$B \rightarrow X_{s} \gamma$ with Neural Networks ${ }^{\dagger}$

Enrico Lunghi Indiana University

Challenges in Semileptonic B Decays Apr 19-23 2022, Barolo, Italy

Progress report of work done in collaboration with P. Gambino, M. Misiak, S. Schacht

Motivations

- $B \rightarrow X_{s} \gamma$
- OPE at NNLO for $E_{\gamma}^{\mathrm{th}}>1.6 \mathrm{GeV}$
- Spectrum at NNLO: depends on a the (mostly) unknown B-meson Shape Function
- Experimental data requires $E_{\gamma}^{\exp }>[1.6-1.9] \mathrm{GeV}$ (most precise at large E_{γ})
- Fits to the spectrum allow to
- improve the extrapolation down to 1.6 GeV
- extract information on m_{b} and various hadronic matrix elements (on which we already have information from $B \rightarrow X_{c} \ell \nu$)
- extract the Shape Function itself
- Knowledge of the Shape function is essential to $B \rightarrow X_{u} \ell \nu$ and to the $m_{X_{s}}$ extrapolation in $B \rightarrow X_{s} \ell \ell$

Motivations

- $B \rightarrow X_{s} \gamma$
- OPE at NNLO for $E_{\gamma}^{\mathrm{th}}>1.6 \mathrm{GeV}$
- Spectrum at NNLO: depends on a the (mostly) unknown B-meson Shape Function
- Experimental data requires $E_{\gamma}^{\exp }>[1.6-1.9] \mathrm{GeV}$ (most precise at large E_{γ})
- Fits to the spectrum allow to
- improve the extrapolation down to 1.6 GeV
- extract information on m_{b} and various hadronic matrix elements (on which we already have information from $B \rightarrow X_{c} \ell \nu$)
- extract the Shape Function itself
- Knowledge of the Shape function is essential to $B \rightarrow X_{u} \ell \nu$ and to the $m_{X_{s}}$ extrapolation in $B \rightarrow X_{s} \ell \ell$
- In this talk the CLN parameterization will not be mentioned

$B \rightarrow X_{s} \gamma$ with a Wilsonian cutoff

- We work in the kinetic Scheme for the b mass and all hadronic parameters: $m_{b}, \mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{L S}^{3}$ and the Shape Function
- Introduce a Wilsonian cutoff $\mu \sim 1 \mathrm{GeV}$
- Virtual and real gluons with energy larger than μ are calculated in perturbation theory
- Gluons with $E_{g}<\mu$ are intrinsically non-perturbative and are included via the above mentioned non-perturbative parameters and in the Shape Functions
- This approach is rigorous and has been used to the
- construction of the widely used kinetic scheme for m_{b} and other hadronic parameters from various small-velocity $B \rightarrow X_{u, c} \ell \nu$ sum-rules
- calculation of moments of the $B \rightarrow X_{s} \gamma$ spectrum
- extraction of $V_{c b}, m_{b}$ and other hadronic parameters from $B \rightarrow X_{c} \ell \nu$
- extraction of $V_{u b}$ from $B \rightarrow X_{u} \ell \nu$

References

- Wilsonian cutoff in B physics and kinetic scheme:

Bigi, Shifman, Uraltsev, Vainshtein, hep-h/9312359
Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9402360
Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9405410
Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9312359
Uraltsev, hep-ph/9610425
Bigi, Shifman, Uraltsev, hep-ph/9703290
Uraltsev, hep-ph/0010328

- $B \rightarrow X_{s} \gamma$ moments:

Bigi, Uraltsev, hep-ph/0308165
Benson, Bigi, Uraltsev, hep-ph/041080

- $B \rightarrow X_{c} \ell \nu$ fits:

Benson, Bigi, Mannel, Uraltsev, hep-ph/0302262

- $B \rightarrow X_{u} \ell \nu$ fits:

Gambino, Giordano, Ossola, Uraltsev, 0707.2493

Master Formula

- We write the spectrum as ($\mu \simeq 1 \mathrm{GeV}$ is the Wilsonian cutoff):

$$
\begin{aligned}
& \begin{aligned}
\frac{d \Gamma}{d E_{\gamma}} & =\int d k_{+} f\left(k_{+}, \mu\right) \frac{d \Gamma^{p e r t}}{d E_{\gamma}}\left(E_{\gamma}-\frac{k_{+}}{2}, \mu\right) \\
& =\Gamma_{0} \sum_{i \leq j=1}^{8} C_{i}^{\text {eff } *}\left(\mu_{b}\right) C_{j}^{\text {eff }}\left(\mu_{b}\right) \int_{-\infty}^{\lambda} d \kappa F(\kappa, \mu) W_{i j}^{\text {pert }}\left(\xi-\kappa, \mu, \mu_{b}\right)
\end{aligned} \\
& \text { where } \quad F(\kappa, \mu)=m_{b} f\left(m_{b} \kappa, \mu\right) \\
& m_{b}=m_{b}^{\mathrm{kin}}(\mu) \\
& \xi=2 E_{\gamma} / m_{b} \\
& \lambda=\left(m_{B}-m_{b}\right) / m_{b} \\
& \Gamma_{0}=\frac{G_{F}^{2} \alpha m_{b}^{2} m_{b}^{\overline{\mathrm{MS}}}\left(\mu_{b}\right)^{2}}{16 \pi^{4}}\left|V_{t b} V_{t s}^{*}\right|^{2}
\end{aligned}
$$

Shape Function in the kinetic scheme

Master Formula

- For instance, the $\left|C_{7}\right|^{2}$ hard scattering kernel has the following structure:

$$
\begin{aligned}
W_{77}^{p e r t}\left(\xi, \mu, \mu_{b}\right)=[1+ & \left.\frac{\alpha_{s}\left(\mu_{b}\right)}{\pi} C_{F}\left(V^{(1)}+\beta_{0} \frac{\alpha_{s}}{\pi} V^{(2, \mathrm{BLM})}+\frac{\alpha_{s}}{\pi} V^{(2)}\right)\right] \delta(1-\xi) \\
+ & \frac{\alpha_{s}\left(\mu_{b}\right)}{\pi} C_{F}\left[B^{(1)}+\beta_{0} \frac{\alpha_{s}}{\pi} B^{(2, \mathrm{BLM})}+\frac{\alpha_{s}}{\pi} B^{(2)}\right] \delta^{\prime}(1-\xi) \\
& +\frac{1}{2} \frac{\alpha_{s}\left(\mu_{b}\right)}{\pi} C_{F}\left[C^{(1)}+\beta_{0} \frac{\alpha_{s}}{\pi} C^{(2, \mathrm{BLM})}+\frac{\alpha_{s}}{\pi} C^{(2)}\right] \delta^{\prime \prime}(1-\xi) \text { 2nd moment } \\
& +\frac{\alpha_{s}\left(\mu_{b}\right)}{\pi} C_{F}\left[H^{(1)}(\xi, \mu)+\beta_{0} \frac{\alpha_{s}}{\pi} H^{(2, \mathrm{BLM})}(\xi, \mu)+\frac{\alpha_{s}}{\pi} H^{(2)}(\xi)\right] \theta(1-\xi) \theta(\xi)
\end{aligned}
$$

- Virtual contributions can be either calculated directly or extracted by requiring that each moment matches the OPE result

Master Formula

- Soft-gluon contributions (with $E_{g}<1 \mathrm{GeV}$) have been absorbed into the $\mathbf{S F}$
- The moments of the photon spectrum depend only on corresponding moments of the SF. For instance:

$$
\begin{aligned}
\int d \xi \int d \kappa F(\kappa) W_{77}^{\text {pert }}(\xi-\kappa)=\int d \kappa F(\kappa) \int d \xi W_{77}^{\text {pert }}(\xi-\kappa)= & \int d \kappa F(\kappa) \int d \xi^{\prime} W_{77}^{\text {pert }}\left(\xi^{\prime}\right) \\
\text { total rate at NNLO } & =1+O\left(1 / m_{b}^{2}\right)
\end{aligned}
$$

- Power corrections in the OPE for the moments are reproduced by appropriate matching conditions for the moments of the Shape Function. For instance, we find:

$$
\begin{aligned}
\int d \kappa F(\kappa, \mu)= & 1-\frac{\mu_{\pi}^{2}+3 \mu_{G}^{2}}{2 m_{b}^{2}}-\frac{11 \rho_{D}^{3}-9 \rho_{L S}^{3}}{6 m_{b}^{3}}+ \\
& \frac{\alpha_{s}}{\pi}\left[C_{F}\left(\frac{4 \eta}{3}+\frac{3 \eta^{2}}{4}+\frac{11 \eta^{3}}{18}\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+\left(\frac{67}{36}-\frac{26 \pi^{2}}{27}-\frac{9 L_{b}}{4}+\frac{16 \eta}{3}+3 \eta^{2}+\frac{22 \eta^{3}}{9}\right) \frac{\mu_{G}^{2}}{m_{b}^{2}}\right]
\end{aligned}
$$

Master Formula

- We include effects of all other operators in a similar way.
- For instance the 78 kernel is:

$$
\begin{gathered}
W_{78}^{p e r t}\left(\xi, \mu, \mu_{b}\right)=C_{F} \frac{\alpha_{s}\left(\mu_{b}\right)}{\pi}\left[\left(V_{78}^{(1)}+\frac{\alpha_{s}}{\pi} V_{78}^{(2)}\right) \delta(1-\xi)+\frac{\alpha_{s}}{\pi} B_{78}^{(2)} \delta^{\prime}(1-\xi)+\frac{1}{2} \frac{\alpha_{s}}{\pi} C_{78}^{(2)} \delta^{\prime \prime}(1-\xi)\right. \\
\left.+\left(H_{78}^{(1)}(\xi, \mu)+\frac{\alpha_{s}}{\pi} H_{78}^{(2)}(\xi, \mu)\right) \theta(1-\xi) \theta(\xi)\right]
\end{gathered}
$$

The spectrum is obtained by convoluting this kernel with same Shape Function introduced for 77 because soft and collinear end-point singularities factorize

Korchemski and Sterman, hep-ph/9902341 Akhoury and Rothstein, hep-ph/9512303

- For all other kernels we have only BLM contributions at NNLO:

$$
W_{i j}^{p e r t}\left(\xi, \mu, \mu_{b}\right)=C_{F} \frac{\alpha_{s}\left(\mu_{b}\right)}{\pi}\left[\left(V_{i j}^{(1)}+\beta_{0} \frac{\alpha_{s}}{\pi} V_{i j}^{(2 \mathrm{BLM})}\right) \delta(1-\xi)+\left(H_{i j}^{(1)}(\xi, \mu)+\beta_{0} \frac{\alpha_{s}}{\pi} H_{i j}^{(2 \mathrm{BLM})}(\xi, \mu)\right) \theta(1-\xi) \theta(\xi)\right]
$$

- Resolved contributions are not present in this formalism and need to be taken into account separately [Lee, Neubert, Pax, hep-ph/0609224]

Master Formula

- Shape Function vs Hard Scattering spectra:

Shape Function with a Neural Network
 [Gambino, Healey, Mondino, 1604.07598]

- Neural Networks can be used to provide unbiased parameterizations of continuous functions - We consider a NN with one input $\left(\xi^{(0)}\right)$, one layer with N nodes $\left(\xi_{i}^{(1)}\right)$ and a single output $\left(\xi^{(2)}\right)$
 $\xi^{(2)}=g\left(\sum_{i=1}^{N} \xi_{i}^{(1)} w_{i}^{(2)}-\theta^{(2)}\right)=N(\{w, \theta\}, \kappa)$
a sigmoid: $g(x)=\frac{1}{1+e^{-x}}$

Shape Function with a Neural Network

- The actual Shape Function we consider contains an underlying function whose purpose is to help speeding the training without (possibly) introducing a strong bias
- Finally we impose few further conditions: positivity of the overall Shape Function and an explicit cut-off $(\kappa<\lambda)$
- For instance we consider:

$$
F(\kappa)=\bar{w}_{1} e^{\bar{w}_{2} \kappa}(\lambda-\kappa)^{\bar{w}_{3}}|N(\{w, \theta\}, \kappa)| \quad \theta(\lambda-\kappa)
$$

- The extra parameters \bar{w}_{i} (with $\bar{w}_{1}>0$) are treated on equal footing with the other weights
- In the preliminary tests we have run we considered $N=6$, implying 22 adjustable weights

Training

- We adopt a genetic algorithm
- Each full iteration begins with a "parent" SF with random weights and ends with a "child" SF for which a χ^{2} comprised of experimental (BaBar,Belle) and theoretical (SF moments) information is below a given threshold.
- Each successful iteration yields a replica: a possible Shape Function which is fully compatible with both experimental and theoretical constraints.
- There are many (important) details related to
- overtraining (e.g. divide χ^{2} into training and validation)
- avoiding local minima
- Distribution of replicas is not expected to be strongly affected/biased by minor changes in the chosen training scheme

χ^{2} calculation

- Training a Neural Network requires an enormous number of χ^{2} evaluations
- Binned experimental results are presented in the B and $\Upsilon(4 S)$ rest frames and require multiple numerical integrations
- An excellent solution is approximating the NN Shape Function with a cubic spline.
- We found that dividing the $\kappa \in[-1, \lambda]$ into 50 intervals (with $4 \times 50=200$ spline coefficients) yields 0.1% approximations to realistic Shape Functions and to their corresponding spectra and integrated observables
- All observables can be easily calculated for each of the 200 basic spline building blocks. The χ^{2} can then be easily obtained by contracting the latter with the 200 spline coefficients

χ^{2} calculation

- An alternative approach we considered is projecting the NN Shape Function onto a (hopefully) small set of basis functions
- As an example we tried a basis inspired by the one adopted by the SIMBA collaboration:

$$
\begin{aligned}
F(\kappa) & =\sum_{n=0}^{\infty} c_{n} f_{n}(1-\kappa / \lambda) \\
f_{n}(x) & =\sqrt{Y(x)} \sqrt{2 n+1} P_{n}[y(x)]
\end{aligned}
$$

$$
Y(x)=\frac{128}{3} x^{3} e^{-4 x} \quad y(x)=-1+2 \int_{0}^{x} Y(w) d w
$$

Shape Functions with this "typical" spread are approximated by few basis elements

* Need many basis functions to reasonably approximate SFs with widths different from the "built-in" one

B Basis elements with large n yield highly oscillating spectra and usually partake into delicate cancellations

Experimental data

- We considered data from 2012 BaBar fully inclusive and sum over exclusive analyses (in the B rest frame) and 2016 Belle results (in the $\Upsilon(4 S)$ rest frame):

BaBar 2012 (Fully Inclusive)

combined to remove sensitivity to the resonance region

Some very preliminary results

Belle fully incl.

B Some NNLO corrections missing
B Still working on training

Comparison with SCET approach

[SIMBA collaboration: Bernlochner, Lacker, Ligeti, Stewart, F. Tackmann, K. Tackmann]

- Within SCET the separation of soft and hard-collinear scales is achieved within an effective theory framework (based on the method of regions and dim-reg): this corresponds to a different scheme for the (leading) SF
- At leading power the SCET SF is universal for all inclusive B decays. At subleading power several additional universal SCET SFs appear. Unfortunately $B \rightarrow X_{s} \gamma, B \rightarrow X_{u} \ell \nu$ and $B \rightarrow X_{s} \ell \ell$ depend on different combinations of leading and subleading SFs.
- Effectively both the kinetic and SCET approach extract from $B \rightarrow X_{s} \gamma$ one effective SF which can only be used judiciously (i.e. with added uncertainties) in other inclusive B decays
- Within SCET it is possible to resum hard-collinear logs. We have $Q_{h} \sim m_{b}=4.57 \mathrm{GeV}$, $Q_{h c} \sim \sqrt{m_{b}\left(m_{B}-m_{b}\right)}=1.8 \mathrm{GeV}$ and $Q_{s} \sim\left(m_{B}-m_{b}\right)=0.71 \mathrm{GeV}$. The relevant logs are therefore quite small: $\log \left[Q_{h} / Q_{h c}\right]=\log \left[Q_{h c} / Q_{s}\right]=0.93$
- I conclude that these two approaches are effectively equivalent and offer a complementary approach to a simultaneous analysis of inclusive radiative and (rare-)semileptonic B decays

Implications for $B \rightarrow X_{s} \ell \ell$

- SF needed for extrapolation in $m_{X_{s}}$ and to improve the EvtGen Monte Carlo event generator which is the heart of Belle, BaBar and Belle II analyses.
[EvtGen: Ryd, Lange, Kuznetsova, Versille, Rotondo, Kirkby, Wuerthwein, Ishikawa;
Maintained by J. Back, M. Kreps and T. Latham at University of Warwick]
- Hadronic spectrum is based on the Fermi motion implementation presented in Ali, Hiller, Handoko, Morozumi hep-ph/9609449:
parton level with

$$
\frac{d \Gamma_{B}}{d s d u d p}=\int d u^{\prime} \frac{m_{b}(p)^{2}}{m_{B}} p\left[\frac{4}{\sqrt{\pi} p_{F}^{3}} \exp \left(-p^{2} / p_{F}^{2}\right)\right]\left(u^{\prime 2}+4 m_{b}(p)^{2} s\right)^{-1 / 2}\left[\frac{d \Gamma_{b}}{d s d u}\right]_{\substack{m_{b} \rightarrow m_{b}(p)}}^{\substack{\text { momentum } \\ \text { dependent } \mathrm{b} \text { mass }}}
$$

- We need to urgently update the code!
- Work in progress on the complete triple differential rate at $O\left(\alpha_{s}\right)$
[T. Huber, T. Hurth, J. Jenkins, EL, in preparation]

```
pb = _calcprob->FermiMomentum(_pf);
// effective b-quark mass
    mb = mB*mB + _mq*_mq - 2.0*mB*sqrt(pb*pb + _mq*_mq);
    if ( mb>0. && sqrt(mb)-_ms < 2.0*ml ) mb= -10.;
}
mb = sqrt(mb);
```

