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Motivations

• Fits to the spectrum allow to
• improve the extrapolation down to 1.6 GeV
• extract information on  and various hadronic matrix elements (on which we 

already have information from )
• extract the Shape Function itself

mb
B → Xcℓν

• Knowledge of the Shape function is essential to  and to the  extrapolation 
in 

B → Xuℓν mXs
B → Xsℓℓ

•
• OPE at NNLO for  > 1.6 GeV
• Spectrum at NNLO: depends on a the (mostly) unknown B-meson Shape Function
• Experimental data requires  > [1.6-1.9] GeV (most precise at large )
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Motivations

• Knowledge of the Shape function is essential to  and to the  extrapolation 
in 

B → Xuℓν mXs
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• In this talk the CLN parameterization will not be mentioned
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• We work in the kinetic Scheme for the  mass and all hadronic parameters: 
, , , ,  and the Shape Function

b
mb μ2

π μ2
G ρ3

D ρ3
LS

 with a Wilsonian cutoffB → Xsγ

• Introduce a Wilsonian cutoff 
• Virtual and real gluons with energy larger than  are calculated in perturbation theory
• Gluons with  are intrinsically non-perturbative and are included via the above 

mentioned non-perturbative parameters and in the Shape Functions

μ ∼ 1 GeV
μ

Eg < μ

• This approach is rigorous and has been used to the
• construction of the widely used kinetic scheme for  and other hadronic 

parameters from various small-velocity  sum-rules
• calculation of moments of the  spectrum
• extraction of ,   and other hadronic parameters from 
• extraction of  from 

mb
B → Xu,cℓν

B → Xsγ
Vcb mb B → Xcℓν
Vub B → Xuℓν
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Bigi, Shifman, Uraltsev, Vainshtein, hep-h/9312359  
Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9402360  
Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9405410  
Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9312359  
Uraltsev, hep-ph/9610425  
Bigi, Shifman, Uraltsev, hep-ph/9703290  
Uraltsev, hep-ph/0010328

References

•  moments: 
Bigi, Uraltsev, hep-ph/0308165  
Benson, Bigi, Uraltsev, hep-ph/041080

B → Xsγ

•  fits: 
Benson, Bigi, Mannel, Uraltsev, hep-ph/0302262
B → Xcℓν

•  fits: 
Gambino, Giordano, Ossola, Uraltsev, 0707.2493
B → Xuℓν



• We write the spectrum as (  is the Wilsonian cutoff):μ ≃ 1 GeV

Master Formula

dΓ
dEγ

= ∫ dk+ f(k+, μ)
dΓpert

dEγ (Eγ −
k+

2
, μ)

= Γ0

8

∑
i≤ j=1

Ceff *
i (μb)Ceff

j (μb)∫
λ

−∞
dκ F(κ, μ)Wpert

ij (ξ − κ, μ, μb)

where F(κ, μ) = mb f(mbκ, μ)
mb = mkin

b (μ)
ξ = 2Eγ /mb

λ = (mB − mb)/mb

Γ0 =
G2

Fαm2
bmMS

b (μb)2

16π4
|VtbV*ts |2

Shape Function in the kinetic scheme



Master Formula

Wpert
77 (ξ, μ, μb) = [1 +

αs(μb)
π

CF (V(1) + β0
αs

π
V(2,BLM) +

αs

π
V(2))] δ(1 − ξ)

+
αs(μb)

π
CF [B(1) + β0

αs

π
B(2,BLM) +

αs

π
B(2)] δ′ (1 − ξ)

+
1
2

αs(μb)
π

CF [C(1) + β0
αs

π
C(2,BLM) +

αs

π
C(2)] δ′ ′ (1 − ξ)

+
αs(μb)

π
CF [H(1)(ξ, μ) + β0

αs

π
H(2,BLM)(ξ, μ) +

αs

π
H(2)(ξ)] θ(1 − ξ)θ(ξ)

• For instance, the  hard scattering kernel has the following structure:|C7 |2

gluon Bremsstrahlung ( )Eg > μ

virtual corrections ( ): 0th moment (total rate)Eg > μ

1st moment

2nd moment

• Virtual contributions can be either calculated directly or extracted by requiring that each 
moment matches the OPE result



Master Formula
• Soft-gluon contributions (with ) have been absorbed into the SF Eg < 1 GeV

• Power corrections in the OPE for the moments are reproduced by appropriate matching 
conditions for the moments of the Shape Function. For instance, we find:

∫ dξ∫ dκF(κ)Wpert
77 (ξ − κ) = ∫ dκ F(κ)∫ dξWpert

77 (ξ − κ) = ∫ dκ F(κ)∫ dξ′ Wpert
77 (ξ′ )

= 1 + O(1/m2
b)

∫ dκ F(κ, μ) = 1 −
μ2

π + 3μ2
G

2m2
b

−
11ρ3

D − 9ρ3
LS

6m3
b

+

αs

π [CF( 4η
3

+
3η2

4
+

11η3

18 ) μ2
π

m2
b

+ (67
36

−
26π2

27
−

9Lb

4
+

16η
3

+ 3η2 +
22η3

9 ) μ2
G

m2
b ]

• The moments of the photon spectrum depend only on corresponding moments of the SF. 
For instance:

total rate at NNLO



Master Formula
• We include effects of all other operators in a similar way.

Wpert
78 (ξ, μ, μb) = CF

αs(μb)
π [(V(1)

78 +
αs

π
V(2)

78 )δ(1 − ξ) +
αs

π
B(2)

78 δ′ (1 − ξ) +
1
2

αs

π
C(2)

78 δ′ ′ (1 − ξ)

+(H(1)
78 (ξ, μ) +

αs

π
H(2)

78 (ξ, μ))θ(1 − ξ)θ(ξ)]

Wpert
ij (ξ, μ, μb) = CF

αs(μb)
π [(V(1)

ij + β0
αs

π
V(2BLM)

ij )δ(1 − ξ) + (H(1)
ij (ξ, μ) + β0

αs

π
H(2BLM)

ij (ξ, μ)) θ(1 − ξ)θ(ξ)]

The spectrum is obtained by convoluting this kernel with same Shape Function 
introduced for 77 because soft and collinear end-point singularities factorize

• For all other kernels we have only BLM contributions at NNLO:

• For instance the 78 kernel is:

Korchemski and Sterman, hep-ph/9902341
Akhoury and Rothstein, hep-ph/9512303

• Resolved contributions are not present in this formalism and need to be taken into 
account separately [Lee, Neubert, Pax, hep-ph/0609224]



Master Formula
• Shape Function vs Hard Scattering spectra:

perturbative

end-point resonance

no Shape Function 
description: need to 
integrate over large 
enough  rangeEγ

exact location of the perturbative/
end-point threshold depends on 
Shape Function



Shape Function with a Neural Network 
• Neural Networks can be used to provide unbiased parameterizations of continuous functions 
•

ξ(0)

ξ(1)
1 ξ(1)

i ξ(1)
N

ξ(2)

• We consider a NN with one input ( ), one layer with  nodes ( ) and a single output ( )ξ(0) N ξ(1)
i ξ(2)

ξ(2) = g(
N

∑
i=1

ξ(1)
i w(2)

i − θ(2)) = N({w, θ}, κ)

κ = ξ(0)

ξ(1)
i = g(ξ(0)w(1)

i − θ(1)
i )… …

•  is a non-linear activation function. We adopt a sigmoid: 
•

g g(x) =
1

1 + e−x

weights thresholds

3N+1 parameters

[Gambino, Healey, Mondino, 1604.07598]



Shape Function with a Neural Network 
• The actual Shape Function we consider contains an underlying function whose purpose is to 

help speeding the training without (possibly) introducing a strong bias

F(κ) = w̄1ew̄2κ(λ − κ)w̄3 N({w, θ}, κ) θ(λ − κ)

• Finally we impose few further conditions: positivity of the overall Shape Function and an 
explicit cut-off ( )κ < λ

• For instance we consider:

• The extra parameters  (with ) are treated on equal footing with the other weightsw̄i w̄1 > 0

• In the preliminary tests we have run we considered N=6, implying 22 adjustable weights



Training
• We adopt a genetic algorithm

• Each full iteration begins with a “parent” SF with random weights and ends with a “child” 
SF for which a  comprised of experimental (BaBar,Belle) and theoretical (SF moments) 
information is below a given threshold.

χ2

• Each successful iteration yields a replica: a possible Shape Function which is fully 
compatible with both experimental and theoretical constraints.

• There are many (important) details related to
• overtraining (e.g. divide  into training and validation)
• avoiding local minima

χ2

• Distribution of replicas is not expected to be strongly affected/biased by minor changes in 
the chosen training scheme



 calculationχ2

• Training a Neural Network requires an enormous number of  evaluationsχ2

• Binned experimental results are presented in the B and  rest frames and 
require multiple numerical integrations

Υ(4S)

• An excellent solution is approximating the NN Shape Function with a cubic spline.

• We found that dividing the  into 50 intervals (with   spline 
coefficients) yields approximations to realistic Shape Functions and to their 
corresponding spectra and integrated observables

κ ∈ [−1,λ] 4 × 50 = 200
0.1 %

• All observables can be easily calculated for each of the 200 basic spline building blocks. 
The  can then be easily obtained by contracting the latter with the 200 spline coefficientsχ2



• An alternative approach we considered is projecting the NN Shape Function onto 
a (hopefully) small set of basis functions

• As an example we tried a basis inspired by the one adopted by the SIMBA collaboration:

 calculationχ2

Y(x) =
128
3

x3e−4x y(x) = − 1 + 2∫
x

0
Y(w) dwF(κ) =

∞

∑
n=0

cn fn(1 − κ/λ)

fn(x) = Y(x) 2n + 1 Pn[y(x)] Shape Functions with this “typical” spread 
are approximated by few basis elements

Basis elements with large  yield highly 
oscillating spectra and usually partake 
into delicate cancellations

n

Need many basis functions to reasonably 
approximate SFs with widths different 
from the “built-in” one



Experimental data
• We considered data from 2012 BaBar fully inclusive and sum over exclusive 

analyses (in the  rest frame) and 2016 Belle results (in the  rest frame):B Υ(4S)

 peakK*

combined to remove sensitivity to the resonance region



Some very preliminary results

prelim
inary Some NNLO corrections missing

Still working on training 
…

Babar fully incl. Babar sum excl. Belle fully incl.
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Comparison with SCET approach
• Within SCET the separation of soft and hard-collinear scales is achieved within an effective theory 

framework (based on the method of regions and dim-reg): this corresponds to a different scheme for 
the (leading) SF

• At leading power the SCET SF is universal for all inclusive  decays. At subleading power several 
additional universal SCET SFs appear. Unfortunately ,  and  depend 
on different combinations of leading and subleading SFs. 

B
B → Xsγ B → Xuℓν B → Xsℓℓ

• Effectively both the kinetic and SCET approach extract from  one effective SF which 
can only be used judiciously (i.e. with added uncertainties) in other inclusive  decays

B → Xsγ
B

• Within SCET it is possible to resum hard-collinear logs. We have , 
 and . The relevant logs are 

therefore quite small: 

Qh ∼ mb = 4.57 GeV
Qhc ∼ mb(mB − mb) = 1.8 GeV Qs ∼ (mB − mb) = 0.71 GeV

log[Qh/Qhc] = log[Qhc/Qs] = 0.93

• I conclude that these two approaches are effectively equivalent and offer a complementary 
approach to a simultaneous analysis of inclusive radiative and (rare-)semileptonic  decaysB

[SIMBA collaboration: Bernlochner, Lacker, Ligeti, Stewart, F. Tackmann, K. Tackmann]



Implications for B → Xsℓℓ
• SF needed for extrapolation in  and to improve the EvtGen Monte Carlo 

event generator which is the heart of Belle, BaBar and Belle II analyses.
mXs

[EvtGen: Ryd, Lange, Kuznetsova, Versille, Rotondo, Kirkby, Wuerthwein, Ishikawa;
Maintained by  J. Back, M. Kreps and T. Latham at University of Warwick]

• Hadronic spectrum is based on the Fermi motion implementation presented in 
Ali, Hiller, Handoko, Morozumi hep-ph/9609449:

dΓB

ds du dp
= ∫ du′ 

mb(p)2

mB
p [ 4

πp3
F

exp(−p2/p2
F)] (u′ 2 + 4mb(p)2s)−1/2 [ dΓb

ds du ]
mb→mb(p)

• We need to urgently update the code!

parton level with 
momentum 
dependent b mass

• Work in progress on the complete triple 
differential rate at O(αs)
[T. Huber, T. Hurth, J. Jenkins, EL, in preparation]


