

Preliminary result on $\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_c \ell \nu)}$ at Belle Towards inclusive $|V_{ub}|/|V_{cb}|$

Marcel Hohmann The University of Melbourne mhohmann@student.unimelb.edu.au Challenges in Semileptonic B Decays

Barolo, Italy 22/04/22

Inclusive
$$\frac{|V_{ub}|}{|V_{cb}|}$$
 via $\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_c \ell \nu)}$

- Ratio measurement cancels several sources of uncertainty:
 - Experiment:
 - Cancel tagging and lepton identification uncertainties.
 - Theory:
 - Partial cancellation of m_b dependence.
 - m_b uncertainty usually large in inclusive $|V_{ub}|$ determinations.
 - Other cancellations in the OPE?

World Averages Precision: BLNP: $\pm 5.7\% (\pm 2.8\% m_b, \mu_{\pi}^2)$ DGE: $\pm 3.4\% (^{+3.2}_{-2.9}\% m_b)$ GGOU: $\pm 4.0\% (\pm 1.9\% m_b, \alpha_s, ...)$ [HFLAV, Eur. Phys. J. C (2021) 81:226]

• Directly constrain Unitarity Triangle side $|V_{ub}|/|V_{cb}|$ with consistent error treatment.

$B \rightarrow X \ell \nu$ Reconstruction at Belle

- Analyse full Belle sample, $711 f b^{-1}$, in Belle II software.
- Belle II tagging algorithm Full Event Interpretation
- Hierarchically reconstruct $\mathcal{O}(10\ 000)$ hadronic channels.
- O(200) Boosted Decision Trees to select good candidates.
- Up-to 50% higher efficiency than previous Belle tagging algorithm, Full Reconstruction

 1104 channels.
 [Comput.Softw.Big Sci. 3 (2019) 1, 6]

$B \rightarrow X \ell \nu$ Reconstruction at Belle

- Analyse full Belle sample, $711 f b^{-1}$, in Belle II software.
- Belle II tagging algorithm Full Event Interpretation
- Hierarchically reconstruct $\mathcal{O}(10\ 000)$ hadronic channels.
- O(200) Boosted Decision Trees to select good candidates.
- Up-to 50% higher efficiency than previous Belle tagging algorithm, Full Reconstruction
 1104 channels. [Comput.Softw.Big Sci. 3 (2019) 1, 6]

$B \to X_u \ell \nu$ Selection

- Precise $B \to X_u \ell \nu$ extraction complicated by large $B \to X_c \ell \nu$ background. ٠
 - $\frac{\mathcal{B}(B \to X_c \ell \nu)}{\mathcal{B}(B \to X_u \ell \nu)} \approx 50$ with similar experimental signature.
- Focus on high inclusivity $B \to X_u \ell \nu$ extraction, $p_\ell^B > 1.0 \text{ GeV/c} (f_u \sim 86\%)$. ٠
- Simple cut-based selection to suppress $B \to X_c \ell \nu$ background
 - loose to minimise bias towards resonances and $B \rightarrow X_{\mu} \ell \nu$ sculpting.
 - $|m_{\nu}^2| \approx |m_{Miss}^2| < 0.43 \ GeV^2/c^4$
 - Charged slow pion veto.
 - Kaon veto: even $N_{K^{\pm}} + N_{K_{c}^{0}}$
- $B \to X_{\mu} \ell \nu$ Efficiency:

 B^0

0.082(2)

0.082(1)

 B^+

0.152(3)

0.147(2)

0.127(2)

0.127(4)

0.097(4)

[%]

Decay Channel

 $B \to \pi \ell \nu$

 $B \to \rho \ell \nu$

 $B \to \omega \ell \nu$

 $B \to \eta \ell \nu$

 $B \to \eta' \ell \nu$

$B \to X_u \ell \nu$ Sample

- Data excess at high p_{ℓ}^{B} , q^{2} .
 - Repeated indications seen by Belle, BaBar, and $B \rightarrow X_c \ell \nu$ moments analysis. Bernlocher, et al. 2014 [Eur.Phys.J.C 74 6, 2914], BaBar 2012 [PRD 86, 032004], Belle 2021 [PRD 104, 012008], Belle 2021 [PRD 104, 112011])
 - Reason unclear, $B \rightarrow D^{**} \ell \nu$ modelling?
 - Mismodelling might cause bias in inclusive $|V_{ub}|$ determinations.

$B \to X_u \ell \nu$ Sample

- Data excess at high p_{ℓ}^B , q^2 .
 - Repeated indications seen by Belle, BaBar, and $B \rightarrow X_c \ell \nu$ moments analysis. Bernlocher, et al. 2014 [Eur.Phys.J.C 74 6, 2914], BaBar 2012 [PRD 86, 032004], Belle 2021 [PRD 104, 012008], Belle 2021 [PRD 104, 112011])
 - Reason unclear, $B \rightarrow D^{**} \ell \nu$ modelling?
 - Mismodelling might cause bias in inclusive $|V_{ub}|$ determinations.
- Kaon vetoed sample → Consistent Data-MC disagreement.
 - Expected if issue is semi-leptonic *B* decay modelling.
 - Take data-driven templates..

$B \rightarrow X_u \ell \nu$ Extraction

- Extract $B \to X_u \ell \nu$ yield from 2D fit to $q^2: p_\ell^B$.
 - Equal frequency $B \rightarrow X_c \ell \nu$.
 - Final broad bins average over shape function region reduce dependence on $B \rightarrow X_u \ell \nu$ modelling.
- Continuum MC calibrated to off-resonance sample.
- Secondary and fake lepton MC calibrated to high M_X , low p_ℓ^B control region.
- Take $B \rightarrow X_c \ell \nu$ template from kaon vetoed sample as:

Data and MC yields in kaon vetoed sample

$$T_{i} = \frac{\tau_{i}}{\tau_{i,K}} (N_{i,K}^{Data} - \eta_{i,K}^{B \to X_{u} \ell \nu} - \eta_{i,K}^{q\overline{q}} - \eta_{i,K}^{Sec.Fakes})$$

Transfer factor taken from MC

- Maximum likelihood fit floating proportion of $B \rightarrow X_u \ell \nu / B \rightarrow X_c \ell \nu$.
 - $\chi^2/dof = 16.8/15$

2

 $p_{\ell}^{B_{sig}}$ [GeV/c]

2

2

Marcel Hohmann

$B \rightarrow X_c \ell \nu$ Extraction

- Extract $B \rightarrow X_c \ell \nu$ yield via simple background subtraction in total $B \rightarrow X \ell \nu$ sample.
- Normalize $B \to X_u \ell \nu$ by fit result.
- Continuum scaled by calibration in offresonance sample.
- Secondary and fake lepton contribution fixed after calibration to high M_X , low p_ℓ^B control region.

Ratio of Partial Branching Fractions

• Take ratio as:

$$1.98 \pm 0.0 \pm 0.04 \qquad 5390 \pm 440 \pm 310$$

$$\frac{\Delta \mathcal{B}(B \to X_u \ell v: p_\ell^B > 1.0 \ GeV/c)}{\Delta \mathcal{B}(B \to X_c \ell v: p_\ell^B > 1.0 \ GeV/c)} = \frac{\epsilon^{B \to X_c \ell v}}{\epsilon^{B \to X_u \ell v}} \frac{N^{B \to X_u \ell v}}{N^{B \to X_c \ell v}}$$

$$545100 \pm 1400 \pm 2300$$

$$\frac{\Delta \mathcal{B}(B \to X_u \ell \nu; \ p_\ell^B > 1.0 \ GeV/c)}{\Delta \mathcal{B}(B \to X_c \ell \nu; \ p_\ell^B > 1.0 \ GeV/c)} = 1.95 (1 \pm 8.4\%_{stat} \pm 7.2\%_{syst}) \times 10^{-2}$$
Belle Preliminary

• Final Step: Extract
$$\frac{|V_{ub}|}{|V_{cb}|} = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_c \ell \nu)}} \frac{\Delta \Gamma(B \to X_c \ell \nu)}{\Delta \Gamma(B \to X_u \ell \nu)}}{Need theory predictions for ratio of partial rates!}$$

Systematics - $B \rightarrow X_u \ell \nu$ Modelling

$\begin{array}{c} \hline \text{Data Stat.} \\ \mathcal{B}(B \to \pi/\rho/\omega/\eta/\eta'\ell\nu) \\ \mathcal{FF}(B \to \pi/\rho/\omega/\eta/\eta'\ell\nu) \\ \mathcal{B}(B \to x_u\ell\nu) \\ \text{DFN}(m_b, a) \\ \text{Hebrick Model} (\text{PLND}) \end{array}$	$\begin{array}{c c} \Delta R/R \ [\%] \\ \hline 8.4 \\ 0.2 \\ 0.3 \\ 0.6 \\ 5.0 \\ 0.6 \\ \end{array}$	• Nominal $B \rightarrow X_u \ell \nu$ MC: DFN [JHEP 06(1999), 017] NLO calculation + non-perturbative QCD inputs. • Hadronised with JETSET/Pythia ($m_X > 2m_\pi$)
$N_{a\overline{a}}$	1.3	• Resonances $(B \rightarrow (\pi, \rho, \omega, \eta, \eta')\ell \nu)$ added ad-hoc via hybrid
$\frac{\mathcal{B}(B \to D\ell\nu)}{\mathcal{B}(B \to D\ell\nu)}$	0.1	approach [PRD 41, 1496].
${\cal B}(B o D^*\ell u)$	0.8	PDG 2020 branching fractions and up-to-date models
$\mathcal{B}(B \to D^{**}\ell\nu)$	0.3	i ba 2020 branching nactions and up to date models.
$\mathcal{B}(B \to D^{(*)} \eta \ell \nu)$	0.2	$\Delta \mathcal{B}_{ijk}^{inc.} = \Delta \mathcal{B}_{ijk}^{exc.} + w_{ijk} \cdot \Delta \mathcal{B}_{ijk}^{inc.}$
$\mathcal{B}(B \to D^{(*)}\pi\pi\ell\nu)$	0.2	
$\mathcal{FF}(B \to D\ell\nu)$	0.2	
$\mathcal{FF}(B \to D^* \ell \nu)$	0.9	$B^+ \rightarrow X^{0} \ell^+ \nu$ $B^+ \rightarrow X^{0} \ell^+ \nu$ $B^+ \rightarrow X^{0} \ell^+ \nu$
$\bigcirc \qquad \mathcal{FF}(B \to D^{**}\ell\nu)$	0.4	$\times 10^4 \qquad D \qquad \gamma \Lambda u^{c} \nu \qquad \times 10^4 \qquad D \qquad \gamma \Lambda u^{c} \nu \qquad \times 10^4 \qquad D \qquad \gamma \Lambda u^{c} \nu \qquad \times 10^4 \qquad D \qquad \gamma \Lambda u^{c} \nu \qquad \times 10^4 \qquad D \qquad \gamma \Lambda u^{c} \nu \qquad \times 10^4 \qquad D \qquad \gamma \Lambda u^{c} \nu \qquad \times 10^4 \qquad D \qquad \gamma \Lambda u^{c} \nu \qquad \times 10^4 \qquad D \qquad \gamma \Lambda u^{c} \nu \qquad \times 10^4 \qquad X \qquad $
Q Sec.Fakes. Composition	3.8	5. 2.0
	0.1	4 g 1.5 g 1.5
$\overline{\mathbf{U}}$ $\ell \mathrm{ID}$ Fake.	ptrie 0.0	
$ M K\pi ID Eff.$	1.1 🖾	
$K\pi$ ID Fake.	0.6	1 0.5 0.5 0.5 0.5
K_S^0 Eff.	0.2	0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 5 10 15 20 25 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.0 0.5
π_{slow}	< 0.1	$M_X [{ m GeV}] \qquad \qquad q^2 [{ m GeV}^2] \qquad \qquad E_\ell^{B_{sig}}[GeV]$
Tracking	0.1	p = (1 + 1) = p + [-10 - 3] = p(1 + 10 - 3]
Continuum Calibration	0.4	$- \frac{\text{Decay Channel}}{B \rightarrow X_{\nu} \ell \nu} \frac{B^{+} [\times 10^{-5}]}{2 \cdot 21 + 0 \cdot 31} \frac{B^{+} [\times 10^{-5}]}{2 \cdot 05 + 0 \cdot 29}$
IN _{BB}	< 0.1	$\frac{B \to \pi \ell \nu}{B \to \pi \ell \nu} = \frac{2.21 \pm 0.01}{0.078 \pm 0.003} \frac{2.03 \pm 0.23}{0.150 \pm 0.006}$
$J_{\pm/0}$	< 0.1	$B \to \rho \ell \nu$ $0.158 \pm 0.011 \ 0.294 \pm 0.021$
MC Stat.	2.0	$-\frac{B \to \omega \ell \nu}{R \to \pi \ell \nu} = \frac{0.119 \pm 0.009}{0.020 \pm 0.005} =$
Total Syst.	(.2	$- B \rightarrow \eta \ell \nu \qquad 0.039 \pm 0.005 - B \rightarrow \eta' \ell \nu \qquad 0.023 \pm 0.008 - 11$
		Warcel Hohmann $B \rightarrow x_u \ell \nu$ 1.79 ± 0.32 1.60 ± 0.30

Systematics - $B \rightarrow X_u \ell \nu$ Modelling

	$\Delta R/R$ [%]		
Data Stat.	8.4		
${\cal B}(B o \pi/ ho/\omega/\eta/\eta'\ell u)$	0.2		
$\mathcal{FF}(B \to \pi/\rho/\omega/\eta/\eta'\ell\nu)$	0.3		
$\mathcal{B}(B \to x_u \ell \nu)$	0.6		
$\mathrm{DFN}(m_b, a)$	5.0		
Hybrid Model (BLNP)	0.6		
$N_{s\overline{s}}$	1.3		
${\cal B}(B o D\ell u)$	0.1		
${\cal B}(B o D^*\ell u)$	$\begin{array}{c} 0.8 \\ 0.3 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.9 \end{array}$		
$\mathcal{B}(B \to D^{**} \ell \nu)$			
$\mathcal{C} \mathcal{B}(B \to D^{(*)}\eta\ell\nu)$			
$\mathcal{B}(B \to D^{(*)}\pi\pi\ell\nu)$			
$\mathcal{FF}(B \to D\ell\nu)$			
$\mathcal{FF}(B \to D^* \ell \nu)$			
$\mathcal{O} \qquad \mathcal{FF}(B \to D^{**}\ell\nu)$	0.4		
Sec.Fakes. Composition	3.8		
υ <i>l</i> ID Eff.	0.1		
ℓ ID Fake.	0.3		
$\check{\square}$ $K\pi$ ID Eff.	1.1		
$K\pi$ ID Fake.	0.6		
K_S^0 Eff.	0.2		
π_{slow}	< 0.1		
Tracking	0.1		
Continuum Calibration	0.4		
N _{BB}	< 0.1		
$f_{+/0}$	< 0.1		
MC Stat.	2.6		
Total Syst.	7.2		

Small exposure to resonances in hybrid modelling composition.

• Dominant systematic due to $m_b^{KN} = 4.66 \pm 0.04 \text{ GeV}$, $a^{KN} = 1.3 \pm 0.5$ uncertainty [PRD 73, 073008].

 Switch DFN -> BLNP [PRD 72, 073006] for inclusive. Shape difference mostly at endpoint – averaged over in broad bins.

K production in X_u via gluon splitting – vary relative contribution $\pm 25\%$.

Systematics - $B \rightarrow X_c \ell \nu$ Modelling

	$\Delta R/R ~[\%]$	
Data Stat.	8.4	•]
${\cal B}(B o \pi/ ho/\omega/\eta/\eta'\ell u)$	0.2	
$\mathcal{FF}(B o \pi/ ho/\omega/\eta/\eta'\ell u)$	0.3	-
$\mathcal{B}(B \to x_u \ell \nu)$	0.6	•
$DFN(m_b, a)$	5.0	1
Hybrid Model (BLNP)	0.6	l
$N_{s\overline{s}}$	1.3	•
${\cal B}(B o D\ell u)$	0.1	
${\cal B}(B o D^*\ell u)$	0.8	r
$\mathcal{B}(B \to D^{**}\ell\nu)$	0.3	
${\cal B}(B o D^{(*)}\eta\ell u)$	0.2	
$\mathcal{B}(B o D^{(*)} \pi \pi \ell \nu)$	0.2	
$\mathcal{FF}(B \to D\ell\nu)$	0.2	De
$\mathcal{FF}(B o D^* \ell u)$	0.9	B
$\mathcal{FF}(B o D^{**} \ell \nu)$	0.4	
Sec.Fakes. Composition	3.8	
ℓ ID Eff.	0.1	
ℓID Fake.	0.3	
$K\pi$ ID Eff.	1.1	
$K\pi$ ID Fake.	0.6	
K_S^0 Eff.	0.2	
π_{slow}	< 0.1	
Tracking	0.1	
Continuum Calibration	0.4	
N_{BB}	< 0.1	
$f_{+/0}$	< 0.1	
MC Stat.	2.6	
Total Syst.	7.2	
	$\begin{array}{l} \hline \mbox{Data Stat.} \\ \hline \mathcal{B}(B \rightarrow \pi/\rho/\omega/\eta/\eta'\ell\nu) \\ \mathcal{F}\mathcal{F}(B \rightarrow \pi/\rho/\omega/\eta/\eta'\ell\nu) \\ \mathcal{F}\mathcal{F}(B \rightarrow \pi/\rho/\omega/\eta/\eta'\ell\nu) \\ \mathcal{B}(B \rightarrow x_u\ell\nu) \\ \mbox{DFN}(m_b, a) \\ \mbox{Hybrid Model (BLNP)} \\ \hline \mathcal{N}_{s\overline{s}} \\ \hline \mathcal{B}(B \rightarrow D\ell\nu) \\ \mathcal{B}(B \rightarrow D^*\ell\nu) \\ \mathcal{B}(B \rightarrow D^{**}\ell\nu) \\ \mathcal{B}(B \rightarrow D^{(*)}\eta\ell\nu) \\ \mathcal{B}(B \rightarrow D^{(*)}\eta\ell\nu) \\ \mathcal{F}\mathcal{F}(B \rightarrow D\ell\nu) \\ \mathcal{F}\mathcal{F}(B \rightarrow D\ell\nu) \\ \mathcal{F}\mathcal{F}(B \rightarrow D\ell\nu) \\ \mathcal{F}\mathcal{F}(B \rightarrow D^{*}\ell\nu) \\ \mathcal{F}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

• $B \rightarrow D^{(*)}\ell\nu$: latest BGL form factors [PRD 93, 0.32006], [PRD 103, 073005] and PDG2020 branching fractions

• $B \rightarrow D^{**} \ell \nu$, $D^{**} \in (D_1, D_2, D_0, D'_1)$: D^{**} masses and widths updated to PDG2020. LLSW form factors.

• $\sim 10\%$ gap between inclusive and sum of exclusive measurements.

• Filled with "best guess" $B \to D^{(*)} \eta \ell \nu, B \to D^{(*)} \pi \pi \ell \nu$

/					
$D\ell u)$	0.2	Decay Channel	$B^+ [\times 10^{-3}]$	$B^0 [\times 10^{-3}]$	
$(*\ell u)$	0.9	$B \to X_c \ell \nu$	108 ± 4	101 ± 4	
$(**\ell u)$	0.4	$B \to D\ell\nu$	23.5 ± 1	23.1 ± 1	
position	3.8	$B \to D^* \ell \nu$	56.6 ± 2	50.5 ± 1	
	0.1	$B \to D_0 (\to D\pi) \ell \nu$	4.2 ± 0.8	3.9 ± 0.7	
). T		$B \to D_1' \to D^* \pi) \ell \nu$	4.2 ± 0.8	3.9 ± 0.8	
1. 70	0.6	$B \to D_1 \to D^* \pi) \ell \nu$	4.2 ± 0.3	3.9 ± 0.3	\frown
	0.2	$B \to D_1 (\to D\pi\pi) \ell \nu$	2.4 ± 0.1	2.3 ± 0.9	
	< 0.1	$B \to D_2(\to D^*\pi)\ell\nu$	1.2 ± 0.1	1.1 ± 0.1	Via intermediate
g	0.1	$B \to D_2(\to D\pi)\ell\nu$	1.8 ± 0.2	1.7 ± 0.2	hand D** -> Battar
ibration	0.4	$B \rightarrow D\pi \pi \ell \nu$	0.6 ± 0.6	0.6 ± 0.6	broad D - Beller
	< 0.1	$B \to D^* \pi \pi \ell \nu$	2.2 ± 1	2.0 ± 1	description than 4/5
	< 0.1	$B \rightarrow Dn\ell\nu$	3.6 ± 2	4.0 ± 2	body phase-space
	2.6	$B \rightarrow D^* n \ell \nu$	3.6 ± 2	4.0 ± 2	model.
st.	7.2				

Systematics - Other

	$\Delta R/R$ [%]	
Data Stat.	8.4	
${\cal B}(B o \pi/ ho/\omega/\eta/\eta'\ell u)$	0.2	
$\mathcal{FF}(B ightarrow \pi/ ho/\omega/\eta/\eta'\ell u)$	0.3	
$\mathcal{B}(B o x_u \ell \nu)$	0.6	
$\mathrm{DFN}(m_b, a)$	5.0	
Hybrid Model (BLNP)	0.6	
$N_{s\overline{s}}$	1.3	
${\cal B}(B o D\ell u)$	0.1	
${\cal B}(B o D^*\ell u)$	0.8	
$\mathcal{B}(B o D^{**} \ell \nu)$	0.3	
$\mathcal{C} \mathcal{B}(B \to D^{(*)}\eta\ell\nu)$	0.2	
$\mathcal{B}(B \to D^{(*)}\pi\pi\ell\nu)$	0.2	
$\mathcal{FF}(B \to D\ell\nu)$	0.2	
$: \qquad \mathcal{FF}(B \to D^* \ell \nu)$	0.9	
$\mathcal{Q} \qquad \mathcal{FF}(B \to D^{**}\ell\nu)$	0.4	
Q Sec.Fakes. Composition	3.8	
U ℓID Eff.	0.1	
\blacksquare ℓ ID Fake.	0.3	
	1.1	
$K\pi$ ID Fake.	0.6	
K_S^0 Eff.	0.2	
π_{slow}	< 0.1	
Tracking	0.1	
Continuum Calibration	0.4	
N_{BB}	< 0.1	
$f_{+/0}$	< 0.1	
MC Stat.	2.6	
Total Syst.	7.2	

- Vary secondary lepton, fake lepton, and
 - $B \to X\tau (\to \ell \nu \overline{\nu})\nu$ relative contributions by 30%.
 - Combined normalisation constrained by fits to high mass, low lepton momentum control regions.
- Detector effects and particle identification well • understood from control mode samples.

Just for this workshop!

Naïve $|V_{ub}|$ Extraction $(p_{\ell}^B > 1.0 \ GeV/c)$

$$|V_{ub}| = \sqrt{\frac{1}{\tau_B \Delta \Gamma}} \frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_u \ell \nu)} \Delta \mathcal{B}(B \to X_c \ell \nu)$$

 $\tau_B = 1.579 \pm 0.004$ ps

 $1.95(1 \pm 0.084 \pm 0.072) \times 10^{-2}$

BLNP: $61.5^{+6.4}_{-5.1} ps^{-1}$ [PRD 72, 073006] GGOU: $58.5^{+2.7}_{-2.3} ps^{-1}$ [JHEP 0710:058] DGE: $58.2^{+3.6}_{-3.0} ps^{-1}$ [JHEP 0601:097] Consistent with Belle, 2021 [PRD 104, 012008] Belle, 2007 [PRD 75, 032001]: $(8.41 \pm 0.15 \pm 0.17)$ % Babar, 2010 [PRD 81, 0032003]: (8.63 ± 0.17) %

Naïve average: $(8.55 \pm 0.13)\%$ - Assume uncorrelated.

Just for this workshop!

Naïve $|V_{ub}|$ Extraction $(p_{\ell}^B > 1.0 \ GeV/c)$

$$|V_{ub}| = \sqrt{\frac{1}{\tau_B \Delta \Gamma}} \frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_u \ell \nu)} \Delta \mathcal{B}(B \to X_c \ell \nu)$$

 $\tau_B = 1.579 \pm 0.004$ ps

$1.95(1 \pm 0.084 \pm 0.072) \times 10^{-2}$

BLNP: $61.5_{-5.1}^{+6.4} ps^{-1}$ [PRD 72, 073006] GGOU: $58.5_{-2.3}^{+2.7} ps^{-1}$ [JHEP 0710:058] DGE: $58.2_{-3.0}^{+3.6} ps^{-1}$ [JHEP 0601:097] Consistent with Belle, 2021 [PRD 104, 012008]

$$\begin{split} |V_{ub}|^{GGOU} &= (4.25 \pm 0.18 \pm 0.16 \stackrel{+0.09}{_{-0.09}}) \times 10^{-3} \\ |V_{ub}|^{BLNP} &= (4.15 \pm 0.17 \pm 0.15 \stackrel{+0.18}{_{-0.20}}) \times 10^{-3} \\ |V_{ub}|^{DGE} &= (4.26 \pm 0.18 \pm 0.16 \stackrel{+0.11}{_{-0.13}}) \times 10^{-3} \end{split}$$

Good agreement with HFLAV averages!

Belle Preliminary

Background Subtracted Spectra

- Normalise to nominal fit results and project onto p_{ℓ}^{B} , q^{2} no additional selections.
- Subtract backgrounds, correct $B \rightarrow X_c \ell \nu$ shape from kaon vetoed sample.

Unfolded Ratio

- Unfold $B \to X_u \ell \nu, B \to X_c \ell \nu$ yields via Singular Value Decomposition method of [NIMA 372:469(1996)]
- Tune regularisation parameter to minimise model bias.
- Take ratio and correct for efficiency to form differential ratios.

Work in Progress: Ratio as function of p_{ℓ}^B Threshold

- Repeat measurement tightening p_ℓ^B selection.
- Probes stability near endpoint.
- Highly correlated across all thresholds.

Summary

- Preliminary result on $\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\Delta \mathcal{B}(B \to X_c \ell \nu)}$ at Belle.
- Theory predictions of ratio of partial rates needed to extract $|V_{ub}|/|V_{cb}|$.
- Naïve $|V_{ub}|$ extraction in good agreement with world averages.
- Data-driven $X_c \ell v$ modelling corrections will be beneficial for Belle II measurements.
- What can be extracted from the unfolded ratios?

