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Motivations

e B> Xy

. OPE at NNLO for E}" > 1.6 GeV
 Spectrum at NNLO: depends on a the (mostly) unknown B-meson Shape Function
. Experimental data requires E,"" > [1.6-1.9] GeV (most precise at large E)

* Fits to the spectrum allow to
* improve the extrapolation down to 1.6 GeV
- extract information on m1;, and various hadronic matrix elements (on which we

already have information from B — X 1)
» extract the Shape Function itself

. Knowledge of the Shape function is essential to B — X v and to the my_extrapolation
inB — XZC



Motivations

B — Xy

. OPE at NNLO for E}" > 1.6 GeV
 Spectrum at NNLO: depends on a the (mostly) unknown B-meson Shape Function
. Experimental data requires E,"" > [1.6-1.9] GeV (most precise at large E)

Fits to the spectrum allow to
* improve the extrapolation down to 1.6 GeV
- extract information on m1;, and various hadronic matrix elements (on which we

already have information from B — X 1)
» extract the Shape Function itself

Knowledge of the Shape function is essential to B — X v and to the my_extrapolation
inB — XZC

In this talk the CLN parameterization will not be mentioned



b — Xy with a Wilsonian cutoff

« We work in the kinetic Scheme for the b mass and all hadronic parameters:
1y, ,u,%, ,ué, pg, 1025 and the Shape Function

« Introduce a Wilsonian cutoff 1 ~ 1 GeV
 Virtual and real gluons with energy larger than u are calculated in perturbation theory
» Gluons with Eg < u are intrinsically non-perturbative and are included via the above

mentioned non-perturbative parameters and in the Shape Functions

* This approach is rigorous and has been used to the
» construction of the widely used kinetic scheme for 1, and other hadronic

parameters from various small-velocity B — X .£v sum-rules

. calculation of moments of the B — Xy spectrum
. extraction of V_,, my,, and other hadronic parameters from B — X Zv
. extractionof V , from B — X £v
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Master Formula

. We write the spectrum as (4 ~ 1 GeV is the Wilsonian cutoff):

dr Jdk PN
dE, e\ 2

3 j
=T Z Cl?ﬁ*(ﬂb)q?ﬁ(ﬂb)J dx F(k, i)y WE(E = i, p, 1)

i<j=1 \

where F(k,u) = m, f(mx, u) Shape Function in the kinetic scheme
my, = my ()
¢ =2E, /my,
= (mg — my)/my,
GF(xmb S(,ub)2

I, =
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Master Formula

. For instance, the | C; |2 hard scattering kernel has the following structure:

Pert(g AL [ a(p) F( 1740 + fy— V(2BLM) | . (2))] 5(1 — &)

U U

: Cls(//tb) CF B(l) +ﬁO&B(2’BLM) 4 &B(Z)] 5/(1 o 5)
T T T
| (/’tb) C(l) ﬂO&C(Q,BLM) | O(S C(z) 5//(1 - é)
2 7 T T
= ('ub) [H W& w + py —H EBEM(E, 1) + SH B 0(1 — £)0(¢)
T T

* Virtual contributions can be either calculated directly or extracted by requiring that each
moment matches the OPE result



Master Formula

. Soft-gluon contributions (with £, < 1 GeV) have been absorbed into the SF

 The moments of the photon spectrum depend only on corresponding moments of the SF.
For instance:

[de'dK‘F(K)Wpeﬁ(f —K) = JdKF(K) [depm(cf —K) = JdKF(K) Jd&’Wpert(f)

* Power corrections in the OPE for the moments are reproduced by appropriate matching
conditions for the moments of the Shape Function. For instance, we find:

/47% T 3/4(2; 11pp) — 9,0LS
2mp? 6m;

[dK‘F(K,,M) =1

3 4 18 /m2 \36 27 4 3 9
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Master Formula

* We include effects of all other operators in a similar way.

e For instance the 78 kernel Is:

W& ) = Gl (VD) fv;”)a(l -6+ ZBR5(1 - &)+ 251 - )

+(HE H<2><é /4))9(1 - £)0)

The spectrum is obtained by convolutlng this kernel with same Shape Function
iIntroduced for 77 because soft and collinear end-point singularities factorize

Korchemski and Sterman, hep-ph/9902341
Akhoury and Rothstein, hep-ph/9512303

* For all other kernels we have only BLM contributions at NNLO:

* Resolved contributions are not present in this formalism and need to be taken into
account separately [Lee, Neubert, Pax, hep-ph/0609224]

WPET'(E, . ) = C

JU




10* x dU'/dE., (GeV ™)

Master Formula

» Shape Function vs Hard Scattering spectra:
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Shape Function with a Neural Network

[Gambino, Healey, Mondino, 1604.07598]
* Neural Networks can be used to provide unbiased parameterizations of continuous functions

. We consider a NN with one input (£")), one layer with NV nodes (zfi(l)) and a single output (£%)

— £(0) .
/.\ = WeIghts  thresholds
1 1 1
. . . £ = g(£@w — gD
\ l / l N 3N+1 parameters

g E@ = g( Y eMw® - 09) = N({w, 0}, %)
1

......................

=

1 Zﬁi
. g is a non-linear activation function. We adopt a sigmoid: g(x) = T ] /
. + e~




Shape Function with a Neural Network

* The actual Shape Function we consider contains an underlying function whose purpose is to
help speeding the training without (possibly) introducing a strong bias

* Finally we impose few further conditions: positivity of the overall Shape Function and an
explicit cut-off (k < A)

e For instance we consider:

F(k) = w4 — )™ |N({w,0},5)| 601 — )

. The extra parameters w; (with w; > () are treated on equal footing with the other weights

* |In the preliminary tests we have run we considered N=6, implying 22 adjustable weights



Training
We adopt a genetic algorithm

Each full iteration begins with a “parent” SF with random weights and ends with a “child”
SF for which a )(2 comprised of experimental (BaBar,Belle) and theoretical (SF moments)
information is below a given threshold.

Each successftul iteration yields a replica: a possible Shape Function which is fully
compatible with both experimental and theoretical constraints.

There are many (important) details related to
« overtraining (e.g. divide )(2 into training and validation)
e avoiding local minima

Distribution of replicas is not expected to be strongly affected/biased by minor changes in
the chosen training scheme



)(2 calculation

Training a Neural Network requires an enormous number of)(2 evaluations

Binned experimental results are presented in the B and Y (45) rest frames and
require multiple numerical integrations

An excellent solution is approximating the NN Shape Function with a cubic spline.

We found that dividing the k € [—1,4] into 50 intervals (with 4 X 50 = 200 spline
coefficients) yields 0.1 % approximations to realistic Shape Functions and to their
corresponding spectra and integrated observables

All observables can be easily calculated for each of the 200 basic spline building blocks.
The )(2 can then be easily obtained by contracting the latter with the 200 spline coefficients



)(2 calculation

* An alternative approach we considered is projecting the NN Shape Function onto
a (hopefully) small set of basis functions

* As an example we tried a basis inspired by the one adopted by the SIMBA collaboration:

F(x) = i c, [, (1 —«k/A) Y(x) = 128 x4 yx)=—1+ 2[ Y(w) dw

3 \ 0
n=0
B Shape Functions with this “typical” spread
Jn(X) = \/Y (x)\/Zn +1P, [y (x)] are approximated by few basis elements
> Need many basis functions to reasonably

—— Exact Shape Function
: : : : 15} .
approximate SFs with widths different » - —— 4 basis elements
from the “built-in” one o/ — 10basis elements

X

> Basis elements with large 7 yield highly 5
oscillating spectra and usually partake
Into delicate cancellations

ol




Experimental data

 We considered data from 2012 BaBar fully inclusive and sum over exclusive
analyses (in the B rest frame) and 2016 Belle results (in the Y (4.5) rest frame):
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Some very prellmlnary results

Babar fully 1incl Belle fully 1incl.
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Comparison with SCET approach

[SIMBA collaboration: Bernlochner, Lacker, Ligeti, Stewart, F. Tackmann, K. Tackmann]

Within SCET the separation of soft and hard-collinear scales is achieved within an effective theory
framework (based on the method of regions and dim-reg): this corresponds to a different scheme for
the (leading) SF

At leading power the SCET SF is universal for all inclusive B decays. At subleading power several
additional universal SCET SFs appear. Unfortunately B - Xy, B - X fvand B — X ¢ depend
on different combinations of leading and subleading SFs.

Effectively both the kinetic and SCET approach extract from 8 — X y one effective SF which
can only be used judiciously (i.e. with added uncertainties) in other inclusive B decays

Within SCET it is possible to resum hard-collinear logs. We have Q, ~ m, = 4.57 GeV,
Q. ~ \/mb(mB —my,) = 1.8 GeV and Q, ~ (my —m,) = 0.71 GeV. The relevant logs are
therefore quite small: log|Q,/Q, .| = 1og|Q,./Q,] = 0.93

| conclude that these two approaches are effectively equivalent and offer a complementary
approach to a simultaneous analysis of inclusive radiative and (rare-)semileptonic B decays



Implications for B = X .£'¢

SF needed for extrapolation in my and to improve the EvtGen Monte Carlo

event generator which is the heart of Belle, BaBar and Belle |l analyses.
[EvtGen: Ryd, Lange, Kuznetsova, Versille, Rotondo, Kirkby, Wuerthwein, Ishikawa;

Maintained by J. Back, M. Kreps and T. Latham at University of Warwick]

Hadronic spectrum is based on the Fermi motion implementation presented in
Ali, Hiller, Handoko, Morozumi hep-ph/9609449: barton level with

dFB Jd ,mb(p)2 de ]/v momentum
U

— dependent b mass
ds du dp ds du
N, —my,(p)

4 , —112
p exp(—p/pp) | (u* + 4my(p)°s) [
My p}

We need to urgently update the code! _calcprob->FermiMomentum(_pf);

Work In progress on the complete triple * 1
differential rate at O(a ) = mBxmB + _mgx_mq — 2.0xmBxsqrt(pbkpb + _mg%_mq);

, S , , LT ( mb>0. && sqrt(mb)-_ms < 2.0xml ) mb= -10.;
['T. Huber, T. Hurth, J. Jenkins, EL, 1n preparation]

sqrt(mb);



