important news: LQCD form factors for $B \rightarrow D^{*} \ell \nu_{\ell}$ decays from FNAL/MILC (arXiv:2105.14019)
synthetic data points at 3 non-zero values of the recoil (w-1)

w

joint fit:
BGL fit of LQCD points + Belle + BaBar exp. data
$\left|V_{c b}\right| \cdot 10^{3}=38.40 \pm 0.74$
$\simeq 1.9 \%$
$R\left(D^{*}\right)=0.2483 \pm 0.0013$
lattice fit: quadratic BGL fit of LQCD points only

$$
R\left(D^{*}\right)=0.265 \pm 0.013
$$

simultaneous fit of the lattice points and experimental data
the extracted FFs are hybrid quantities: their shape and uncertainties are affected by the experimental data

FFs treated as pure theoretical quantities

$$
\frac{d \Gamma}{d w} \propto\left|V_{c b}\right|^{2} \sqrt{w^{2}-1} \frac{q^{2}}{M_{B}^{4}}\left[H_{0}^{2}(w)+H_{-}^{2}(w)+H_{+}^{2}(w)\right]=\left|V_{c b}\right|^{2} \sqrt{w^{2}-1}\left\{\left(\frac{\mathscr{F}_{1}(w)}{M_{B}^{2}}\right)^{2}+2 \frac{q^{2}}{M_{B}^{2}}\left[\left(\frac{f(w)}{M_{B}}\right)^{2}+r^{2}\left(w^{2}-1\right) m_{B}^{2} g^{2}(w)\right]\right\} \quad m_{\ell}=0
$$

extraction of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $B \rightarrow D^{*} \ell \nu_{\ell}$ decays

*** we do not mix theoretical calculations with experimental data to describe the shape of the FFs ***

$$
\left|V_{c b}\right|_{i} \equiv \sqrt{\frac{(d \Gamma / d x)_{i}^{e x p}}{(d \Gamma / d x)_{i}^{t h}}} \quad i=1, \ldots, N_{b i n s}
$$

four different differential decay rates $d \Gamma / d x$ where $x=\left\{w, \cos \theta_{v}, \cos \theta_{\ell}, \chi\right\}$:

- 10 bins for each variable
- total of 80 data points
blue data: Belle 1702.01521
red data: Belle 1809.03290

bands are (correlated) weighted averages

$$
\begin{aligned}
\left|V_{c b}\right| & =\frac{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}\left|V_{c b}\right|_{j}}{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}}, \\
\sigma_{\left|V_{c b}\right|}^{2} & =\frac{1}{\sum_{i, j=1}^{10}\left(\mathbf{C}^{-1}\right)_{i j}},
\end{aligned}
$$

experiment	$\left\|V_{c b}\right\|(x=w)$	$\left\|V_{c b}\right\|\left(x=\cos \theta_{l}\right)$	$\left\|V_{c b}\right\|\left(x=\cos \theta_{v}\right)$	$\left\|V_{c b}\right\|(x=\chi)$
Ref. [11]	$0.0398(9)$	$0.0422(13)$	$0.0421(13)$	$0.0426(14)$
Ref. [12]	$0.0395(7)$	$0.0405(11)$	$0.0402(10)$	$0.0430(13)$

averaging procedure

$$
\begin{array}{ll}
\mu_{x}=\frac{1}{N} \sum_{k=1}^{N} x_{k}, & \left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=41.3 \pm 1.7 \\
\sigma_{x}^{2}=\frac{1}{N} \sum_{k=1}^{N} \sigma_{k}^{2}+\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\mu_{x}\right)^{2}, & \left|V_{c b}\right|_{\text {incl. }} \cdot 10^{3}=42.16 \pm 0.50
\end{array}
$$

$$
\left|V_{c b}\right|_{\text {incl. }} \cdot 10^{3}=42.16 \pm 0.50 \quad \text { (Bordone et al: arXiv:2107.00604) }
$$

exclusive/inclusive tension reduced to less than 1σ

the use of exp. data to describe the shape of the FFs leads to smaller errors, but it produces a bias on the extracted value of $\left|V_{c b}\right|$

$$
\begin{array}{lr}
\left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=39.6_{-1.0}^{+1.1} & \text { Gambino et al., arXiv:1905.08209 } \\
\left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=39.56_{-1.06}^{1+04} & \text { Jaiswal et al., arXiv:2002.05726 } \\
\left|V_{c b}\right|_{\text {excl. }} \cdot 10^{3}=38.86 \pm 0.88 & \text { FLAG '21, arXiv:2111.09849 }
\end{array}
$$

