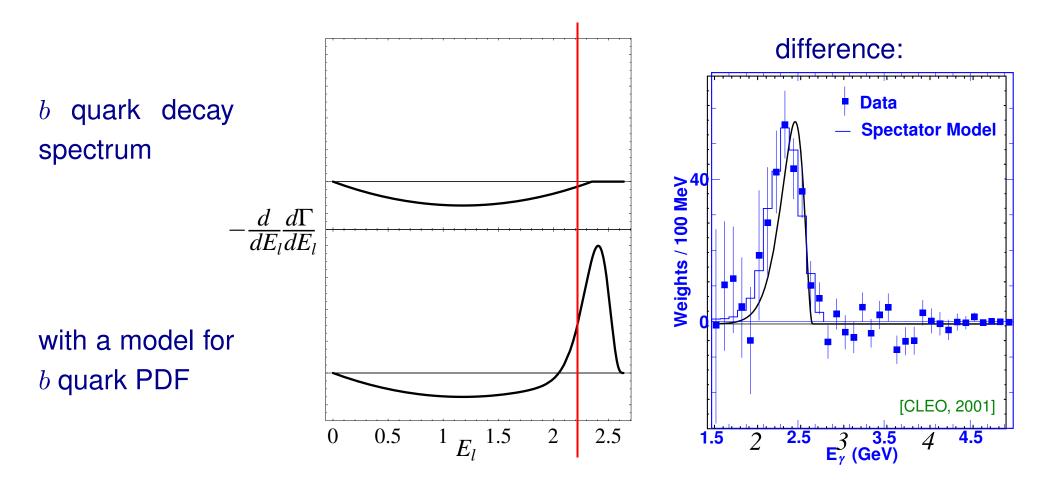
- Total rate calculable with $\sim 4\%$ uncertainty, similar to $\mathcal{B}(B \to X_c \ell \bar{\nu})$
- To remove the huge charm background $(|V_{cb}/V_{ub}|^2 \sim 100)$, need phase space cuts Phase space cuts can enhance perturbative and nonperturbative corrections drastically
- Hadronic parameters are functions (like PDFs) Leading order: universal & related to $B \rightarrow X_s \gamma$; $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$: several new unknown functions
- Nonperturbative effects shift endpoint $\frac{1}{2}m_b \rightarrow \frac{1}{2}m_B$ & determine its shape
- Shape in the endpoint region is determined by b quark PDF in BRelated to $B \rightarrow X_s \gamma$ photon spectrum at lowest order [Bigi, Shifman, Uraltsev, Vainshtein; Neubert]







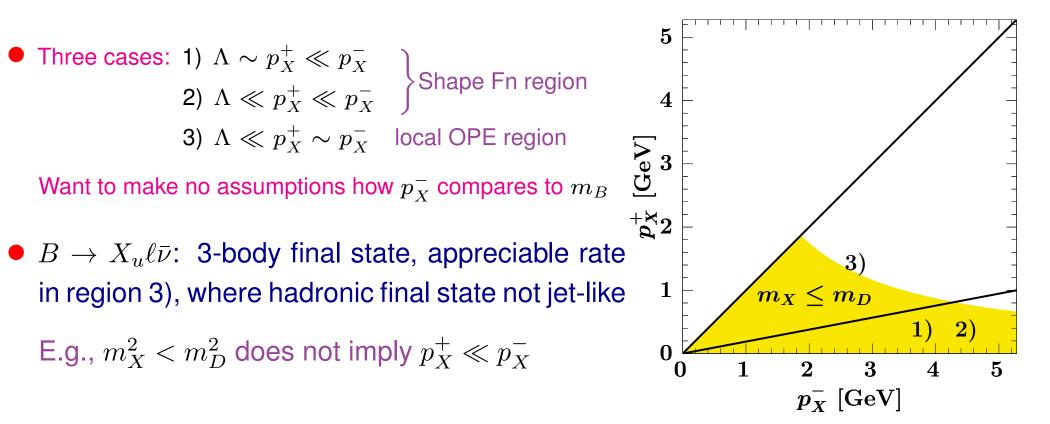




• Both spectra determined at lowest order by the b quark PDF in B meson

$B ightarrow X_u \ell ar{ u}$: more complicated kinematics

• "Natural" kinematic variables: $p_X^{\pm} = E_X \mp |\vec{p}_X|$ (ratio is "jettiness" of hadrons) $B \to X_s \gamma$: $p_X^+ = m_B - 2E_\gamma$ & $p_X^- \equiv m_B$ — independent variables in $B \to X_u \ell \bar{\nu}$

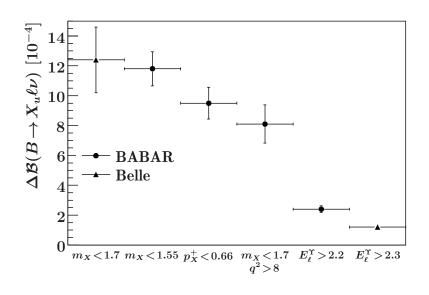


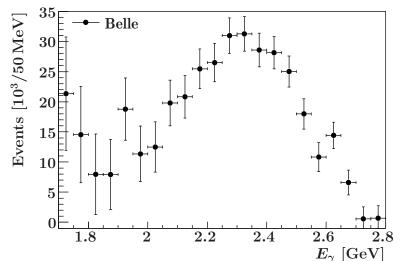
Existing results based on theory in one region, extrapolated / modeled to rest

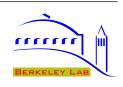
Exploratory: $|V_{ub}|$ w/ NLO + NLL' only

- $B \to X_u \ell \bar{\nu}$ hadronic tag
 - BaBar m_X , $m_X q^2$, p_X^+
 - Belle m_X
- $B \to X_u \ell \bar{\nu}$ lepton endpoint
 - BaBar $E_{\ell}^{\Upsilon} > 2.2 \,\mathrm{GeV}$
 - Belle $E_{\ell}^{\Upsilon} > 2.3 \,\mathrm{GeV}$
- $B \to X_s \gamma$ spectra
 - Belle latest result (shown)
 - BaBar sum over exclusive + hadronic tag

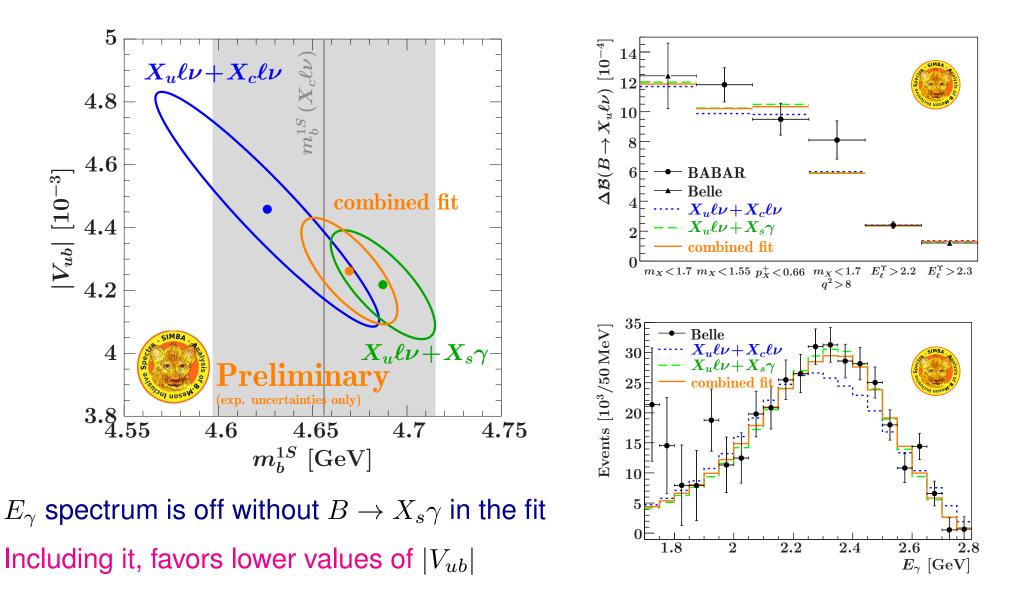
•
$$m_b^{1S}$$
, λ_1 from $B \to X_c \ell \bar{\nu}$ fit
- $m_b^{1S} = (4.66 \pm 0.05) \text{ GeV}$
- $\lambda_1 = (-0.34 \pm 0.05) \text{ GeV}^2$

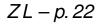






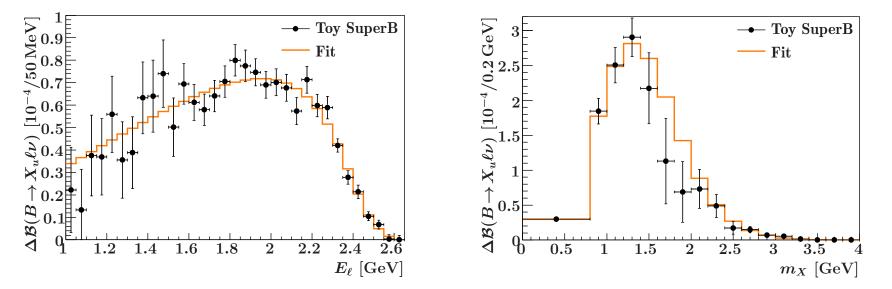
Exploratory: $|V_{ub}|$ w/ NLO + NLL' only





Future of $B o X_u \ell ar{
u}$

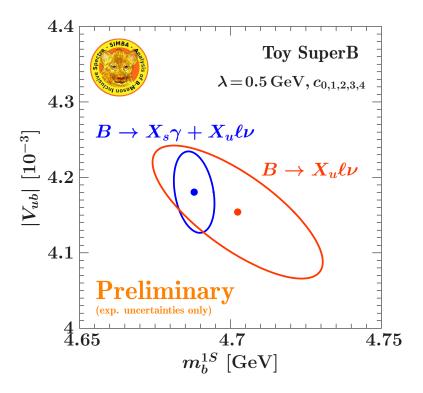
• Spectra generated with $\lambda = 0.6 \text{ GeV}$ and $c_0 = 1$ (Assumed uncertainties & correlations similar to BaBar full reco analysis, 1112.0702 — by now Belle hadronic tagging efficiency is better)



- Measure spectra the rate with low E_{ℓ} or high m_X cut cannot give optimal $|V_{ub}|$
 - Uncertainties grow, as for $d\Gamma(B \to X_s \gamma)/dE_{\gamma}$
 - Experimental analysis needs input on shape in any case
- Large data sets will push analysis to the limits, constrain subleading SF effects

Future of $B \to X_u \ell \bar{\nu}$ (2)

• Toy fit with 5 coefficients for 75/ab:



- With Belle II data sets:
 - Combination with $B \rightarrow X_s \gamma$ will be essential for ultimate sensitivity
 - Combination with $B \to X_c \ell \bar{\nu}$ (moments, shapes?) also possible

Final comments

Conclusions

- First gloal fit of inclusive $B \to X_s \gamma$
 - Model independent and data-driven treatment of shape function
 - More reliable than using $\mathcal{B}(E_{\gamma} > 1.6 \,\mathrm{GeV})$
 - Precise extraction of $|C_7^{\text{incl}}|$
- Larger uncertainty than HFLAV analysis, more room for BSM at present Belle II can yield significant improvements
- Current status of $|V_{ub}|$ unsettled improvement crucial to better constrain NP Hope to see measurements w/ different uncertainties agree (incl., excl., leptonic)
 - Qualitatively better inclusive $|V_{ub}|$ analysis possible than those implemented so far

Backup slides

Derivation of the magic formula (1)

• The shape function is the matrix element of a nonlocal operator:

$$S(\omega,\mu) = \langle B | \underbrace{\bar{b}_v \,\delta(iD_+ - \delta + \omega) \, b_v}_{O_0(\omega,\mu)} | B \rangle, \qquad \delta = m_B - m_b$$

Integrated over a large enough region, $0 \le \omega \le \Lambda$, one can expand O_0 as

$$O_{0}(\omega,\mu) = \sum C_{n}(\omega,\mu) \underbrace{\bar{b}_{v} (iD_{+} - \delta)^{n} b_{v}}_{Q_{n}} + \ldots = \sum C_{n}(\omega - \delta,\mu) \underbrace{\bar{b}_{v} (iD_{+})^{n} b_{v}}_{\widetilde{Q}_{n}} + \ldots$$

The C_{n} are the same for Q_{n} and \widetilde{Q}_{n} (since O_{0} only depends on $\omega - \delta$)
Matching: $\langle b_{v}|O_{0}(\omega + \delta,\mu)|b_{v}\rangle = \sum C_{n}(\omega,\mu) \langle b_{v}|\widetilde{Q}_{n}|b_{v}\rangle = C_{0}(\omega,\mu), \quad \langle b_{v}|\widetilde{Q}_{n}|b_{v}\rangle = \delta_{0n}$

$$\langle b_v(k_+) | O_0(\omega + \delta, \mu) | b_v(k_+) \rangle = C_0(\omega + k_+, \mu) = \sum \frac{k_+^n}{n!} \frac{\mathrm{d}^n C_0(\omega, \mu)}{\mathrm{d}\omega^n}$$

$$\langle b_v(k_+) | O_0(\omega + \delta, \mu) | b_v(k_+) \rangle = \sum C_n(\omega, \mu) \langle b_v | \widetilde{Q}_n | b_v \rangle = \sum C_n(\omega, \mu) k_+^n$$

• Comparing last two lines: $C_n(\omega, \mu) = \frac{1}{n!} \frac{\mathrm{d}^n C_0(\omega, \mu)}{\mathrm{d}\omega^n}$

[Bauer & Manohar]

Derivation of the magic formula (2)

• Define the nonperturbative function F(k) by:

[ZL, Stewart, Tackmann; Lee, ZL, Stewart, Tackmann]

$$S(\omega,\mu_{\Lambda}) = \int \mathrm{d}k \, C_0(\omega-k,\mu_{\Lambda}) \, F(k), \qquad C_0(\omega,\mu) = \langle b_v | O_0(\omega+\delta,\mu) | b_v \rangle$$

uniquely defines F(k): $\widetilde{F}(y) = \widetilde{S}(y,\mu)/\widetilde{C}_0(y,\mu)$

Expand in k:
$$S(\omega, \mu) = \sum_{n} \frac{1}{n!} \frac{\mathrm{d}^{n} C_{0}(\omega, \mu)}{\mathrm{d}\omega^{n}} \int \mathrm{d}k \, (-k)^{n} F(k)$$

Compare with previous page $\Rightarrow \int dk \, k^n F(k) = (-1)^n \langle B | Q_n | B \rangle$ $\langle B | Q_0 | B \rangle = 1, \quad \langle B | Q_1 | B \rangle = -\delta, \quad \langle B | Q_2 | B \rangle = -\frac{\lambda_1}{3} + \delta^2$

More complicated situation for higher moments, so stop here

• This treatment is fully consistent with the OPE

