|V_{ub}| and LFU ratios in B decays using Lattice QCD and Unitarity

Work in collaboration with G. Martinelli and S. Simula [PRD '21 (2105.02497), 2202.10285, ...]

Ludovico Vittorio (SNS & INFN, Pisa)

Challenges in Semileptonic B Decays Barolo, 19-23 April 2022

MINISTERO DELL' ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA PRIN "The consequences of flavor"

 \mathcal{V}_{ℓ}

(from J.Phys.G 46 (2019) 2, 023001)

SCUOLA Normale Superiore

In case of production of a pseudoscalar meson (*i.e.* π, K):

$$\begin{split} \frac{d\Gamma(B_{(s)} \to \pi(K)\ell\nu_{\ell})}{dq^2} &= \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2 \left[|\vec{p}_{\pi(K)}|^3 \left(1 + \frac{m_{\ell}^2}{2q^2}\right) |f_+^{\pi(K)}(q^2)|^2 \right. \\ &+ \left. m_{B_{(s)}}^2 |\vec{p}_{\pi(K)}| \left(1 - r_{\pi(K)}^2\right)^2 \frac{3m_{\ell}^2}{8q^2} |f_0^{\pi(K)}(q^2)|^2 \right] \,, \end{split}$$

In case of production of a pseudoscalar meson (*i.e.* π, K):

$$\begin{split} \frac{d\Gamma(B_{(s)} \to \pi(K)\ell\nu_{\ell})}{dq^2} &= \frac{G_F^2|V_{ub}|^2}{24\pi^3} \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2 \left[|\vec{p}_{\pi(K)}|^3 \left(1 + \frac{m_{\ell}^2}{2q^2}\right) f_+^{\pi(K)}(q^2)|^2 \right. \\ &+ \left. m_{B_{(s)}}^2 |\vec{p}_{\pi(K)}| \left(1 - r_{\pi(K)}^2\right)^2 \frac{3m_{\ell}^2}{8q^2} \left[f_0^{\pi(K)}(q^2)|^2 \right] \,, \end{split}$$

In case of production of a pseudoscalar meson (*i.e.* π , K):

$$\begin{split} \frac{d\Gamma(B_{(s)} \to \pi(K)\ell\nu_{\ell})}{dq^2} &= \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2 \left[|\vec{p}_{\pi(K)}|^3 \left(1 + \frac{m_{\ell}^2}{2q^2}\right) f_+^{\pi(K)}(q^2)|^2 \right. \\ &+ \left. m_{B_{(s)}}^2 |\vec{p}_{\pi(K)}| \left(1 - r_{\pi(K)}^2\right)^2 \frac{3m_{\ell}^2}{8q^2} \left[f_0^{\pi(K)}(q^2)|^2 \right] \,, \end{split}$$

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high-q² (or low-w) regime, we extract the FFs behaviour in the low-q² (or high-w) region!

Original proposal in NPB, 479 (1996) New developments in PRD '21 (2105.02497)

In case of production of a pseudoscalar meson (*i.e.* π , K):

$$\begin{split} \frac{d\Gamma(B_{(s)} \to \pi(K)\ell\nu_{\ell})}{dq^2} &= \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2 \left[|\vec{p}_{\pi(K)}|^3 \left(1 + \frac{m_{\ell}^2}{2q^2}\right) f_+^{\pi(K)}(q^2)|^2 \right. \\ &+ \left. m_{B_{(s)}}^2 |\vec{p}_{\pi(K)}| \left(1 - r_{\pi(K)}^2\right)^2 \frac{3m_{\ell}^2}{8q^2} \left[f_0^{\pi(K)}(q^2)|^2 \right] \,, \end{split}$$

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high-q² (or low-w) regime, we extract the FFs behaviour in the low-q² (or high-w) region!

The resulting description of the FFs

Original proposal in NPB, 479 (1996) New developments in PRD '21 (2105.02497)

- will be entirely based on first principles (LQCD evaluation of 2- and 3-point Euclidean correlators)
- will be independent of any assumption on the functional dependence of the FFs on the momentum transfer
- can be applied to theoretical calculations of the FFs, but also to experimental data
- keep theoretical calculations and experimental data separated
- is universal: it can be applied to any exclusive semileptonic decays of mesons and baryons

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach: starting from the available LQCD computations of the FFs in the high-q² (or low-w) regime, we extract the FFs behaviour in the low-q² (or high-w) region!

The resulting description of the FFs

Original proposal in NPB, 479 (1996) New developments in PRD '21 (2105.02497)

- will be entirely based on first principles (LQCD evaluation of 2- and 3-point Euclidean correlators)
- will be independent of any assumption on the functional dependence of the FFs on the momentum transfer
- can be applied to theoretical calculations of the FFs, but also to experimental data
- keep theoretical calculations and experimental data separated
- is universal: it can be applied to any exclusive semileptonic decays of mesons and baryons

Two LQCD inputs have been used for our DM method (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

One KC: $f_0(0) = f_+(0)$

L. Vittorio (SNS & INFN, Pisa)

Two LQCD inputs have been used for our DM method (arXiv:2202.10285):

• 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]

Peculiarity of $B \rightarrow \pi$ decays: LONG extrapolation in q^2

• 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

 $f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$

 $f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$

 $f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$

It seems that the mean value and the uncertainty are not stable under variation of the truncation order of a series expansion of the FFs...

The DM approach is independent of this issue!!!

Two LQCD inputs have been used for our DM method (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)]
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)]

 $f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$

 $f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$

 $f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$

Important issue: the DM method equivalent to the results of all possible (BCL) fits which satisfy unitarity and at the same time reproduce exactly the input data

L. Vittorio (SNS & INFN, Pisa)

Two LQCD inputs have been used for our DM method (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data (points) [PRD '15 (1501.05363)] •
- 3 FNAL/MILC data (squares) from their fits [PRD '15 (1503.07839)] •

L. Vittorio (SNS & INFN, Pisa)

 $f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$

This issue is of capital importance to test LFU:

$$R_{\pi}^{\tau/\mu} \equiv \frac{\Gamma(B \to \pi \tau \nu_{\tau})}{\Gamma(B \to \pi \mu \nu_{\mu})}$$

THEORY with DM method

EXPERIMENT

Input	RBC/UKQCD	FNAL/MILC	combined
$R_{\pi}^{ au/\mu}$	0.767(145)	0.838(75)	0.793(118)

$$R_{\pi}^{\tau/\mu}|_{exp} = 1.05 \pm 0.51$$

This issue is of capital importance to test LFU:

$$R_{\pi}^{\tau/\mu} \equiv \frac{\Gamma(B \to \pi \tau \nu_{\tau})}{\Gamma(B \to \pi \mu \nu_{\mu})}$$

THEORY with DM method

Input RBC/UKQCD FNAL/MILC combined $R_{\pi}^{\tau/\mu}$ 0.767(145) 0.838(75) 0.793(118)

EXPERIMENT

$$R_{\pi}^{\tau/\mu}|_{exp} = 1.05 \pm 0.51$$

Expected improved precision @ Belle II (PTEP '19 (1808.10567))

$$\delta R_{\pi}^{\tau/\mu} \simeq 0.09$$

~80% reduction of the error!

This issue is of capital importance to test LFU:

$$R_{\pi}^{\tau/\mu} \equiv \frac{\Gamma(B \to \pi \tau \nu_{\tau})}{\Gamma(B \to \pi \mu \nu_{\mu})}$$

THEORY with DM method

Input	RBC/UKQCD	FNAL/MILC	combined
$\delta R^{ au/\mu}_{\pi}$	0.73	0.38	0.59

Hypothetical 50% reduction of the error...

EXPERIMENT

$$R_{\pi}^{\tau/\mu}|_{exp} = 1.05 \pm 0.51$$

Expected improved precision @ Belle II (PTEP '19 (1808.10567))

 $\delta R_{\pi}^{\tau/\mu} \simeq 0.09$

~80% reduction of the error!

This issue is of capital importance to test LFU:

0.73

 $\delta R_{\pi}^{\tau/\mu}$

$$R_{\pi}^{\tau/\mu} \equiv \frac{\Gamma(B \to \pi \tau \nu_{\tau})}{\Gamma(B \to \pi \mu \nu_{\mu})}$$

THEORY with DM method

EXPERIMENT

$$R_{\pi}^{\tau/\mu}|_{exp} = 1.05 \pm 0.51$$

Expected improved precision @ Belle II (PTEP '19 (1808.10567))

Hypothetical 50% reduction of the error...

0.38

For further investigation of possible NP effects in the future, it is fundamental to extrapolate appropriately the FFs behaviour in the whole kinematical range L. Vittorio (SNS & INFN, Pisa) 3

0.59

Six sets of data from Belle and BaBar collaborations: BaBar 2011, 1 channel [PRD '11 (1005.3288)] Belle 2011, 1 channel [PRD '11 (1012.0090)] BaBar 2012, 2 channels [PRD '12 (1208.1253)] Belle 2013, 2 channels [PRD '13 (1306.2781)]

4

L. Vittorio (SNS & INFN, Pisa)

DM

 $\overline{(\mathbf{C}^{-1})}_{ij}$

The bands are the results of correlated weigthed averages:

$$|V_{ub}|_n = \frac{\sum_{i,j} (\mathbf{C}^{-1})_{ij} |V_{ub}|_j}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}, \qquad \sigma_{|V_{ub}|_n}^2 = \frac{1}{\sum_{i,j} (\mathbf{C}^{-1})_{ij}}$$

Three LQCD inputs have been used (arXiv:2202.10285):

- 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]
- 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)]
- 3 HPQCD data from their fits [PRD '14 (1406.2279)]

Three LQCD inputs have been used (arXiv:2202.10285): ф DM 📖 0.50.5combined \blacksquare Ф **3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)]** 0.40.4 Ф $q^2/m_{B_0^*}^2)$ $q^2/m_{B^*}^2)$ 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)] • 0.3 0.3 3 HPQCD data from their fits [PRD '14 (1406.2279)] • I $f_0^K(q^2)\cdot(1$ $f^K_+(q^2)\cdot(1$ Ф Ш Ш 0.2 0.2 once combined DM 📖 combined **H** 0.10.10.0 0.0 -0.1-0. 510 1520 2551520 250 10 q^2 (GeV²) $q^2 (\text{GeV}^2)$

Three LQCD inputs have been used (arXiv:2202.10285): ф 0.5DM 📖 0.5combined \mathbf{H} Ф 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)] 0.4 0.4Ф $q^{2}/m_{B_{0}^{\ast}}^{2})$ $q^2/m_{B^*}^2)$ 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)] 0.3 3 HPQCD data from their fits [PRD '14 (1406.2279)] . $f_0^K(q^2)\cdot(1$ $f_+^K(q^2)\cdot(1-$ Ш 0.2 0.2once combined DM 📖 combined **H** 0.10.0 0.0 -0. 1520 255 1520 5 10 10 25 q^2 (GeV²) $q^2 (\text{GeV}^2)$ **Vub**: LHCb Coll. has measured for the first time

 $R_{BF} \equiv \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} \qquad \text{Low-q}^2: \quad q^2 \le 7 \,\text{GeV}^2$ $\text{High-q}^2: \quad q^2 \ge 7 \,\text{GeV}^2$

LHCb Collaboration, PRL '21 [2012.05143]

Three LQCD inputs have been used (arXiv:2202.10285): ф 0.5DM 📖 0.5combined \mathbf{H} Ф 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)] 0.4 0.4 $q^2/m_{B_0^\ast}^2)$ $q^2/m_{B^*}^2)$ Ф 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)] 0.3 3 HPQCD data from their fits [PRD '14 (1406.2279)] . $f_0^K(q^2)\cdot(1$ $f^K_+(q^2)\cdot(1$ Ш 0.2 0.2once combined DM 📖 combined \mathbf{H} 0.10.0 0.0 -0. 1520 255 1520 5 10 10 25 q^2 (GeV²) $q^2 (\text{GeV}^2)$ **Vub**: LHCb Coll. has measured for the first time

q^2 -bin	RBC/UKQCD	FNAL/MILC	HPQCD	combined
low	6.70 ± 3.26	6.43 ± 2.03	3.57 ± 1.94	5.31 ± 3.02
high	4.20 ± 0.56	4.10 ± 0.38	3.54 ± 0.43	3.94 ± 0.59
average	3.93 ± 0.46	3.93 ± 0.35	3.54 ± 0.35	3.77 ± 0.48

Three LQCD inputs have been used (arXiv:2202.10285): ф 0.5DM 📖 0.5combined \mathbf{H} Ф 3 RBC/UKQCD synthetic data [PRD '15 (1501.05363)] 0.4 0.4 $q^2/m_{B_0^\ast}^2)$ $q^2/m_{B^*}^2)$ Ф 3 FNAL/MILC data from their fits [PRD '19 (1901.02561)] 0.33 HPQCD data from their fits [PRD '14 (1406.2279)] . $f_0^K(q^2)\cdot(1\cdot$ $f^K_+(q^2)\cdot(1$ ШШ 0.2 once combined DM 📖 combined \mathbf{H} 0.0 0.0 1520 255 5 10 10 1520 25 q^2 (GeV²) $q^2 (\text{GeV}^2)$ **Vub**: LHCb Coll. has measured for the first time $R_{BF} \equiv \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} \qquad \text{Low-q}^2: \quad q^2 \le 7 \,\text{GeV}^2$ $\text{High-q}^2: \quad q^2 \ge 7 \,\text{GeV}^2$ by using the exp. value LHCb Collaboration, $\| a^2 h$ DDC/UKOCD ENAL/MUC UDOOD ampina ²¹ [2012.05143] of the BR @ denominator PRL

q -Din	ndc/unqud	rnal/mill	пгуср	combined
low	6.70 ± 3.26	6.43 ± 2.03	3.57 ± 1.94	5.31 ± 3.02
high	4.20 ± 0.56	4.10 ± 0.38	3.54 ± 0.43	3.94 ± 0.59
average	3.93 ± 0.46	3.93 ± 0.35	3.54 ± 0.35	3.77 ± 0.48

DM Vub value:
$$|V_{ub}|\cdot 10^3 = 3.69\pm 0.34$$
 "

L. Vittorio (SNS & INFN, Pisa)

5

DM Vub value: $|V_{ub}| \cdot 10^3 = 3.69 \pm 0.34$

L. Vittorio (SNS & INFN, Pisa)

when averaged with the $B \rightarrow \pi$ result $\boxed{|V_{ub}| \cdot 10^3 = 3.62 \pm 0.47}$

Improved determination of $|V_{ub}|$ from semileptonic **B** $\rightarrow \pi$ decays

|Vub| is then determined by using the theoretical unitary bands for $f_+(q^2)$ and by iterating the procedure until consistency for |Vub| is reached:

$$|V_{ub}|_{\mathrm{B}\pi}^{\mathrm{impr}} \times 10^3 = 3.88 \pm 0.32$$

Improved determination of $|V_{ub}|$ from semileptonic **B** $\rightarrow \pi$ decays $|V_{ub}f_+(q_i^2)| = \sqrt{rac{d\Gamma}{da_i^2}} rac{1}{z_i}$ $z_i = kinematical coefficient$ in the i-th bin |Vub| is then determined by using the theoretical unitary bands for $f_{+}(q^2)$ and by iterating the procedure until consistency

Improved determination of $|V_{\mu\nu}|$ from semileptonic **B** $\rightarrow \pi$ decays

Summary plots/tables

Summary plots/tables

Summary plots/tables

<u>THANKS FOR</u> YOUR ATTENTION!

BACK-UP SLIDES

A methodological break: comparison with BGL/BCL

What is the **main improvement** with respect to **BGL/BCL parametrization**?

Boyd, Grinstein and Lebed, Phys. Lett. B353, 306 (19) Boyd, Grinstein and Lebed, Nucl. Phys. B461, 493 (19) Boyd, Grinstein and Lebed, Phys. Rev. D 56, 6895 (19)

Basics of BGL: the hadronic FFs corresponding to definite spin-parity can be represented as an expansion, originating from unitarity, analyticity and crossing symmetry, in terms of the conformal variable *z*, for instance

$$g(z) = \frac{1}{\sqrt{\chi_{1-}(q_0^2)}} \frac{1}{\phi_g(z, q_0^2) P_{1-}(z)} \sum_{n=0}^{\infty} a_n z^n$$

Basics of BCL: similar to BGL, the expansion series has a simpler form, for instance

$$f_{+}(z) = \frac{1}{1 - q^2/m_{B^*}^2} \sum_{n=0}^{N_z - 1} a_k \left[z^n - (-1)^{n - N_z} \frac{n}{N_z} z^{N_z} \right],$$

$$N_z = 1$$
Bourrely, Caprini an

$$f_0(z) = \sum_{n=0}^{N_z - 1} b_k z^k.$$

L. Vittorio (SNS & INFN, Pisa)

Bourrely, Caprini and Lellouch, Phys. Rev. D 79, 013008 (2009

			I SCIIII	icptoi
	Fit	$N_z = 3$	$N_z = 4$	$N_z = 5$
	$\chi^2/{ m dof}$	2.5	0.64	0.73
	dof	6	4	2
	p	0.02	0.63	0.48
	$\sum B_{mn}^+ b_m^+ b_n^+$	0.11(2)	0.016(5)	1.0(2.3)
	$\sum B^0_{mn} b^0_m b^0_n$	0.33(8)	2.8(1.7)	8(19)
	f(0)	0.00(4)	0.20(14)	0.36(27)
ne XIII 1503.07839	b_0^+	0.395(15)	0.407(15)	0.408(15)
MILC Coll.)	b_1^+	-0.93(11)	-0.65(16)	-0.60(21)
	b_2^+	-1.6(1)	-0.5(9)	-0.2(1.4)
	b_3^+		0.4(1.3)	3(4)
	b_4^+			5(5)
	b_0^0	0.515(19)	0.507(22)	0.511(24)
	b_1^0	-1.84(10)	-1.77(18)	-1.69(22)
	b_2^0	-0.14(25)	1.3(8)	2(1)
	b_3^0		4(1)	7(5)
	b_4^0			3(9)

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

$$f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$$

Tab of arXiv:1 (FNAL/N

	Fit	$N_z = 3$	$N_z = 4$	$N_z = 5$
	$\chi^2/{ m dof}$	2.5	0.64	0.73
	dof	6	4	2
	p	0.02	0.63	0.48
	$\sum B_{mn}^+ b_m^+ b_n^+$	0.11(2)	0.016(5)	1.0(2.3)
	$\sum B_{mn}^0 b_m^0 b_n^0$	0.33(8)	2.8(1.7)	8(19)
Table Mu	f(0)	0.00(4)	0.20(14)	0.36(27)
of arXiv:1503.07839	b_0^+	0.395(15)	0.407(15)	0.408(15)
(FNAL/MILC Coll.)	b_1^+	-0.93(11)	-0.65(16)	-0.60(21)
	b_2^+	-1.6(1)	-0.5(9)	-0.2(1.4)
	b_3^+		0.4(1.3)	3(4)
	b_4^+			5(5)
	b_0^0	0.515(19)	0.507(22)	0.511(24)
	b_1^0	-1.84(10)	-1.77(18)	-1.69(22)
	b_2^0	-0.14(25)	1.3(8)	2(1)
	b_3^0		4(1)	7(5)
	b_4^0			3(9)

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

$$f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$$

It seems that the mean value and the uncertainty are not stable under variation of the truncation order...

		LFU ir	n semi	lepton	ic $\mathbf{B} \rightarrow \pi$ decays
	Fit	$N_z = 3$	$N_z = 4$	$N_z = 5$	$f^{\pi}(q^2 = 0) _{\text{BBC/II}}$
	$\chi^2/{ m dof}$	2.5	0.64	0.73	
	dof	6	4	2	$\int f^{\pi}(q^2=0) _{\rm FNAI}$
	p	0.02	0.63	0.48	
	$\sum B_{mn}^+ b_m^+ b_n^+$	0.11(2)	0.016(5)	1.0(2.3)	$f^{\pi}(q^2=0) _{ m corr}$
	$\sum B_{mn}^0 b_m^0 b_n^0$	0.33(8)	2.8(1.7)	8(19)	
Table VIII	f(0)	0.00(4)	0.20(14)	0.36(27)]
of arXiv:1503.07839	b_0^+	0.395(15)	0.407(15)	0.408(15)	-
(FNAL/MILC Coll.)	b_1^+	-0.93(11)	-0.65(16)	-0.60(21)	
	b_2^+	-1.6(1)	-0.5(9)	-0.2(1.4)	It seems that the
	b_3^+		0.4(1.3)	3(4)	of the true
	b_4^+			5(5)	
	b_0^0	0.515(19)	0.507(22)	0.511(24)	The DN
	b_1^0	-1.84(10)	-1.77(18)	-1.69(22)	is independe
	b_2^0	-0.14(25)	1.3(8)	2(1)	•
	b_3^0		4(1)	7(5)	
	b_4^0			3(9)	

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

DM result
 $f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$

$$f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$$

It seems that the mean value and the uncertainty are not stable under variation of the truncation order...

The DM approach is independent of this issue!!!

$$f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$$

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

$$f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$$

Table XIX of **arXiv:1501.05363** (RBC/UKQCD Coll.)

			$f_+^{B\pi}$						$f_0^{B\pi}$					
K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn} b_m b_n$	K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn} b_m b_n$	$f(q^2 = 0)$	$\chi^2/{ m dof}$	p
1	0.447(36)				0.00394(63)							0.447(36)	4.02	2%
2	0.410(39)	-1.30(52)			0.0120(59)							0.241(83)	0.30	58%
3	0.420(43)	-1.46(59)	-4.7(7.2)		0.15(42)							0.07(32)		
						1	0.460(61)				0.0225(60)	0.460(61)	90.1	0%
						2	0.516(61)	-4.09(55)			0.408(63)	-0.074(73)	0.03	87%
						3	0.516(61)	-3.94(97)	0.7(3.8)		0.32(41)	-0.02(28)		
2	0.366(37)	-2.79(54)			0.0337(85)	2	0.587(58)	-3.33(38)			0.346(55)	0.040(65)	6.18	0%
3	0.427(40)	-1.62(46)	-7.7(1.5)		0.38(15)	2	0.521(60)	-4.03(52)			0.404(62)	-0.066(70)	0.10	91%
2	0.410(39)	-1.24(51)			0.0113(56)	3	0.520(60)	-3.12(42)	4.5(1.3)		0.41(17)	0.248(82)	0.58	56%
3	0.424(41)	-1.50(57)	-6.0(5.0)		0.24(38)	3	0.519(60)	-3.81(81)	1.2(3.4)		0.27(25)	$0.01(24)^{-1}$	0.07	79%

Same considerations developed for the FNAL/MILC case...

Table XIX of arXiv:1501.05363 (RBC/UKQCD Coll.)

 $f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

 $f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$

			$f^{B\pi}_+$						$f_0^{B\pi}$					
K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn}b_mb_n$	K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn} b_m b_n$	$f(q^2 = 0)$	$\chi^2/{ m dof}$	p
1	0.447(36)				0.00394(63)							0.447(36)	4.02	2%
2	0.410(39)	-1.30(52)			0.0120(59)							0.241(83)	0.30	58%
3	0.420(43)	-1.46(59)	-4.7(7.2)		0.15(42)							0.07(32)		
						1	0.460(61)				0.0225(60)	0.460(61)	90.1	0%
						2	0.516(61)	-4.09(55)			0.408(63)	-0.074(73)	0.03	87%
						3	0.516(61)	-3.94(97)	0.7(3.8)		0.32(41)	-0.02(28)		
$\overline{2}$	0.366(37)	-2.79(54)			0.0337(85)	2	0.587(58)	-3.33(38)			0.346(55)	0.040(65)	6.18	0%
3	0.427(40)	-1.62(46)	-7.7(1.5)		0.38(15)	2	0.521(60)	-4.03(52)			0.404(62)	-0.066(70)	0.10	91%
2	0.410(39)	-1.24(51)			0.0113(56)	3	0.520(60)	-3.12(42)	4.5(1.3)		0.41(17)	0.248(82)	0.58	56%
3	0.424(41)	-1.50(57)	-6.0(5.0)		0.24(38)	3	0.519(60)	-3.81(81)	1.2(3.4)		0.27(25)	0.01(24)	0.07	79%

Same considerations developed for the FNAL/MILC case...

Table XIX of **arXiv:1501.05363** (RBC/UKQCD Coll.) $f^{\pi}(q^2 = 0)|_{\text{RBC/UKQCD}} = -0.06 \pm 0.25$

DM result

$$f^{\pi}(q^2 = 0)|_{\text{FNAL/MILC}} = -0.01 \pm 0.16$$

 $f^{\pi}(q^2 = 0)|_{\text{combined}} = -0.04 \pm 0.22$

			$f_+^{B\pi}$						$f_0^{B\pi}$					
K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn}b_mb_n$	K	$b^{(0)}$	$b^{(1)}/b^{(0)}$	$b^{(2)}/b^{(0)}$	$b^{(3)}/b^{(0)}$	$\sum B_{mn} b_m b_n$	$f(q^2 = 0)$	$\chi^2/{ m dof}$	p
1	0.447(36)				0.00394(63)							0.447(36)	4.02	2%
2	0.410(39)	-1.30(52)			0.0120(59)							0.241(83)	0.30	58%
3	0.420(43)	-1.46(59)	-4.7(7.2)		0.15(42)							0.07(32)		
						1	0.460(61)				0.0225(60)	0.460(61)	90.1	0%
						2	0.516(61)	-4.09(55)			0.408(63)	-0.074(73)	0.03	87%
						3	0.516(61)	-3.94(97)	0.7(3.8)		0.32(41)	-0.02(28)		
2	0.366(37)	-2.79(54)			0.0337(85)	2	0.587(58)	-3.33(38)			0.346(55)	0.040(65)	6.18	0%
3	0.427(40)	-1.62(46)	-7.7(1.5)		0.38(15)	2	0.521(60)	-4.03(52)			0.404(62)	-0.066(70)	0.10	91%
2	0.410(39)	-1.24(51)			0.0113(56)	3	0.520(60)	-3.12(42)	4.5(1.3)		0.41(17)	0.248(82)	0.58	56%
3	0.424(41)	-1.50(57)	-6.0(5.0)		0.24(38)	3	0.519(60)	-3.81(81)	1.2(3.4)		0.27(25)	$0.01(24)^{-1}$	0.07	79%

Important issue: the DM method equivalent to the results of **all** possible fits which satisfy unitarity and at the same time reproduce exactly the input data

How to build up the *combined* case

FFs with mean values $x_i^{(k)}$ and uncertainties $\sigma_i^{(k)}$ $(k = 1, \dots, N)$

Mean values and uncertainties of the *new combined* values

Covariance matrix of the *new combined* values

Cov. Matrices of the k-th LQCD computation

$$T_{ij} \equiv \frac{1}{N} \sum_{k=1}^{N} C_{ij}^{(k)} + \frac{1}{N} \sum_{k=1}^{N} (x_i^{(k)} - x_i)(x_j^{(k)} - x_j)$$

Conservative choice in arXiv:2202.10285

The Dispersive Matrix (DM) method

Let us examine the case of the production of a pseudoscalar meson (as for the $B \to D$ case). Supposing to have *n* LQCD data for the FFs at the quadratic momenta $\{t_1, \dots, t_n\}$ (hereafter $t \equiv q^2$), we define

$$\mathbf{M} = \begin{pmatrix} \langle \phi f | \phi f \rangle & \langle \phi f | g_t \rangle & \langle \phi f | g_{t_1} \rangle & \cdots & \langle \phi f | g_{t_n} \rangle \\ \langle g_t | \phi f \rangle & \langle g_t | g_t \rangle & \langle g_t | g_{t_1} \rangle & \cdots & \langle g_t | g_{t_n} \rangle \\ \langle g_{t_1} | \phi f \rangle & \langle g_{t_1} | g_t \rangle & \langle g_{t_1} | g_{t_1} \rangle & \cdots & \langle g_{t_1} | g_{t_n} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_n} | \phi f \rangle & \langle g_{t_n} | g_t \rangle & \langle g_{t_n} | g_{t_1} \rangle & \cdots & \langle g_{t_n} | g_{t_n} \rangle \end{pmatrix}$$

The conformal variable z is related to the momentum transfer as:

$$z(t) = \frac{\sqrt{\frac{t_{+}-t_{-}}{t_{+}-t_{-}}} - 1}{\sqrt{\frac{t_{+}-t_{-}}{t_{+}-t_{-}}} + 1}$$

$$t_{\pm} \equiv (m_{B} \pm m_{D})^{2}$$

$$L. \text{ Let } C. \text{ Boundary of } t_{-} = 0$$

$$\langle h_1 | h_2 \rangle = \int_{|z|=1} \frac{dz}{2\pi i z} \bar{h}_1(z) h_2(z)$$

$$g_t(z) \equiv \frac{1}{1 - \bar{z}(t) z}$$

$$\text{CENTRAL REQUIREMENT:}$$

$$\det \mathbf{M} \ge \mathbf{0}$$

Two advantages:

- 1. z is real
- 2. 1-to-1 correspondence:

$$[0, t_{max} = t_{-}] \Rightarrow [z_{max}, 0]$$

- A lot of work in the past:
- L. Lellouch, NPB, 479 (1996), p. 353-391
- C. Bourrely, B. Machet, and E. de Rafael, NPB, 189 (1981), pp.
- E. de Rafael and J. Taron, PRD, 50 (1994), p. 373-380

The DM method

We also have to define the kinematical functions

$$\mathbf{M} = \begin{pmatrix} \langle \phi f | \phi f \rangle & \langle \phi f | g_t \rangle & \langle \phi f | g_{t_1} \rangle & \cdots & \langle \phi f | g_{t_n} \rangle \\ \langle g_t | \phi f \rangle & \langle g_t | g_t \rangle & \langle g_t | g_{t_1} \rangle & \cdots & \langle g_t | g_{t_n} \rangle \\ \langle g_{t_1} | \phi f \rangle & \langle g_{t_1} | g_t \rangle & \langle g_{t_1} | g_{t_1} \rangle & \cdots & \langle g_{t_1} | g_{t_n} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_n} | \phi f \rangle & \langle g_{t_n} | g_t \rangle & \langle g_{t_n} | g_{t_1} \rangle & \cdots & \langle g_{t_n} | g_{t_n} \rangle \end{pmatrix} \end{pmatrix}$$

$$\phi_0(z,Q^2) = \sqrt{\frac{2n_I}{3}} \sqrt{\frac{3t_+t_-}{4\pi}} \frac{1}{t_+ - t_-} \frac{1+z}{(1-z)^{5/2}} \left(\beta(0) + \frac{1+z}{1-z}\right)^{-2} \left(\beta(-Q^2) + \frac{1+z}{1-z}\right)^{-2},$$

$$\phi_+(z,Q^2) = \sqrt{\frac{2n_I}{3}} \sqrt{\frac{1}{\pi(t_+ - t_-)}} \frac{(1+z)^2}{(1-z)^{9/2}} \left(\beta(0) + \frac{1+z}{1-z}\right)^{-2} \left(\beta(-Q^2) + \frac{1+z}{1-z}\right)^{-3}, \ \beta(t) \equiv \sqrt{\frac{t_+ - t_-}{t_+ - t_-}} \frac{(1+z)^2}{(1-z)^{9/2}} \left(\beta(0) + \frac{1+z}{1-z}\right)^{-2} \left(\beta(-Q^2) + \frac{1+z}{1-z}\right)^{-3}, \ \beta(t) \equiv \sqrt{\frac{t_+ - t_-}{t_+ - t_-}} \frac{(1+z)^2}{(1-z)^{9/2}} \left(\beta(0) + \frac{1+z}{1-z}\right)^{-2} \left(\beta(-Q^2) + \frac{1+z}{1-z}\right)^{-3}, \ \beta(t) \equiv \sqrt{\frac{t_+ - t_-}{t_+ - t_-}} \frac{(1+z)^2}{(1-z)^{9/2}} \left(\beta(0) + \frac{1+z}{1-z}\right)^{-2} \left(\beta(-Q^2) + \frac{1+z}{1-z}\right)^{-3}, \ \beta(t) \equiv \sqrt{\frac{t_+ - t_-}{t_+ - t_-}} \frac{(1+z)^2}{(1-z)^{9/2}} \left(\beta(0) + \frac{1+z}{1-z}\right)^{-2} \left(\beta(-Q^2) + \frac{1+z}{1-z}\right)^{-3}, \ \beta(t) \equiv \sqrt{\frac{t_+ - t_-}{t_+ - t_-}} \frac{(1+z)^2}{(1-z)^{9/2}} \left(\beta(0) + \frac{1+z}{1-z}\right)^{-2} \left(\beta(-Q^2) + \frac{1+z}{1-z}\right)^{-3} \right)^{-3}$$

Thus, we need **these external inputs** to implement our method:

- estimates of the FFs, computed on the lattice, $@ \{t_1, ..., t_n\}$: from Cauchy's theorem (for generic m)

$$\langle g_{t_m} | \phi f \rangle = \phi(t_m, Q^2) f(t_m) \int_{LQCD \ data!} \phi(t_m, Q^2) f(t_m)$$

$$\langle g_{t_m} | g_{t_l} \rangle = \frac{1}{1 - \bar{z}(t_l) z(t_m)}$$

- non-perturbative values of the susceptibilities, since from the dispersion relations (calling Q^2 the Euclidean quadratic momentum)

$$\chi(Q^2) \ge \left\langle \phi f | \phi f \right\rangle$$

L. Vittorio (SNS & INFN, Pisa)

Since the susceptibilities are computed on the lattice, we can in principle use whatever value of Q^2 !

The DM method

In the presence of **poles** @ $t_{P1}, t_{P2}, \cdots ..., t_{PN}$:

i		($\langle \phi f \phi f angle$	$\langle \phi f g_t angle$	$\langle \phi f g_{t_1} angle$	•••	$\langle \phi f g_{t_n} \rangle$)
1			$\langle g_t \phi f angle$	$\langle g_t g_t angle$	$\langle g_t g_{t_1} angle$	• • •	$\langle g_t g_{t_n} angle$
	$\mathbf{M} =$		$\langle g_{t_1} \phi f angle$	$\langle g_{t_1} g_t angle$	$\langle g_{t_1} g_{t_1} angle$	•••	$\langle g_{t_1} g_{t_n} angle$
i			:	:	:	:	:
I			$\langle g_{t_n} \phi f angle$	$\langle g_{t_n} g_t angle$	$\langle g_{t_n} g_{t_1} angle$	•	$\langle g_{t_n} g_{t_n} angle$ /

$$\phi(z,q^2) \to \phi_P(z,q^2) \equiv \phi(z,q^2) \times \frac{z - z(t_{P1})}{1 - \bar{z}(t_{P1})z} \times \cdots \times \frac{z - z(t_{PN})}{1 - \bar{z}(t_{PN})z}$$

Thus, we need **these external inputs** to implement our method:

- estimates of the FFs, computed on the lattice, $@ \{t_1, ..., t_n\}$: from Cauchy's theorem (for generic m)

$$\langle g_{t_m} | \phi f \rangle = \phi(t_m, Q^2) f(t_m) \int_{LQCD \ data!} \phi(t_m, Q^2) f(t_m)$$

$$\langle g_{t_m} | g_{t_l} \rangle = rac{1}{1 - \bar{z}(t_l) z(t_m)}$$

- non-perturbative values of the susceptibilities, since from the dispersion relations (calling Q^2 the Euclidean quadratic momentum)

$$\chi(Q^2) \ge \left\langle \phi f | \phi f \right\rangle$$

The DM method

The positivity of the original inner products guarantee that $\det M \ge 0$: the solution of this inequality can be computed analitically, bringing to

$$\begin{array}{l} \underset{bound}{\text{LOWER}} \quad \boxed{\beta - \sqrt{\gamma}} \leq f(z) \leq \boxed{\beta + \sqrt{\gamma}} \underset{bound}{\text{UPPER}} \\ \beta = \frac{1}{d(z)\phi(z)} \sum_{j=1}^{N} f_j \phi_j d_j \frac{1 - z_j^2}{z - z_f} \quad \gamma = \frac{1}{d^2(z)\phi^2(z)} \frac{1}{1 - z^2} \left[\chi - \sum_{i,j=1}^{N} f_i f_j \phi_i \phi_j d_i d_j \frac{(1 - z_i^2)(1 - z_j^2)}{1 - z_i z_j} \right] \end{array}$$

UNITARITY FILTER: unitarity is satisfied if γ is semipositive definite, namely if

$$\chi \ge \sum_{i,j=1} N f_i f_j \phi_i \phi_j d_i d_j \frac{(1-z_i^2)(1-z_j^2)}{1-z_i z_j}$$

This is a **parametrization-independent unitarity test** of the LQCD input data

Kinematical Constraints (KCs)

REMINDER: after the unitarity filter we were left with *N_U* < *N* survived events!!!

Let us focus on the pseudoscalar case. Since by construction the following *kinematical constraint* holds

$$f_0(0) = f_+(0)$$

we will filter only the $N_{KC} < N_U$ events for which the two bands of the FFs intersect each other @ t = 0. Namely, for each of these events we also define

$$\begin{split} \phi_{lo} &= \max[F_{+,lo}(t=0), F_{0,lo}(t=0)] \\ \phi_{up} &= \min[F_{+,up}(t=0), F_{0,up}(t=0)] \\ \phi_{up} &= \min[F_{+,up}(t=0), F_{0,up}(t=0)] \\ 0 \\ (p_D) |V^{\mu}|B(p_B)\rangle &= f^+(q^2) \left(p_B^{\mu} + p_D^{\mu} - \frac{m_B^2 - m_D^2}{q^2} q^{\mu} \right) + f^0(q^2) \frac{m_B^2 - m_D^2}{q^2} q^{\mu} \end{split}$$

Kinematical Constraints (KCs)

We then consider a **modified matrix**

$$\mathbf{M_C} = \begin{pmatrix} \phi f | \phi f \rangle & \langle \phi f | g_t \rangle & \langle \phi f | g_{t_1} \rangle & \cdots & \langle \phi f | g_{t_n} \rangle & \langle \phi f | g_{t_{n+1}} \rangle \\ \langle g_t | \phi f \rangle & \langle g_t | g_t \rangle & \langle g_t | g_{t_1} \rangle & \cdots & \langle g_t | g_{t_n} \rangle & \langle g_t | g_{t_{n+1}} \rangle \\ \langle g_{t_1} | \phi f \rangle & \langle g_{t_1} | g_t \rangle & \langle g_{t_1} | g_{t_1} \rangle & \cdots & \langle g_{t_1} | g_{t_n} \rangle & \langle g_{t_1} | g_{t_{n+1}} \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle g_{t_n} | \phi f \rangle & \langle g_{t_n} | g_t \rangle & \langle g_{t_n} | g_{t_1} \rangle & \cdots & \langle g_{t_n} | g_{t_n} \rangle & \langle g_{t_n} | g_{t_{n+1}} \rangle \\ \langle g_{t_{n+1}} | \phi f \rangle & \langle g_{t_{n+1}} | g_t \rangle & \langle g_{t_{n+1}} | g_{t_1} \rangle & \cdots & \langle g_{t_{n+1}} | g_{t_n} \rangle & \langle g_{t_{n+1}} | g_{t_{n+1}} \rangle \end{pmatrix}$$

with $t_{n+1} = 0$. Hence, we compute the new lower and upper bounds of the FFs in this way. For each of the N_{KC} events, we extract $N_{KC,2}$ values of $f_0(0) = f_+(0) \equiv f(0)$ with uniform distribution defined in the range $[\phi_{lo}, \phi_{up}]$. Thus, for both the FFs and for each of the N_{KC} events we define

$$F_{lo}(t) = \min[F_{lo}^{1}(t), F_{lo}^{2}(t), \cdots, F_{lo}^{N_{KC,2}}(t)],$$

$$F_{up}(t) = \max[F_{up}^{1}(t), F_{up}^{2}(t), \cdots, F_{up}^{N_{KC,2}}(t)]$$

Non-perturbative computation of the susceptibilities

In **arXiv:2105.07851**, we have presented the results of the first computation on the lattice of the susceptibilities for the $b \rightarrow c$ quark transition, using the N_f =2+1+1 gauge ensembles generated by ETM Collaboration.

How are they defined? The starting point is the HVP tensor:

$$\Pi^{V}_{\mu\nu}(Q) = \int d^{4}x \ e^{-iQ\cdot x} \langle 0|T\left[\bar{b}(x)\gamma^{E}_{\mu}c(x) \ \bar{c}(0)\gamma^{E}_{\nu}b(0)\right]|0\rangle$$
$$= -Q_{\mu}Q_{\nu}\Pi_{0^{+}}(Q^{2}) + (\delta_{\mu\nu}Q^{2} - Q_{\mu}Q_{\nu})\Pi_{1^{-}}(Q^{2})$$

To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

Non-perturbative computation of the susceptibilities

In **arXiv:2105.07851**, we have presented the results of the first computation on the lattice of the susceptibilities for the $b \rightarrow c$ quark transition, using the N_f =2+1+1 gauge ensembles generated by ETM Collaboration.

How are they defined? The starting point is the HVP tensor:

$$\Pi^{V}_{\mu\nu}(Q) = \int d^{4}x \ e^{-iQ\cdot x} \langle 0|T\left[\bar{b}(x)\gamma^{E}_{\mu}c(x) \ \bar{c}(0)\gamma^{E}_{\nu}b(0)\right]|0\rangle$$
$$= -Q_{\mu}Q_{\nu}\Pi_{0^{+}}(Q^{2}) + (\delta_{\mu\nu}Q^{2} - Q_{\mu}Q_{\nu})\Pi_{1^{-}}(Q^{2})$$

To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

$$\begin{split} \chi_{0^{+}}(Q^{2}) &\equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2} \Pi_{0^{+}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2} j_{0}(Qt) \ C_{0^{+}}(t) \ , \qquad \xrightarrow{\text{W. I.}} \quad \frac{1}{4} \int_{0}^{\infty} dt' \ t'^{4} \ \frac{j_{1}(Qt')}{Qt'} \left[(m_{b} - m_{c})^{2} C_{S}(t') + Q^{2} C_{0^{+}}(t') \right] \\ \chi_{1^{-}}(Q^{2}) &\equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}} \left[Q^{2} \Pi_{1^{-}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{-}}(t) \\ \chi_{0^{-}}(Q^{2}) &\equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2} \Pi_{0^{-}}(Q^{2}) \right] = \int_{0}^{\infty} dt \ t^{2} j_{0}(Qt) \ C_{0^{-}}(t) \ , \qquad \xrightarrow{\text{W. I.}} \quad \frac{1}{4} \int_{0}^{\infty} dt' \ t'^{4} \ \frac{j_{1}(Qt')}{Qt'} \left[(m_{b} + m_{c})^{2} C_{P}(t') + Q^{2} C_{0^{-}}(t') \right] \\ \chi_{1^{+}}(Q^{2}) &\equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}} \left[Q^{2} \Pi_{1^{+}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \ t^{4} \frac{j_{1}(Qt)}{Qt} \ C_{1^{+}}(t) \end{split}$$

Non-perturbative computation of the susceptibilities

The possibility to compute the χ s on the lattice allows us to choose *whatever value of Q*² !!!! (i.e. near the region of production of the resonances)

NOT POSSIBLE IN PERTURBATION THEORY!!!

$$(m_b + m_c)\Lambda_{QCD} << (m_b + m_c)^2 - q^2$$

POSSIBLE IMPROVEMENT IN THE STUDY
OF THE FFs through our method!
Work in progress...

To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

$$\begin{split} \chi_{0^{+}}(Q^{2}) &\equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2} \Pi_{0^{+}}(Q^{2}) \right] = \int_{0}^{\infty} dt \; t^{2} j_{0}(Qt) \; C_{0^{+}}(t) \;, \qquad \xrightarrow{\text{W. I.}} \quad \frac{1}{4} \int_{0}^{\infty} dt' \; t'^{4} \; \frac{j_{1}(Qt')}{Qt'} \left[(m_{b} - m_{c})^{2} C_{S}(t') + Q^{2} C_{0^{+}}(t') \right] \\ \chi_{1^{-}}(Q^{2}) &\equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}} \left[Q^{2} \Pi_{1^{-}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \; t^{4} \frac{j_{1}(Qt)}{Qt} \; C_{1^{-}}(t) \\ \chi_{0^{-}}(Q^{2}) &\equiv \frac{\partial}{\partial Q^{2}} \left[Q^{2} \Pi_{0^{-}}(Q^{2}) \right] = \int_{0}^{\infty} dt \; t^{2} j_{0}(Qt) \; C_{0^{-}}(t) \;, \qquad \xrightarrow{\text{W. I.}} \quad \frac{1}{4} \int_{0}^{\infty} dt' \; t'^{4} \; \frac{j_{1}(Qt')}{Qt'} \left[(m_{b} + m_{c})^{2} C_{P}(t') + Q^{2} C_{0^{-}}(t') \right] \\ \chi_{1^{+}}(Q^{2}) &\equiv -\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}} \left[Q^{2} \Pi_{1^{+}}(Q^{2}) \right] = \frac{1}{4} \int_{0}^{\infty} dt \; t^{4} \frac{j_{1}(Qt)}{Qt} \; C_{1^{+}}(t) \end{split}$$

ETMC ratio method & final results

For the extrapolation to the physical *b*-quark point we have used the ETMC ratio method:

$$R_{j}(n;a^{2},m_{ud}) \equiv \frac{\chi_{j}[m_{h}(n);a^{2},m_{ud}]}{\chi_{j}[m_{h}(n-1);a^{2},m_{ud}]} \underbrace{\frac{\rho_{j}[m_{h}(n)]}{\rho_{j}[m_{h}(n-1)]}}_{to \ ensure \ that} \prod_{\substack{h=0 \\ h=0}}^{h_{0}+(m_{h})=\rho_{0}-(m_{h})=1} ,$$

All the details are deeply discussed in *arXiv:2105.07851*. In this way, we have obtained **the first lattice QCD determination of susceptibilities of heavy-to-heavy (and heavy-to-light) transition current densities:**

 $b \rightarrow c$

$b \rightarrow u$

	Perturbative	With subtraction	Non-perturbative	With subtraction	Non-perturbative	With subtraction
$\chi_{V_L}[10^{-3}]$	6.204(81)		7.58(59)		2.04(20)	
$\chi_{A_L}[10^{-3}]$	24.1	19.4	25.8(1.7)	21.9(1.9)	2.34(13)	
$\chi_{V_T} [10^{-4} \text{ GeV}^{-2}]$	6.486(48)	5.131(48)	6.72(41)	5.88(44)	4.88(1.16)	4.45(1.16)
$\chi_{A_T}[10^{-4} \text{ GeV}^{-2}]$	3.894	—	4.69(30)		4.65(1.02)	

Bigi, Gambino PRD '16 Bigi, Gambino, Schacht PLB '17 Bigi, Gambino, Schacht JHEP '17