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Introduction

• Decades of sophisticated efforts: impacted multi-loop techniques, HQE, BSM
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The B → Xsγ challenge at/below the scale mbIntroduction

The Challenge of B → Xsγ.
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Tail (and integral down to) sufficiently small Eγ is mostly perturbative

Υ(4S) boost and exp. resolution further smears it all out

⇒ Experimental measurements most precise in the peak region at high Eγ
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[fig credit: F. Tackmann]

Parton level: dΓ/dEγ = |C7|2δ(Eγ −mb/2)
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Parton level: dΓ/dEγ = |C7|2 δ(Eγ −mb/2)

Hadron level: spectrum determined by nonpert. b-quark distribution function
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Parton level: dΓ/dEγ = |C7|2 δ(Eγ −mb/2)

Hadron level: spectrum determined by nonpert. b-quark distribution function

Small Eγ tail (and integral down to it) mostly perturbative
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Parton level: dΓ/dEγ = |C7|2 δ(Eγ −mb/2)

Hadron level: spectrum determined by nonpert. b-quark distribution function

Small Eγ tail (and integral down to it) mostly perturbative

Further smeared by B boost from Υ(4S) decay and resolution
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The B → Xsγ challenge at/below the scale mbIntroduction

The Challenge of B → Xsγ.

0

1

2

2

3

4

0.5

1.5

1.6 1.8 2.2 2.4

2.5

2.6 2.8

3.5

Eγ [GeV]

(d
Γ
s
/
d
E

γ
)
/
Γ
s

[G
e
V

−
1
]

b → sγ
nonpert. F̂
pert. ⊗nonpert.

boost+resolution
Belle data

Soft

Soft

γB
Xs Jet

b→ sγ transition rate: dΓ/dEγ = |C7|2 δ(Eγ −mb/2)

Eγ spectrum determined by nonpert. B distribution (shape function)

Tail (and integral down to) sufficiently small Eγ is mostly perturbative

Υ(4S) boost and exp. resolution further smears it all out

⇒ Experimental measurements most precise in the peak region at high Eγ
Frank Tackmann (DESY) Precision Global Analysis of InclusiveB → Xsγ. 2020-01-20 2 / 22

[fig credit: F. Tackmann]

Parton level: dΓ/dEγ = |C7|2 δ(Eγ −mb/2)

Hadron level: spectrum determined by nonpert. b-quark distribution function

Small Eγ tail (and integral down to it) mostly perturbative

Further smeared by B boost from Υ(4S) decay and resolution

Experimental data most precise in the peak region
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Traditional approach to B → XsγIntroduction

The Challenge of B → Xsγ.
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[fig credit: F. Tackmann]

Past: compare calculations and data for integrated rates, e.g., B(Eγ > 1.6GeV)

– Data most precise in peak region, this precision is not fully exploited

– Integrating to lower Eγ reduces theory uncertainties but increases experimental ones

– Extrapolation from higher to lower cuts induces hard-to-quantify model dependence
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Features & goals of SIMBA

• Optimally combine all measurements (consistently treat uncertainties & correlations)

• Theory:

– Consistent theory description across Eγ spectrum

– Model-independent treatment of shape function(s)

• Data:

– Utilize all B → Xsγ (B → Xuℓν̄) spectra or partial rates

– Include other constraints on mb, λ1, etc.

• Simultaneously determine:

– Normalization sensitive to short-distance physics: |C incl
7 |, |Vub|

– Nonperturbative parameters: mb, shape function(s)

• Same strategy as for inclusive |Vcb|, just a lot more complicated...

Z L – p. 4



Theory ingredients



Regions of B → Xsγ photon spectrum

• Peak around Eγ ∼ 2.3GeV (mB − 2Eγ ∼ 0.8GeV)

Three cases: 1) ΛQCD ∼ mB − 2Eγ ≪ mB [“SCET”]

Three cases: 2) ΛQCD ≪ mB − 2Eγ ≪ mB [“MSOPE”]

Three cases: 3) ΛQCD ≪ mB − 2Eγ ∼ mB

Expansions and theory uncertainties differ in the 3 regions
Neither 1) nor 2) is fully appropriate

• Rapid increase of exp. systematic error for smaller Ecut
γ

[Belle, 0907.1384]

−→
• At tree level: δ(Eγ −mb/2) → S(Eγ −mb/2)

where S(ω) = ⟨B| b̄ δ(ω − iD+) b |B⟩

Moments of S(ω) given by local operators’ matrix elements {1, 0, −1
3λ1, −1

3ρ1, ...}

Z L – p. 5
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The shape function (b quark PDF in B)

• The shape function S(ω, µ) contains nonperturbative physics and obeys an RGE

Even if S(ω, µΛ) has exponentially small tail, RGE
running gives long tail and divergent moments

S(ω, µi) =

∫
dω

′
US(ω − ω

′
, µi, µΛ)S(ω

′
, µΛ)

[Balzereit, Mannel, Kilian]

Constraint: moments (OPE) + B → Xsγ shape

• Derive: S(ω, µΛ) =

∫
dk C0(ω − k, µΛ)F (k)

[ZL, Stewart, Tackmann, 0807.1926]

– Can use any (mass) scheme, work to any order
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– Stable results for varying µΛ (SF modeling scale, part of uncertainty, often ignored)

– Similar to how all matrix elements are defined [e.g., BK(µ) = B̂K × [αs(µ)]
2/9(1 + . . .)]

• Consistent to impose moment constraints on F (k), but not on S(ω, µΛ) w/o cutoff
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Shape function: the bottom line

S(ω, µΛ) =

∫
dk F̂ (k) Ĉ0(ω − k, µΛ)

F̂ : nonperturbative
F̂ : determines peak region
F̂ : well-defined moments
F̂ : fit from data
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Ĉ0: generates tail consistent with RGE
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Master formula for decay rate

• Write decay rate as:

dΓ

dEγ

=
G2

Fm̂
2
b

8π3

αem

4π
|VtbVts|2E3

γ

∫
dk

[
P̂ (k)F(mB − 2Eγ − k) + (subleading)

]
Perturbatively calculable:

P̂ (k) = |C incl
7 |2

[
W s

77(k) + W ns
77 (k)

]
+ 2ReC incl

7

∑
i̸=7 Ci W

ns
7i (k) +

∑
i,j ̸=7 CiCj W

ns
ij (k)

• W s
77(k) ∼ HJ ⊗ Ĉ0 contains factorized singular contributions

– Resummed using SCET to NNLL’ + NNLO

– Use profile scales to turn off resummation away from endpoint

• Non-singular terms are suppressed in the peak region
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Split matching and C incl
7

• Decouple perturbative series above and below µ = mb [Lee, ZL, Stewart, Tackmann, ‘05–‘06]

C incl
7 = C7(µ) +

∑
i ̸=7 Ci(µ)

[
si(µ, m̂b) + ri(µ, m̂b, m̂c)

]
The si terms cancel the µ-dependence of C7(µ) and satisfy si(m̂b, m̂b) = 0

The Ci ri contain all virtual corrections ∝ Ci̸=7 that give singular contributions

• Integrate out b and c quarks at the hard scale µ = mb

Consistent with measurements removing charm states as backgrounds; simplifies SCET setup

• Better to compare theory and data for |C incl
7 | than for B(Eγ > 1.6GeV)

• From Misiak et al. (SM, NNLO): |C incl
7 |SM = 0.3624± 0.0128cc̄ ± 0.0080scale
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Nonsingular contributions

• C incl
7 captures all singular and some nonsingular terms ∝ Ci̸=7

– Remainder gives W ns
i7 and W ns

ij , numerically subdominant
– Include ij = 78 to O(α2

s); all others for i = 1, 2, 8 to O(α2
sβ0)

• Relevant for tails, especially W ns
77 (k), included to O(α2

s)

Precise form depends on whether overall E3
γ is kept exact

If expanded, E3
γ dependence arises as cancellations between sing. and nonsing.

Better to keep as prefactor, effectively resums some kinematic power corrections

• Not trivial to extract W ns
i7 and W ns

ij , e.g.,

dΓ

dEγ

∣∣∣∣
7i

=
αs

π

[
r
(1)
i δ(k)+w

ns(1)
7i (k)

]
+
α2

s

π2

{
r
(2)
i δ(k)+r

(1)
i

[
w

sing(1)
77 (k)+w

ns(1)
77 (k)

]
+w

ns(2)
7i (k)

}
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Basis expansion: designer orthonormal functions

• Devise suitable orthonormal basis functions

F(k) = 1
λ

[∑
cnfn(

k
λ)
]2, n th moment ∼Λn

QCD

fn(x) ∼ Pn[y(x)] ← Legendre polynomials

• Can construct an orthonormal basis,
where f0 is any model shape function

Better to add a new term in an orthonormal
basis than a new parameter to a model:

– less parameter correlations
– uncertainties easier to quantify

“With four parameters I can fit an elephant, and with five
I can make him wiggle his trunk.” (John von Neumann)
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Global fit



Theory inputs to fit

• F(k) = ∑
cmcnFmn(k) enters the spectra linearly Fmn(k) =

1
λ fm(kλ) fn(

k
λ)

⇒ can calculate independently the contribution of fm fn in the expansion of F(k):

dΓ =

N∑
m,n=0

cm cn︸ ︷︷ ︸
fit

dΓmn︸ ︷︷ ︸
compute

Precompute dΓij for each measured bin, using fixed theory inputs
(In subleading terms use SM values for Ci ̸=7 and SM sign for C incl

7 )

• Fit |C incl
7 | and ci coefficients from all data (similar to inclusive |Vcb| fit)

Redo fit with different theory inputs to estimate theory uncertainties

• Perturbative uncertainties dominate on the theory side

– Independently vary hard, jet, soft, nonsingular scales, profile parameter
– Consider all possible 35 = 243 variations
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Choosing a basis

• Want F(k) well approximated by F00(k)⇒ quick convergence with small N

Take F00(k) ∼
k3

λ4
e−4k/λ

and do pre-fits to data
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• Use as default λ = 0.55GeV, and λ = 0.525, 0.575, 0.6GeV to test the basis
independence
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Fits to B → Xsγ
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Fit results for B → Xsγ
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Increase N until no significant improvement in fit quality, use nested hypothesis test

|C incl
7 VtbVts| = (14.77 ± 0.51fit ± 0.59theory ± 0.08param) × 10

−3 Larger uncert. than HFLAV

m
1S
b = (4.750 ± 0.027fit ± 0.033theory ± 0.003param)GeV

λ̂1 = (−0.210 ± 0.046fit ± 0.040theory ± 0.056param)GeV
2
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Verify basis independence

• Fits with 4 different values of λ:

Fits with c0, c1, c2, Fits with c0, c1, c2, c3
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Future of B → Xsγ

• Toy fits few years ago for 75/ab:

5 coefficients
λ = 0.5GeV

Theory uncert.
will dominate
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B → Xuℓν̄

Everything below are preliminary & based on (old) toys



Vub — the beginning

CLEO, PRL 64 (1990) 16, Received 8 Nov 1989, (212+101)/pb

“|Vub/Vcb| . . . is approximately 0.1; it
is sensitive to the theoretical model.”

ARGUS, PLB 234 (1990) 409, Received 28 Nov 1989, (201+69)/pb

“If interpreted as a signal of b → u cou-
pling . . . |Vub/Vcb| of about 10%.”
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The challenge of inclusive |Vub| measurements

• Total rate calculable with ∼ 4% uncertainty, similar to B(B → Xcℓν̄)

• To remove the huge charm background
(|Vcb/Vub|2 ∼ 100), need phase space cuts

Phase space cuts can enhance perturbative
and nonperturbative corrections drastically

• Hadronic parameters are functions (like PDFs)

Leading order: universal & related to B → Xsγ;
O(ΛQCD/mb): several new unknown functions

dΓ(b→c)/dEe

10 dΓ(b→u)/dEe
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dΓ
/d

E
e
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• Nonperturbative effects shift endpoint 1
2 mb → 1

2 mB & determine its shape
↗

• Shape in the endpoint region is determined by b quark PDF in B

Related to B → Xsγ photon spectrum at lowest order [Bigi, Shifman, Uraltsev, Vainshtein; Neubert]
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Shape function: lepton endpoint vs. B → Xsγ

b quark decay
spectrum

with a model for
b quark PDF
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Shape function: lepton endpoint vs. B → Xsγ
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Shape function: lepton endpoint vs. B → Xsγ
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Shape function: lepton endpoint vs. B → Xsγ

b quark decay
spectrum

with a model for
b quark PDF
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• Both spectra determined at lowest order by the b quark PDF in B meson
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B → Xuℓν̄: more complicated kinematics

• “Natural” kinematic variables: p±X = EX ∓ |p⃗X| (ratio is “jettiness” of hadrons)

B → Xsγ: p+X = mB − 2Eγ & p−X ≡ mB — independent variables in B → Xuℓν̄

• Three cases: 1) Λ ∼ p+
X ≪ p−

X

Three cases: 2) Λ ≪ p+
X ≪ p−

X

}
Shape Fn region

Three cases: 3) Λ ≪ p+
X ∼ p−

X local OPE region

Want to make no assumptions how p−
X compares to mB

• B → Xuℓν̄: 3-body final state, appreciable rate
in region 3), where hadronic final state not jet-like

E.g., m2
X < m2

D does not imply p+X ≪ p−X 0
0
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• Existing results based on theory in one region, extrapolated / modeled to rest
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Exploratory: |Vub| w/ NLO + NLL’ only

• B → Xuℓν̄ hadronic tag
– BaBar mX, mX – q2, p+X
– Belle mX

• B → Xuℓν̄ lepton endpoint
– BaBar EΥ

ℓ > 2.2GeV

– Belle EΥ
ℓ > 2.3GeV

• B → Xsγ spectra
– Belle latest result (shown)
– BaBar sum over exclusive + hadronic tag

• m1S
b , λ1 from B → Xcℓν̄ fit

– m1S
b = (4.66± 0.05)GeV

– λ1 = (−0.34± 0.05)GeV2
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Exploratory: |Vub| w/ NLO + NLL’ only
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• Eγ spectrum is off without B → Xsγ in the fit

• Including it, favors lower values of |Vub|
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Future of B → Xuℓν̄

• Spectra generated with λ = 0.6GeV and c0 = 1 (Assumed uncertainties & correlations

similar to BaBar full reco analysis, 1112.0702 — by now Belle hadronic tagging efficiency is better)
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• Measure spectra — the rate with low Eℓ or high mX cut cannot give optimal |Vub|
– Uncertainties grow, as for dΓ(B → Xsγ)/dEγ

– Experimental analysis needs input on shape in any case

• Large data sets will push analysis to the limits, constrain subleading SF effects
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Future of B → Xuℓν̄ (2)

• Toy fit with 5 coefficients for 75/ab:
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λ=0.5GeV, c0,1,2,3,4

• With Belle II data sets:

– Combination with B → Xsγ will be essential for ultimate sensitivity

– Combination with B → Xcℓν̄ (moments, shapes?) also possible
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Final comments



Conclusions

• First gloal fit of inclusive B → Xsγ

– Model independent and data-driven treatment of shape function

– More reliable than using B(Eγ > 1.6GeV)

– Precise extraction of |C incl
7 |

• Larger uncertainty than HFLAV analysis, more room for BSM at present
Belle II can yield significant improvements

• Current status of |Vub| unsettled — improvement crucial to better constrain NP
Hope to see measurements w/ different uncertainties agree (incl., excl., leptonic)

Qualitatively better inclusive |Vub| analysis possible than those implemented so far
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Backupl slides



Derivation of the magic formula (1)

• The shape function is the matrix element of a nonlocal operator:

S(ω, µ) = ⟨B| b̄v δ(iD+ − δ + ω) bv︸ ︷︷ ︸
O0(ω,µ)

|B⟩, δ = mB − mb

Integrated over a large enough region, 0 ≤ ω ≤ Λ, one can expand O0 as

O0(ω, µ) =
∑

Cn(ω, µ) b̄v (iD+ − δ)
n
bv︸ ︷︷ ︸

Qn

+ . . . =
∑

Cn(ω − δ, µ) b̄v (iD+)
n
bv︸ ︷︷ ︸

Q̃n

+ . . .

The Cn are the same for Qn and Q̃n (since O0 only depends on ω − δ)

• Matching: ⟨bv|O0(ω+δ, µ)|bv⟩ =
∑

Cn(ω, µ) ⟨bv|Q̃n|bv⟩ = C0(ω, µ), ⟨bv|Q̃n|bv⟩ = δ0n

⟨bv(k+)|O0(ω + δ, µ)|bv(k+)⟩ = C0(ω + k+, µ) =
∑ kn

+

n!

dnC0(ω, µ)

dωn

⟨bv(k+)|O0(ω + δ, µ)|bv(k+)⟩ =
∑

Cn(ω, µ)⟨bv|Q̃n|bv⟩ =
∑

Cn(ω, µ) k
n
+

• Comparing last two lines: Cn(ω, µ) =
1

n!

dnC0(ω, µ)

dωn
[Bauer & Manohar]
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Derivation of the magic formula (2)

• Define the nonperturbative function F (k) by: [ZL, Stewart, Tackmann; Lee, ZL, Stewart, Tackmann]

S(ω, µΛ) =

∫
dk C0(ω − k, µΛ)F (k), C0(ω, µ) = ⟨bv|O0(ω + δ, µ)|bv⟩

uniquely defines F (k): F̃ (y) = S̃(y, µ)/C̃0(y, µ)

• Expand in k: S(ω, µ) =
∑

n

1

n!

dnC0(ω, µ)

dωn

∫
dk (−k)nF (k)

Compare with previous page ⇒
∫
dk knF (k) = (−1)n ⟨B|Qn|B⟩

⟨B|Q0|B⟩ = 1 , ⟨B|Q1|B⟩ = −δ , ⟨B|Q2|B⟩ = −
λ1

3
+ δ

2

More complicated situation for higher moments, so stop here

• This treatment is fully consistent with the OPE
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