
GIT - THERE BE DRAGONS!

from (l)user to r00t in 60 minutes

Javier L. Gómez
January 28, 2019

Computer Architecture and Technology Area (ARCOS)—University Carlos III of Madrid

LICENSE

This presentation can be redistributed and/or modified under
the terms of CC-BY-NC license.

1/52

Agenda

1 Introduction

2 Git essentials

3 [(l)user] Porcelain

4 [sudoer] More porcelain

5 [r00t] Plumbing

6 Additional stuff

7 Conclusion
2/52

Introduction

SCM/Revision control systems

“Version control is a system that records changes to a file or
set of files over time so that you can recall specific versions
later (…) if you screw things up or lose files, you can easily
recover.” [https:///git-scm.org/]

What you get:

Compare changes over time or revert files.
See who introduced an issue.
Make experimental changes (and merge them).
…

3/52

RCS models: centralized/distributed

Centralized: Subversion (SVN),
CVS…

Distributed: git, Mercurial (hg)…

4/52

git - the stupid content tracker (1/3)

This is not GitHub, nor GitLab…

5/52

git - the stupid content tracker (2/3)

Git: a distributed RCS.

Started by Linus Torvalds; currently maintained by Junio C
Hamano.

6/52

git - the stupid content tracker (3/3)

139 separate binaries, wrapped by git(1); some of them
accept lots of options! e.g. git-log parses 100+ options
Divided into high level (porcelain) and low level
(plumbing) commands
Largely documented:
$ basename --suffix=.1.gz

/usr/share/man/man1/git* | xargs man | wc -l

53260 (=870 pages PDF)
Target of this talk: people using Git

7/52

Minimum set of commands

Initialization git clone

git init

Interrogation git log

git status

git diff

Manipulation git add

git commit

Interaction git push

git pull

8/52

Git essentials

Working tree and .git/ directory (1/2)

.git/ directory: contains Git
administrative and control files.
Working tree: the tree of checked
out files.

repository/

.git/

config

HEAD
…

Makefile

main.cpp
…

9/52

Working tree and .git/ directory (2/2)

Bare repository: NO working tree
+ NO .git/ directory
sub-directory.
Git files directly present in the
directory.

repository.git/

config

HEAD
…

10/52

Objects, references and symrefs (1/3)

Object: raw octets stored in Git; identified by its SHA-1.
Types: commit, tree, blob, tag.

Ref(erence): a name that points to an object. Hierarchical
namespace rooted at refs/
Symref: a ref that points to another ref, e.g. HEAD.

11/52

Objects, references and symrefs (1/3)

Object: raw octets stored in Git; identified by its SHA-1.
Types: commit, tree, blob, tag.
Ref(erence): a name that points to an object. Hierarchical
namespace rooted at refs/

Symref: a ref that points to another ref, e.g. HEAD.

11/52

Objects, references and symrefs (1/3)

Object: raw octets stored in Git; identified by its SHA-1.
Types: commit, tree, blob, tag.
Ref(erence): a name that points to an object. Hierarchical
namespace rooted at refs/
Symref: a ref that points to another ref, e.g. HEAD.

HEAD

refs/heads/master

770fcfa540f5f5d1f49570b9d09320c7a7b7e879 (commit)

11/52

Objects, references and symrefs (2/3)

The contents of an object
depend on its type:
Blob: raw data; stores file
contents.

Tree: directory contents.
Commit: information about a
revision.
Tag: ref pointing to a commit +
message + PGP signature
(optional).

#
/etc/hosts: …

9355a87

Generated by
NetworkManager
search arcos.…

0632e41

12/52

Objects, references and symrefs (2/3)

The contents of an object
depend on its type:
Blob: raw data; stores file
contents.
Tree: directory contents.

Commit: information about a
revision.
Tag: ref pointing to a commit +
message + PGP signature
(optional).

#
/etc/hosts: …

9355a87

Generated by
NetworkManager
search arcos.…

0632e41

3814f01
hosts

resolv.conf

12/52

Objects, references and symrefs (2/3)

The contents of an object
depend on its type:
Blob: raw data; stores file
contents.
Tree: directory contents.
Commit: information about a
revision.

Tag: ref pointing to a commit +
message + PGP signature
(optional).

#
/etc/hosts: …

9355a87

Generated by
NetworkManager
search arcos.…

0632e41

3814f01
hosts

resolv.conf

efa21b0

12/52

Objects, references and symrefs (2/3)

The contents of an object
depend on its type:
Blob: raw data; stores file
contents.
Tree: directory contents.
Commit: information about a
revision.
Tag: ref pointing to a commit +
message + PGP signature
(optional).

#
/etc/hosts: …

9355a87

Generated by
NetworkManager
search arcos.…

0632e41

3814f01
hosts

resolv.conf

efa21b0

a27c52b

12/52

Objects, references and symrefs (3/3)

Typically, objects can be reached given a ref (but not always).

re
fs/
he
ad
s/
m
as
te
r

Unreachable object: an object
which is not reachable from
any reference.

re
fs/
he
ad
s/
m
as
te
r

Dangling object: not reachable
even from other unrechable
objects.

More at gitglossary(7)13/52

Project history, branches and tags

Commit objects form a DAG (they point to
their parents). This DAG is known as the
history of a project.

re
fs/
he
ad
s/
fo
o

re
fs/
re
m
ot
es
/o
-

rig
in
/m
as
te
r

re
fs/
he
ad
s/
m
as
te
r

14/52

Project history, branches and tags

Commit objects form a DAG (they point to
their parents). This DAG is known as the
history of a project.

Branch: an active line of development;
tip: the most recent commit.

re
fs/
he
ad
s/
fo
o

re
fs/
re
m
ot
es
/o
-

rig
in
/m
as
te
r

re
fs/
he
ad
s/
m
as
te
r

14/52

Project history, branches and tags

Commit objects form a DAG (they point to
their parents). This DAG is known as the
history of a project.

Branch: an active line of development;
tip: the most recent commit.

(Branch) head: a reference to the tip of a
branch.
Local heads at: refs/heads/.

re
fs/
he
ad
s/
fo
o

re
fs/
re
m
ot
es
/o
-

rig
in
/m
as
te
r

re
fs/
he
ad
s/
m
as
te
r

14/52

Project history, branches and tags

Commit objects form a DAG (they point to
their parents). This DAG is known as the
history of a project.

Branch: an active line of development;
tip: the most recent commit.

(Branch) head: a reference to the tip of a
branch.
Local heads at: refs/heads/.

Remote-tracking branch: a ref to a
remote head; follow changes from
another repository.
At refs/remotes/*/.

re
fs/
he
ad
s/
fo
o

re
fs/
re
m
ot
es
/o
-

rig
in
/m
as
te
r

re
fs/
he
ad
s/
m
as
te
r

14/52

Project history, branches and tags

Commit objects form a DAG (they point to
their parents). This DAG is known as the
history of a project.

Merge commit: a commit object that has
≥ 2 parents.

Octopus: a merge that has > 2 parents.

re
fs/
he
ad
s/
fo
o

re
fs/
re
m
ot
es
/o
-

rig
in
/m
as
te
r

re
fs/
he
ad
s/
m
as
te
r

14/52

The “index” (cache) file

Short story: basically, it is the staging area for the next commit.

“A collection of files with stat information, whose contents
are stored as objects.” [gitglossary(7)]

For each file, it stores <object SHA-1> <attributes1>
100644 01cb7066623241a0e5714a6630f0355eb0c80de4 0 .gitignore
…
100644 94fbec4cf383e9122c22d60cfad91b3c897e2c63 0 slides.tex

Changes to the working tree found by comparing these
attributes.
Entries may be updated (git add) and new commits may
be created from the index.

1Last modified time, size, etc.

15/52

The “index” (cache) file

Short story: basically, it is the staging area for the next commit.

“A collection of files with stat information, whose contents
are stored as objects.” [gitglossary(7)]
For each file, it stores <object SHA-1> <attributes1>
100644 01cb7066623241a0e5714a6630f0355eb0c80de4 0 .gitignore
…
100644 94fbec4cf383e9122c22d60cfad91b3c897e2c63 0 slides.tex

Changes to the working tree found by comparing these
attributes.
Entries may be updated (git add) and new commits may
be created from the index.

1Last modified time, size, etc.

15/52

The “index” (cache) file

Short story: basically, it is the staging area for the next commit.

“A collection of files with stat information, whose contents
are stored as objects.” [gitglossary(7)]
For each file, it stores <object SHA-1> <attributes1>
100644 01cb7066623241a0e5714a6630f0355eb0c80de4 0 .gitignore
…
100644 94fbec4cf383e9122c22d60cfad91b3c897e2c63 0 slides.tex

Changes to the working tree found by comparing these
attributes.

Entries may be updated (git add) and new commits may
be created from the index.

1Last modified time, size, etc.

15/52

The “index” (cache) file

Short story: basically, it is the staging area for the next commit.

“A collection of files with stat information, whose contents
are stored as objects.” [gitglossary(7)]
For each file, it stores <object SHA-1> <attributes1>
100644 01cb7066623241a0e5714a6630f0355eb0c80de4 0 .gitignore
…
100644 94fbec4cf383e9122c22d60cfad91b3c897e2c63 0 slides.tex

Changes to the working tree found by comparing these
attributes.
Entries may be updated (git add) and new commits may
be created from the index.

1Last modified time, size, etc.

15/52

Other definitions (1/3)

Fast-forward: a special type of merge; given two heads A and B,
merging B into A is considered fast-forward if
merge_base(A,B) == A, i.e. A is ancestor of B.

A

B

Fast-forward (update ref only!)

A

B

Non fast-forward (requires a
merge)

16/52

Other definitions (2/3)

HEAD: symref that
dereferences to the current
checked-out head.

Detached HEAD: HEAD may
also point at an arbitrary
commit, i.e. “detached” from
any branch. You may make
commits in this state, but…

c8
64
ac
8

re
fs/
he
ad
s/
m
as
te
rHEAD

17/52

Other definitions (2/3)

HEAD: symref that
dereferences to the current
checked-out head.
Detached HEAD: HEAD may
also point at an arbitrary
commit, i.e. “detached” from
any branch. You may make
commits in this state, but…

c8
64
ac
8

re
fs/
he
ad
s/
m
as
te
r

HEAD

17/52

Other definitions (2/3)

HEAD: symref that
dereferences to the current
checked-out head.
Detached HEAD: HEAD may
also point at an arbitrary
commit, i.e. “detached” from
any branch. You may make
commits in this state, but…

c8
64
ac
8

re
fs/
he
ad
s/
m
as
te
r

HEAD

17/52

Other definitions (2/3)

HEAD: symref that
dereferences to the current
checked-out head.
Detached HEAD: HEAD may
also point at an arbitrary
commit, i.e. “detached” from
any branch. You may make
commits in this state, but…

c8
64
ac
8

re
fs/
he
ad
s/
m
as
te
r

HEAD

17/52

Other definitions (2/3)

HEAD: symref that
dereferences to the current
checked-out head.
Detached HEAD: HEAD may
also point at an arbitrary
commit, i.e. “detached” from
any branch. You may make
commits in this state, but…

c8
64
ac
8

re
fs/
he
ad
s/
m
as
te
r

HEAD

17/52

Other definitions (2/3)

HEAD: symref that
dereferences to the current
checked-out head.
Detached HEAD: HEAD may
also point at an arbitrary
commit, i.e. “detached” from
any branch. You may make
commits in this state, but…

if HEAD is made to point
somewhere else, they will
become unreachable (and
eventually deleted by the GC).
Create a ref to avoid this!

c8
64
ac
8

re
fs/
he
ad
s/
m
as
te
rHEAD

17/52

Other definitions (3/3)

Reflog: stores the local history of a ref.

What was HEAD pointing at before the last change?
What did refs/heads/foo pointed at two weeks ago?

18/52

[(l)user] Porcelain

Simple (and incomplete) FSM

Clean WDgit init/git clone

Dirty WD Staged

Merging

[m
ak
e c
ha
ng
es
]

git
ch
ec
ko
ut

git pull/git merge
git merge –continue

git add

git rm –cached
git reset

git c
omm

it

git r
eset

–har
d

git r
m/g

it m
v

git push
git fetch

git clean

git diff
git diff –cached

19/52

Init/Clone a repository

To get started, you can either

Create an empty repository, e.g.
$ git init [--bare] ~/foo/

Obtain a copy of a remote repository2, e.g.
$ git clone [--depth=1] https://earth/public/repo.git/

2The --depth option creates a shallow clone (history pruned). To
unshallow run git pull --unshallow.

20/52

Overview of branches

Create a branch started off from 'HEAD'
$ git branch foo HEAD
$ git checkout foo
Switched to branch 'foo'

$ git checkout -b foo HEAD # Shorthand for the above commands

Create an orphan branch (new totally disconnected history)
$ git checkout --orphan foo HEAD

$ git branch -d foo # Delete a branch
$ git branch -m foo bar # Move/rename a branch

List branches
$ git branch --verbose
* foo d7832a7f Closes issue #17

master 99446829 Closes issue #16

Merge a branch
$ git merge foo
Resolve conflicts + 'git add <pathspec> ' + 'git merge --continue'
or 'git merge --abort'

21/52

Overview of branches

Create a branch started off from 'HEAD'
$ git branch foo HEAD
$ git checkout foo
Switched to branch 'foo'

$ git checkout -b foo HEAD # Shorthand for the above commands

Create an orphan branch (new totally disconnected history)
$ git checkout --orphan foo HEAD

$ git branch -d foo # Delete a branch
$ git branch -m foo bar # Move/rename a branch

List branches
$ git branch --verbose
* foo d7832a7f Closes issue #17

master 99446829 Closes issue #16

Merge a branch
$ git merge foo
Resolve conflicts + 'git add <pathspec> ' + 'git merge --continue'
or 'git merge --abort'

21/52

Overview of branches

Create a branch started off from 'HEAD'
$ git branch foo HEAD
$ git checkout foo
Switched to branch 'foo'

$ git checkout -b foo HEAD # Shorthand for the above commands

Create an orphan branch (new totally disconnected history)
$ git checkout --orphan foo HEAD

$ git branch -d foo # Delete a branch
$ git branch -m foo bar # Move/rename a branch

List branches
$ git branch --verbose
* foo d7832a7f Closes issue #17

master 99446829 Closes issue #16

Merge a branch
$ git merge foo
Resolve conflicts + 'git add <pathspec> ' + 'git merge --continue'
or 'git merge --abort'

21/52

Overview of branches

Create a branch started off from 'HEAD'
$ git branch foo HEAD
$ git checkout foo
Switched to branch 'foo'

$ git checkout -b foo HEAD # Shorthand for the above commands

Create an orphan branch (new totally disconnected history)
$ git checkout --orphan foo HEAD

$ git branch -d foo # Delete a branch
$ git branch -m foo bar # Move/rename a branch

List branches
$ git branch --verbose
* foo d7832a7f Closes issue #17

master 99446829 Closes issue #16

Merge a branch
$ git merge foo
Resolve conflicts + 'git add <pathspec> ' + 'git merge --continue'
or 'git merge --abort'

21/52

Working with remotes (1/4)

Git can manage remote sites (remotes3) whose branches you
track.

Supports http[s]://, ssh://,
git:// and file://.
git-clone automatically
adds the remote origin (the
URL you cloned)
May have different push/fetch
URLs

REMEMBER: Git is distributed

local copy

3See git-remote(1) for more information.

22/52

Working with remotes (1/4)

Git can manage remote sites (remotes3) whose branches you
track.

Supports http[s]://, ssh://,
git:// and file://.
git-clone automatically
adds the remote origin (the
URL you cloned)
May have different push/fetch
URLs
REMEMBER: Git is distributed

local copy

3See git-remote(1) for more information.

22/52

Working with remotes (2/4)

Remotes may be added with git-remote, e.g.
$ git remote add earth https://earth/public/repo.git/

Default is to track all branches4.

git-push pushes refs (+ objects) to a remote, e.g.
$ git push earth master

git-fetch fetches refs (+ objects) from a remote, e.g.
$ git fetch earth master

Fetched refs will be in refs/remotes/earth/*.
git-pull is equivalent to git fetch + git merge

FETCH_HEAD

4Otherwise, see -t <branch>

23/52

Working with remotes (2/4)

Remotes may be added with git-remote, e.g.
$ git remote add earth https://earth/public/repo.git/

Default is to track all branches4.
git-push pushes refs (+ objects) to a remote, e.g.
$ git push earth master

git-fetch fetches refs (+ objects) from a remote, e.g.
$ git fetch earth master

Fetched refs will be in refs/remotes/earth/*.
git-pull is equivalent to git fetch + git merge

FETCH_HEAD

4Otherwise, see -t <branch>

23/52

Working with remotes (2/4)

Remotes may be added with git-remote, e.g.
$ git remote add earth https://earth/public/repo.git/

Default is to track all branches4.
git-push pushes refs (+ objects) to a remote, e.g.
$ git push earth master

git-fetch fetches refs (+ objects) from a remote, e.g.
$ git fetch earth master

Fetched refs will be in refs/remotes/earth/*.

git-pull is equivalent to git fetch + git merge

FETCH_HEAD

4Otherwise, see -t <branch>

23/52

Working with remotes (2/4)

Remotes may be added with git-remote, e.g.
$ git remote add earth https://earth/public/repo.git/

Default is to track all branches4.
git-push pushes refs (+ objects) to a remote, e.g.
$ git push earth master

git-fetch fetches refs (+ objects) from a remote, e.g.
$ git fetch earth master

Fetched refs will be in refs/remotes/earth/*.
git-pull is equivalent to git fetch + git merge

FETCH_HEAD
4Otherwise, see -t <branch>

23/52

Working with remotes (3/4)

Trying a $ git push earth master

On the remote end: receive object pack + update refs

Synching only requires commit 63feb3c
Non-FF. If earth updates refs/heads/master, commit
9f7f586 is lost!
Typically, remotes will deny non-fast-forward pushes5

7d050cf

63feb3c

refs/heads/master

Local

7d050cf

9f7f586

refs/heads/master

Remote earth
5See the -f git-push(1) option and receive.denyNonFastForwards.

24/52

Working with remotes (3/4)

Trying a $ git push earth master

On the remote end: receive object pack + update refs
Synching only requires commit 63feb3c

Non-FF. If earth updates refs/heads/master, commit
9f7f586 is lost!
Typically, remotes will deny non-fast-forward pushes5

7d050cf

63feb3c

refs/heads/master

Local

7d050cf

9f7f586

refs/heads/master

63feb3c

Remote earth
5See the -f git-push(1) option and receive.denyNonFastForwards.

24/52

Working with remotes (3/4)

Trying a $ git push earth master

On the remote end: receive object pack + update refs
Synching only requires commit 63feb3c
Non-FF. If earth updates refs/heads/master, commit
9f7f586 is lost!
Typically, remotes will deny non-fast-forward pushes5

7d050cf

63feb3c

refs/heads/master

Local

7d050cf

9f7f586

refs/heads/master

63feb3c

Remote earth
5See the -f git-push(1) option and receive.denyNonFastForwards.

24/52

Working with remotes (3/4)

Trying a $ git push earth master

On the remote end: receive object pack + update refs
Synching only requires commit 63feb3c
Non-FF. If earth updates refs/heads/master, commit
9f7f586 is lost!
Typically, remotes will deny non-fast-forward pushes5

! [rejected] master ->master (non-fast-forward)
error: failed to push some refs to '…'

5See the -f git-push(1) option and receive.denyNonFastForwards.

24/52

Working with remotes (4/4)

Trying a $ git pull earth master
6

7d050cf

63feb3c

master

Local
7d050cf

9f7f586

refs/heads/master

Remote earth

6The merge might be avoided; see the --rebase option.

25/52

Working with remotes (4/4)

Trying a $ git pull earth master
6

7d050cf

63feb3c 9f7f586

master
FETCH_HEAD -> earth/master

Local
7d050cf

9f7f586

refs/heads/master

Remote earth

6The merge might be avoided; see the --rebase option.

25/52

Working with remotes (4/4)

Trying a $ git pull earth master
6

7d050cf

63feb3c 9f7f586

618c1ca

FETCH_HEAD -> earth/master

master

Local

7d050cf

9f7f586

refs/heads/master

Remote earth

6The merge might be avoided; see the --rebase option.

25/52

Bug hunting

Git helps you to find bugs (and their authors)…

git-bisect(1) uses binary search to find a “bad” commit
$ git bisect start HEAD v1.2 # HEAD is bad, v1.2 is good

$ git bisect [good|bad] # Manually mark it as working/broken
…
$ git bisect run my_script arguments # Or automatically (good if $? = 0)

$ git bisect reset

git-blame(1) annotates each line of a file with revision
information
$ git blame README.md
63feb3c8 (jalopezg 2019-01-18 19:36:40 +0100 1) >This file was created by …
ded8aa43 (jalopezg 2019-01-22 20:18:04 +0100 2) foo

26/52

Specifying revisions (1/2)

Some Git commands take symbolic revision parameters (names
specific commit or all commits reachable from that commit)7.

<sha1> SHA-1 object name, or a non-ambiguous leading
substring.
<refname> A ref name, e.g. refs/heads/master. Search order:
$GIT_DIR/<refname>, refs/, refs/tags/, refs/heads/,

refs/remotes/, refs/remotes/<refname>/HEAD.
<refname>@{<n>} The n-th prior value of that ref.
<rev>^ The first parent.
<rev>~<n> The n-th generation ancestor.
<rev>:<path> Names the blob or tree of <rev>.
7This is an overview; see gitrevisions(7) for the complete list.

27/52

Specifying revisions (2/2)

Specifying ranges:

^<rev> Exclude commits reachable from <rev>.
<rev1>..<rev2> A shorthand for ^rev1 rev2, i.e. commits
reachable from rev2, but not from rev1, or

(
rev1, rev2

]
<rev1>...<rev2> Commits reachable either from rev1 or rev2, but
not from both.

28/52

[sudoer] More porcelain

Save/Restore a dirty working directory

git-stash(1) saves the current state of the working
directory + the index, and goes back to a clean WD.

Saved changes can be restored with $ git stash pop. Git-stash
stack can be dumped by $ git stash list.

$ echo foo > README.md
$ git status
On branch foo
Changes not staged for commit:

modified: README.md

$ git stash
Saved working directory and index state WIP on foo: 9f7f586 README.md has been added
$ git status
On branch foo
nothing to commit, working tree clean

$ git stash pop
On branch foo
Changes not staged for commit:

modified: README.md
Dropped refs/stash@{0} (35365e0c188e877ded1ecdd8190ec5bb1b6c2c1b)

29/52

Save/Restore a dirty working directory

git-stash(1) saves the current state of the working
directory + the index, and goes back to a clean WD.

Saved changes can be restored with $ git stash pop. Git-stash
stack can be dumped by $ git stash list.

$ echo foo > README.md
$ git status
On branch foo
Changes not staged for commit:

modified: README.md

$ git stash
Saved working directory and index state WIP on foo: 9f7f586 README.md has been added
$ git status
On branch foo
nothing to commit, working tree clean

$ git stash pop
On branch foo
Changes not staged for commit:

modified: README.md
Dropped refs/stash@{0} (35365e0c188e877ded1ecdd8190ec5bb1b6c2c1b)

29/52

Save/Restore a dirty working directory

git-stash(1) saves the current state of the working
directory + the index, and goes back to a clean WD.

Saved changes can be restored with $ git stash pop. Git-stash
stack can be dumped by $ git stash list.

$ echo foo > README.md
$ git status
On branch foo
Changes not staged for commit:

modified: README.md

$ git stash
Saved working directory and index state WIP on foo: 9f7f586 README.md has been added
$ git status
On branch foo
nothing to commit, working tree clean

$ git stash pop
On branch foo
Changes not staged for commit:

modified: README.md
Dropped refs/stash@{0} (35365e0c188e877ded1ecdd8190ec5bb1b6c2c1b)

29/52

Save/Restore a dirty working directory

git-stash(1) saves the current state of the working
directory + the index, and goes back to a clean WD.

Saved changes can be restored with $ git stash pop. Git-stash
stack can be dumped by $ git stash list.

$ echo foo > README.md
$ git status
On branch foo
Changes not staged for commit:

modified: README.md

$ git stash
Saved working directory and index state WIP on foo: 9f7f586 README.md has been added
$ git status
On branch foo
nothing to commit, working tree clean

$ git stash pop
On branch foo
Changes not staged for commit:

modified: README.md
Dropped refs/stash@{0} (35365e0c188e877ded1ecdd8190ec5bb1b6c2c1b) 29/52

Applying changes from other branches

git-cherry-pick(1) apply the
changes introduced by the given
commits, e.g.
$ git cherry-pick 9f7f586.

The patch may not apply cleanly; if
that is the case, you are required
to resolve conflicts

9f7f586

master

foo

30/52

Applying changes from other branches

git-cherry-pick(1) apply the
changes introduced by the given
commits, e.g.
$ git cherry-pick 9f7f586.

The patch may not apply cleanly; if
that is the case, you are required
to resolve conflicts

9f7f586

master

0c151e4

foo

30/52

Rebase (+ interactive rebase!) (1/4)

Sometimes you fork a branch and it becomes outdated w.r.t. its
parent. Quite probably, you would merge the parent branch.

A B C
master

topic

This clutters project history. Reapplying topic commits on top
of master is better!

master
A’ B’ C’

topic

Assuming that 'topic' is the current branch, this gives the result above
$ git rebase master

31/52

Rebase (+ interactive rebase!) (1/4)

Sometimes you fork a branch and it becomes outdated w.r.t. its
parent. Quite probably, you would merge the parent branch.

A B C

topic

master

This clutters project history. Reapplying topic commits on top
of master is better!

master
A’ B’ C’

topic

Assuming that 'topic' is the current branch, this gives the result above
$ git rebase master

31/52

Rebase (+ interactive rebase!) (1/4)

Sometimes you fork a branch and it becomes outdated w.r.t. its
parent. Quite probably, you would merge the parent branch.

A B C

master

topic

This clutters project history. Reapplying topic commits on top
of master is better!

master
A’ B’ C’

topic

Assuming that 'topic' is the current branch, this gives the result above
$ git rebase master

31/52

Rebase (+ interactive rebase!) (1/4)

Sometimes you fork a branch and it becomes outdated w.r.t. its
parent. Quite probably, you would merge the parent branch.

A B C

master

topic

This clutters project history. Reapplying topic commits on top
of master is better!

master
A’ B’ C’

topic

Assuming that 'topic' is the current branch, this gives the result above
$ git rebase master

31/52

Rebase (+ interactive rebase!) (1/4)

Sometimes you fork a branch and it becomes outdated w.r.t. its
parent. Quite probably, you would merge the parent branch.

A B C

This clutters project history. Reapplying topic commits on top
of master is better!

master
A’ B’ C’

topic

Assuming that 'topic' is the current branch, this gives the result above
$ git rebase master

31/52

Rebase (+ interactive rebase!) (2/4)

It is one of the most powerful Git commands. In fact, it can be
used to rewrite project history (next slide).

If there are conflicts, you will have to resolve them (as in
merge).

! GIT-REBASE(1) IMPLICATIONS:

Requires rewriting commits and is PROBLEMATIC if you
already pushed those objects
You can break things: YOU HAVE BEEN WARNED!
If you ever force-push a rebased branch, others will have
to fix their history. See git-rebase(1), section “RECOVERING
FROM UPSTREAM REBASE”.

32/52

Rebase (+ interactive rebase!) (2/4)

It is one of the most powerful Git commands. In fact, it can be
used to rewrite project history (next slide).

If there are conflicts, you will have to resolve them (as in
merge).

! GIT-REBASE(1) IMPLICATIONS:

Requires rewriting commits and is PROBLEMATIC if you
already pushed those objects
You can break things: YOU HAVE BEEN WARNED!
If you ever force-push a rebased branch, others will have
to fix their history. See git-rebase(1), section “RECOVERING
FROM UPSTREAM REBASE”.

32/52

Rebase (+ interactive rebase!) (2/4)

It is one of the most powerful Git commands. In fact, it can be
used to rewrite project history (next slide).

If there are conflicts, you will have to resolve them (as in
merge).

! GIT-REBASE(1) IMPLICATIONS:

Requires rewriting commits and is PROBLEMATIC if you
already pushed those objects
You can break things: YOU HAVE BEEN WARNED!
If you ever force-push a rebased branch, others will have
to fix their history. See git-rebase(1), section “RECOVERING
FROM UPSTREAM REBASE”.

32/52

Rebase (+ interactive rebase!) (3/4)

git-rebase(1) has an interactive mode in which you can
edit/reorder/remove the commits which are rebased.
It is very common to rewrite part of a branch to have a more
meaningful history, e.g.

master

<after-this-commit>

A B C

topic

This fires up an editor and gives you the chance to edit the commit list before
they are applied (commits A, B and C)

$ git rebase -i <after-this-commit>

! USE WITH CARE. Read git-rebase implications!
33/52

Rebase (+ interactive rebase!) (4/4)

34/52

More about fixing history (1/2)

So common that git-commit(1) has the --squash and
--fixup options. They mark commits to be automatically
squashed. Rewriting occurs after a $ git rebase --autosquash.

$ git log --oneline
e7a2019 (HEAD -> master) Any other changes
9f7f586 Added README.md
02a7fb9 Added bar.txt

$ echo foo >> README.md && git commit -a --fixup 9f7f586
$ git log --oneline
24a54df (HEAD -> master) fixup! Added README.md
e7a2019 Any other changes
9f7f586 Added README.md
02a7fb9 Added bar.txt

$ git rebase -i --autosquash 02a7fb9
Successfully rebased and updated refs/heads/master.
$ git log --oneline
528efb7 (HEAD -> master) Any other changes
a59735c Added README.md
02a7fb9 Added bar.txt

! USE WITH CARE. Read git-rebase implications!

35/52

More about fixing history (1/2)

So common that git-commit(1) has the --squash and
--fixup options. They mark commits to be automatically
squashed. Rewriting occurs after a $ git rebase --autosquash.
$ git log --oneline
e7a2019 (HEAD -> master) Any other changes
9f7f586 Added README.md
02a7fb9 Added bar.txt

$ echo foo >> README.md && git commit -a --fixup 9f7f586
$ git log --oneline
24a54df (HEAD -> master) fixup! Added README.md
e7a2019 Any other changes
9f7f586 Added README.md
02a7fb9 Added bar.txt

$ git rebase -i --autosquash 02a7fb9
Successfully rebased and updated refs/heads/master.
$ git log --oneline
528efb7 (HEAD -> master) Any other changes
a59735c Added README.md
02a7fb9 Added bar.txt

! USE WITH CARE. Read git-rebase implications!

35/52

More about fixing history (1/2)

So common that git-commit(1) has the --squash and
--fixup options. They mark commits to be automatically
squashed. Rewriting occurs after a $ git rebase --autosquash.
$ git log --oneline
e7a2019 (HEAD -> master) Any other changes
9f7f586 Added README.md
02a7fb9 Added bar.txt

$ echo foo >> README.md && git commit -a --fixup 9f7f586
$ git log --oneline
24a54df (HEAD -> master) fixup! Added README.md
e7a2019 Any other changes
9f7f586 Added README.md
02a7fb9 Added bar.txt

$ git rebase -i --autosquash 02a7fb9
Successfully rebased and updated refs/heads/master.
$ git log --oneline
528efb7 (HEAD -> master) Any other changes
a59735c Added README.md
02a7fb9 Added bar.txt

! USE WITH CARE. Read git-rebase implications!

35/52

More about fixing history (1/2)

So common that git-commit(1) has the --squash and
--fixup options. They mark commits to be automatically
squashed. Rewriting occurs after a $ git rebase --autosquash.
$ git log --oneline
e7a2019 (HEAD -> master) Any other changes
9f7f586 Added README.md
02a7fb9 Added bar.txt

$ echo foo >> README.md && git commit -a --fixup 9f7f586
$ git log --oneline
24a54df (HEAD -> master) fixup! Added README.md
e7a2019 Any other changes
9f7f586 Added README.md
02a7fb9 Added bar.txt

$ git rebase -i --autosquash 02a7fb9
Successfully rebased and updated refs/heads/master.
$ git log --oneline
528efb7 (HEAD -> master) Any other changes
a59735c Added README.md
02a7fb9 Added bar.txt

! USE WITH CARE. Read git-rebase implications! 35/52

More about fixing history (2/2)

If you only need to rewrite the last commit use
$ git commit --amend

! USE WITH CARE. Read git-rebase implications!

36/52

git filter-branch

Q: I know how to rewrite commits. Can I automate the process?

A: git-filter-branch(1) lets you rewrite branches,
applying filters to modify each tree/information about each
commit, e.g.

$ git log --oneline
92cb761 (HEAD -> foo) Added nsswitch.conf
9f7f586 Added README.md
02a7fb9 (bar) Added bar.txt

$ git filter-branch --msg-filter 'sed -e "s/Added \([[:graph:]]*\)$/\1 has
been added/"' foo

$ git log --oneline
6e9fbd6 (HEAD -> foo) nsswitch.conf has been added
63feb3c README.md has been added
2fe54f3 bar.txt has been addded

! USE WITH CARE. Read git-rebase implications!

37/52

git filter-branch

Q: I know how to rewrite commits. Can I automate the process?
A: git-filter-branch(1) lets you rewrite branches,
applying filters to modify each tree/information about each
commit, e.g.

$ git log --oneline
92cb761 (HEAD -> foo) Added nsswitch.conf
9f7f586 Added README.md
02a7fb9 (bar) Added bar.txt

$ git filter-branch --msg-filter 'sed -e "s/Added \([[:graph:]]*\)$/\1 has
been added/"' foo

$ git log --oneline
6e9fbd6 (HEAD -> foo) nsswitch.conf has been added
63feb3c README.md has been added
2fe54f3 bar.txt has been addded

! USE WITH CARE. Read git-rebase implications!

37/52

Comparing branches

Q: Can I see where each of the given branches is w.r.t. others?

A: git-show-branch is your friend. Also, git log

--graph --oneline …

$ git show-branch master foo
! [master] Added README.md
* [foo] Added nsswitch.conf
! [bar] Added bar.txt

* [foo] Added nsswitch.conf
+* [master] Added README.md
+*+ [bar] Added bar.txt

To include all remote-tracking and local branches:
$ git show-branch --all

38/52

Comparing branches

Q: Can I see where each of the given branches is w.r.t. others?
A: git-show-branch is your friend. Also, git log

--graph --oneline …

$ git show-branch master foo
! [master] Added README.md
* [foo] Added nsswitch.conf
! [bar] Added bar.txt

* [foo] Added nsswitch.conf
+* [master] Added README.md
+*+ [bar] Added bar.txt

To include all remote-tracking and local branches:
$ git show-branch --all

38/52

Share by other means

TAR or ZIP archives of a particular tree can be created by
git-archive(1), e.g.
$ git archive --format=tar --prefix=foo/ -o foo.tar.gz master

Git also can generate an archive of packed objects and
references to be imported into a repository (useful if machines
are not directly connected), e.g.
[alice@earth ~]$ git bundle create /tmp/foo-master.git master
/tmp/foo-master.git is copied to moon by some means.

[bob@moon ~]$ git clone -b master ~/foo-master.git

Or if the repository already exists…
[bob@moon ~]$ git remote add foo-bundle ~/foo-master.git
[bob@moon ~]$ git pull foo-bundle master

39/52

ReReRe

“git-rerere - Reuse recorded resolution of conflicted merges”

FYI, see the git-rerere(1) manual page.

40/52

[r00t] Plumbing

Repository layout

objects/: the object store.
objects/[0-9a-f][0-9a-f]/:

loose objects.
objects/pack/: object packs
(store many objects in
compressed form).
refs/: references are stored in
subdirectories of this
directory.
packed-refs: the same as refs/
but in a more efficient way.
HEAD: the HEAD symref.

repository/

.git/

objects/

pack/

[0-9a-f][0-9a-f]/

refs/

heads/

tags/

remotes/

packed-refs

HEAD

config

hooks/

index

info/

logs/

shallow
…

…

More at gitrepository-layout(5).

41/52

Repository layout

config: repository specific
configuration file.
hooks/: (described later).
index: the “index” file.
info/: additional information,
e.g. info/grafts.
logs/: reflogs are stored here.
shallow: similar to
info/grafts but internally
used for shallow clones.

repository/

.git/

objects/

pack/

[0-9a-f][0-9a-f]/

refs/

heads/

tags/

remotes/

packed-refs

HEAD

config

hooks/

index

info/

logs/

shallow
…

…

More at gitrepository-layout(5).

41/52

HOWTO: create a commit using the “index”

$ echo foo > bar.txt

Add 'bar.txt' to the index
$ git update-index --add bar.txt

Create a tree object from the current index
$ git write-tree
6d21ed3d662ea6040da2fe0fd66fe80fefe689a5

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣bar.txt' 6d21ed3d662ea6040da2fe0fd66fe80fefe689a5
02a7fb9f9145086807cbe2ed45ea82149c3d1b34

Update refs/heads/master
$ git update-ref refs/heads/master 02a7fb9f9145086807cbe2ed45ea82149c3d1b34

$ git log -1
commit 02a7fb9f9145086807cbe2ed45ea82149c3d1b34 (HEAD -> master)
Author: Javier López Gómez <jalopezg@inf.uc3m.es>
Date: Fri Jan 18 18:59:39 2019 +0100

Added bar.txt

42/52

HOWTO: create a commit using the “index”

$ echo foo > bar.txt

Add 'bar.txt' to the index
$ git update-index --add bar.txt

Create a tree object from the current index
$ git write-tree
6d21ed3d662ea6040da2fe0fd66fe80fefe689a5

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣bar.txt' 6d21ed3d662ea6040da2fe0fd66fe80fefe689a5
02a7fb9f9145086807cbe2ed45ea82149c3d1b34

Update refs/heads/master
$ git update-ref refs/heads/master 02a7fb9f9145086807cbe2ed45ea82149c3d1b34

$ git log -1
commit 02a7fb9f9145086807cbe2ed45ea82149c3d1b34 (HEAD -> master)
Author: Javier López Gómez <jalopezg@inf.uc3m.es>
Date: Fri Jan 18 18:59:39 2019 +0100

Added bar.txt

42/52

HOWTO: create a commit using the “index”

$ echo foo > bar.txt

Add 'bar.txt' to the index
$ git update-index --add bar.txt

Create a tree object from the current index
$ git write-tree
6d21ed3d662ea6040da2fe0fd66fe80fefe689a5

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣bar.txt' 6d21ed3d662ea6040da2fe0fd66fe80fefe689a5
02a7fb9f9145086807cbe2ed45ea82149c3d1b34

Update refs/heads/master
$ git update-ref refs/heads/master 02a7fb9f9145086807cbe2ed45ea82149c3d1b34

$ git log -1
commit 02a7fb9f9145086807cbe2ed45ea82149c3d1b34 (HEAD -> master)
Author: Javier López Gómez <jalopezg@inf.uc3m.es>
Date: Fri Jan 18 18:59:39 2019 +0100

Added bar.txt

42/52

HOWTO: create a commit using the “index”

$ echo foo > bar.txt

Add 'bar.txt' to the index
$ git update-index --add bar.txt

Create a tree object from the current index
$ git write-tree
6d21ed3d662ea6040da2fe0fd66fe80fefe689a5

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣bar.txt' 6d21ed3d662ea6040da2fe0fd66fe80fefe689a5
02a7fb9f9145086807cbe2ed45ea82149c3d1b34

Update refs/heads/master
$ git update-ref refs/heads/master 02a7fb9f9145086807cbe2ed45ea82149c3d1b34

$ git log -1
commit 02a7fb9f9145086807cbe2ed45ea82149c3d1b34 (HEAD -> master)
Author: Javier López Gómez <jalopezg@inf.uc3m.es>
Date: Fri Jan 18 18:59:39 2019 +0100

Added bar.txt

42/52

HOWTO: create a commit using the “index”

$ echo foo > bar.txt

Add 'bar.txt' to the index
$ git update-index --add bar.txt

Create a tree object from the current index
$ git write-tree
6d21ed3d662ea6040da2fe0fd66fe80fefe689a5

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣bar.txt' 6d21ed3d662ea6040da2fe0fd66fe80fefe689a5
02a7fb9f9145086807cbe2ed45ea82149c3d1b34

Update refs/heads/master
$ git update-ref refs/heads/master 02a7fb9f9145086807cbe2ed45ea82149c3d1b34

$ git log -1
commit 02a7fb9f9145086807cbe2ed45ea82149c3d1b34 (HEAD -> master)
Author: Javier López Gómez <jalopezg@inf.uc3m.es>
Date: Fri Jan 18 18:59:39 2019 +0100

Added bar.txt

42/52

HOWTO: commit arbitrary content

Create blob object for 'README.md'; use 'git cat-file blob 1f6c266' to see blob
contents

$ git hash-object -t blob -w --path=README.md --stdin <<EOF
> This file was created by git-hash-object.
EOF
1f6c2663d33465dcd83f2151b15fb57369f29570

Create tree object (add 'README.md' entry to the HEAD tree)
$ git ls-tree HEAD | awk '{␣print;␣}␣END␣{␣print␣"100644␣blob␣1

f6c2663d33465dcd83f2151b15fb57369f29570\tREADME.md";␣}' | git mktree
0082679644a2b435b6cf09a65324292da28a41b4

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣README.md' 0082679644

a2b435b6cf09a65324292da28a41b4
9f7f586f952c515893dd6597936f6fea64dd17ce

Update refs/heads/master
$ git update-ref refs/heads/master 9f7f586f952c515893dd6597936f6fea64dd17ce

WTF?
$ git status
On branch master
Changes to be committed:

(use "git␣reset␣HEAD␣<file>..." to unstage)

deleted: README.md
$ git reset --hard HEAD

43/52

HOWTO: commit arbitrary content

Create blob object for 'README.md'; use 'git cat-file blob 1f6c266' to see blob
contents

$ git hash-object -t blob -w --path=README.md --stdin <<EOF
> This file was created by git-hash-object.
EOF
1f6c2663d33465dcd83f2151b15fb57369f29570

Create tree object (add 'README.md' entry to the HEAD tree)
$ git ls-tree HEAD | awk '{␣print;␣}␣END␣{␣print␣"100644␣blob␣1

f6c2663d33465dcd83f2151b15fb57369f29570\tREADME.md";␣}' | git mktree
0082679644a2b435b6cf09a65324292da28a41b4

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣README.md' 0082679644

a2b435b6cf09a65324292da28a41b4
9f7f586f952c515893dd6597936f6fea64dd17ce

Update refs/heads/master
$ git update-ref refs/heads/master 9f7f586f952c515893dd6597936f6fea64dd17ce

WTF?
$ git status
On branch master
Changes to be committed:

(use "git␣reset␣HEAD␣<file>..." to unstage)

deleted: README.md
$ git reset --hard HEAD

43/52

HOWTO: commit arbitrary content

Create blob object for 'README.md'; use 'git cat-file blob 1f6c266' to see blob
contents

$ git hash-object -t blob -w --path=README.md --stdin <<EOF
> This file was created by git-hash-object.
EOF
1f6c2663d33465dcd83f2151b15fb57369f29570

Create tree object (add 'README.md' entry to the HEAD tree)
$ git ls-tree HEAD | awk '{␣print;␣}␣END␣{␣print␣"100644␣blob␣1

f6c2663d33465dcd83f2151b15fb57369f29570\tREADME.md";␣}' | git mktree
0082679644a2b435b6cf09a65324292da28a41b4

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣README.md' 0082679644

a2b435b6cf09a65324292da28a41b4
9f7f586f952c515893dd6597936f6fea64dd17ce

Update refs/heads/master
$ git update-ref refs/heads/master 9f7f586f952c515893dd6597936f6fea64dd17ce

WTF?
$ git status
On branch master
Changes to be committed:

(use "git␣reset␣HEAD␣<file>..." to unstage)

deleted: README.md
$ git reset --hard HEAD

43/52

HOWTO: commit arbitrary content

Create blob object for 'README.md'; use 'git cat-file blob 1f6c266' to see blob
contents

$ git hash-object -t blob -w --path=README.md --stdin <<EOF
> This file was created by git-hash-object.
EOF
1f6c2663d33465dcd83f2151b15fb57369f29570

Create tree object (add 'README.md' entry to the HEAD tree)
$ git ls-tree HEAD | awk '{␣print;␣}␣END␣{␣print␣"100644␣blob␣1

f6c2663d33465dcd83f2151b15fb57369f29570\tREADME.md";␣}' | git mktree
0082679644a2b435b6cf09a65324292da28a41b4

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣README.md' 0082679644

a2b435b6cf09a65324292da28a41b4
9f7f586f952c515893dd6597936f6fea64dd17ce

Update refs/heads/master
$ git update-ref refs/heads/master 9f7f586f952c515893dd6597936f6fea64dd17ce

WTF?
$ git status
On branch master
Changes to be committed:

(use "git␣reset␣HEAD␣<file>..." to unstage)

deleted: README.md
$ git reset --hard HEAD

43/52

HOWTO: commit arbitrary content

Create blob object for 'README.md'; use 'git cat-file blob 1f6c266' to see blob
contents

$ git hash-object -t blob -w --path=README.md --stdin <<EOF
> This file was created by git-hash-object.
EOF
1f6c2663d33465dcd83f2151b15fb57369f29570

Create tree object (add 'README.md' entry to the HEAD tree)
$ git ls-tree HEAD | awk '{␣print;␣}␣END␣{␣print␣"100644␣blob␣1

f6c2663d33465dcd83f2151b15fb57369f29570\tREADME.md";␣}' | git mktree
0082679644a2b435b6cf09a65324292da28a41b4

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣README.md' 0082679644

a2b435b6cf09a65324292da28a41b4
9f7f586f952c515893dd6597936f6fea64dd17ce

Update refs/heads/master
$ git update-ref refs/heads/master 9f7f586f952c515893dd6597936f6fea64dd17ce

WTF?
$ git status
On branch master
Changes to be committed:

(use "git␣reset␣HEAD␣<file>..." to unstage)

deleted: README.md

$ git reset --hard HEAD

43/52

HOWTO: commit arbitrary content

Create blob object for 'README.md'; use 'git cat-file blob 1f6c266' to see blob
contents

$ git hash-object -t blob -w --path=README.md --stdin <<EOF
> This file was created by git-hash-object.
EOF
1f6c2663d33465dcd83f2151b15fb57369f29570

Create tree object (add 'README.md' entry to the HEAD tree)
$ git ls-tree HEAD | awk '{␣print;␣}␣END␣{␣print␣"100644␣blob␣1

f6c2663d33465dcd83f2151b15fb57369f29570\tREADME.md";␣}' | git mktree
0082679644a2b435b6cf09a65324292da28a41b4

Create a new commit object
$ git commit-tree -p HEAD -m 'Added␣README.md' 0082679644

a2b435b6cf09a65324292da28a41b4
9f7f586f952c515893dd6597936f6fea64dd17ce

Update refs/heads/master
$ git update-ref refs/heads/master 9f7f586f952c515893dd6597936f6fea64dd17ce

WTF?
$ git status
On branch master
Changes to be committed:

(use "git␣reset␣HEAD␣<file>..." to unstage)

deleted: README.md
$ git reset --hard HEAD

43/52

Additional stuff

Configuration (1/2)

480+ options. Git searches configuration at:
/etc/gitconfig System-wide configuration.
~/.gitconfig User-specific configuration.
$GIT_DIR/config Repository specific.
Can be edited manually or using git-config(1), e.g.
$ git config [--system|--global|--local] user.email 'John Doe'

[user]
email = jalopezg@inf.uc3m.es
name = Javier López-Gómez
…

44/52

Configuration (2/2)

alias.* options may be used to create command aliases, e.g.
$ git config --global alias.sb 'show-branch @ @{push}'
$ git sb
! [@] Updated README.md
! [@{push}] Closes issue #16
--
+ [@] …

FYI, see the git-config(1) manual page.

45/52

Fsck and garbage collection

git-fsck(1) Verifies the connectivity and validity of the objects.
$ git fsck [--unreachable] [--no-reflogs] [--lost-found] […]

git-gc(1) Runs housekeeping tasks, e.g. pack objects/refs,
remove unreachable objects, prune reflog, etc.8
$ git gc [--aggressive] [--auto] […]

8git gc --auto may automatically run as part of some git commands.

46/52

Hooks (1/2)

Hooks are programs that are executed at certain points, e.g.
after a merge (post-merge), or before git-receive-pack updates
refs (pre-receive).

Invoked locally/on the remote end9

Must be executable (+x)
IN: environment, command-line arguments, stdin
OUT: stdout, stderr, exit status
Can be used for commit validation, issue management or
triggering a build (CI)

9Stdout and stderr are forwarded.

47/52

Hooks (1/2)

Hooks are programs that are executed at certain points, e.g.
after a merge (post-merge), or before git-receive-pack updates
refs (pre-receive).

Invoked locally/on the remote end9

Must be executable (+x)

IN: environment, command-line arguments, stdin
OUT: stdout, stderr, exit status
Can be used for commit validation, issue management or
triggering a build (CI)

9Stdout and stderr are forwarded.

47/52

Hooks (1/2)

Hooks are programs that are executed at certain points, e.g.
after a merge (post-merge), or before git-receive-pack updates
refs (pre-receive).

Invoked locally/on the remote end9

Must be executable (+x)
IN: environment, command-line arguments, stdin
OUT: stdout, stderr, exit status

Can be used for commit validation, issue management or
triggering a build (CI)

9Stdout and stderr are forwarded.

47/52

Hooks (1/2)

Hooks are programs that are executed at certain points, e.g.
after a merge (post-merge), or before git-receive-pack updates
refs (pre-receive).

Invoked locally/on the remote end9

Must be executable (+x)
IN: environment, command-line arguments, stdin
OUT: stdout, stderr, exit status
Can be used for commit validation, issue management or
triggering a build (CI)

9Stdout and stderr are forwarded.

47/52

Hooks (2/2)

See templates installed into .git/hooks/ and the
githooks(5) manual page.

applypatch-msg

pre-applypatch

post-applypatch

pre-commit

prepare-commit-msg

commit-msg

post-commit

pre-rebase

post-checkout

post-merge

pre-push

pre-receive

update

post-receive

post-update

push-to-checkout

pre-auto-gc

post-rewrite

sendemail-validate

fsmonitor-watchman

p4-pre-submit

48/52

git-daemon, git-instaweb

“git-daemon - A really simple server for Git repositories”
[git-daemon(1)], e.g.10

[alice@earth ~]$ git daemon --verbose --base-path=$HOME/repos \ --reuseaddr
--export-all $HOME/repos/*/.git

[bob@mars ~]$ git clone git://earth/foo

git-instaweb allows browsing a repository11, e.g.
$ git instaweb [--local] --httpd=lighttpd --port=8080
$ git instaweb --stop

10It normally listens on port TCP 9418.
11Requires perl-cgi and lighttpd.

49/52

Other projects

git-annex

git-crypt
libgit2

50/52

Conclusion

Closing words

Git is powerful. REALLY!
Although targetted to SCM, it may be used to store (large)
binary data and replicate it to remote sites
Sysadmins: start versioning /etc today
Read more at: http://git-scm.org/ or git-*(1)
manual pages
“I am now a git expert… Am I?”

51/52

Wait! There is more…

Porcelain
git-add
git-am
git-archive
git-bisect
git-branch
git-bundle
git-checkout
git-cherry-pick
git-citool
git-clean
git-clone
git-commit
git-describe
git-diff
git-fetch
git-format-patch
git-gc
git-grep
git-gui
git-init
git-log
git-merge
git-mv
git-notes
git-pull

git-push
git-range-diff
git-rebase
git-reset
git-revert
git-rm
git-shortlog
git-show
git-stash
git-status
git-submodule
git-tag
git-worktree
git-config
git-fast-export
git-fast-import
git-filter-branch
git-mergetool
git-pack-refs
git-prune
git-reflog
git-remote
git-repack
git-replace
git-annotate
git-blame

git-count-objects
git-difftool
git-fsck
git-help
git-instaweb
git-merge-tree
git-rerere
git-show-branch
git-verify-commit
git-verify-tag
git-whatchanged
git-archimport
git-cvsexportcommit
git-cvsimport
git-cvsserver
git-imap-send
git-p4
git-quiltimport
git-request-pull
git-send-email
git-svn

Plumbing
git-apply
git-checkout-index
git-commit-graph

git-commit-tree
git-hash-object
git-index-pack
git-merge-file
git-merge-index
git-mktag
git-mktree
git-multi-pack-index
git-pack-objects
git-prune-packed
git-read-tree
git-symbolic-ref
git-unpack-objects
git-update-index
git-update-ref
git-write-tree
git-cat-file
git-cherry
git-diff-files
git-diff-index
git-diff-tree
git-for-each-ref
git-get-tar-commit-id
git-ls-files
git-ls-remote
git-ls-tree

git-merge-base
git-name-rev
git-pack-redundant
git-rev-list
git-rev-parse
git-show-index
git-show-ref
git-unpack-file
git-var
git-verify-pack
git-daemon
git-fetch-pack
git-http-backend
git-send-pack
git-update-server-info
git-http-fetch
git-http-push
git-parse-remote
git-receive-pack
git-shell
git-upload-archive
git-upload-pack
git-check-attr
git-check-ignore
git-check-mailmap
git-check-ref-format

git-column
git-credential
git-credential-cache
git-credential-store
git-fmt-merge-msg
git-interpret-trailers
git-mailinfo
git-mailsplit
git-merge-one-file
git-patch-id
git-sh-i18n
git-sh-setup
git-stripspace

52/52

Thanks!

Thank you
for listening!

¿?

52/52

	Introduction
	Git essentials
	[(l)user] Porcelain
	[sudoer] More porcelain
	[r00t] Plumbing
	Additional stuff
	Conclusion

