
Status of GeantV Integration
in CMSSW

Kevin Pedro, Sunanda Banerjee
(FNAL)

October 4, 2019

• Integration testing of GeantV w/ CMSSW has several goals:

o Demonstrate benefits of co-development between R&D team &
experiments

o Exercise capabilities of CMSSW framework to interface with external
processing (ExternalWork mechanism) and handle track-level
parallelization in detector simulation

o Measure any potential CPU penalties when running GeantV in CMSSW

o Estimate cost of adapting to new interfaces and eventually migrating to
new (and potentially backward-incompatible) tools such as GeantV

 Thinking forward to HPC/GPU solutions

• Not planning to migrate CMS simulation to GeantV

o Geant4 collaboration has not endorsed the project

o This is an R&D exercise

Introduction

2

• Repositories: install-geant, SimGVCore
 Generate events in CMSSW framework, convert HepMC to GeantV format
 Build CMSSW geometry natively and pass to GeantV engine (using TGeo)
• Using constant magnetic field, limited EM-only physics list
 Calorimeter scoring adapted
 Run GeantV using CMSSW ExternalWork feature:
o Asynchronous, non-blocking, task-based processing

 Output in CMS format, immediately suitable for digitization etc.

GeantV Integration Tests in CMSSW

External
processing

CMSSW
thread acquire()

GeantV

produce()(other work)

3

https://github.com/kpedro88/install-geant
https://github.com/kpedro88/SimGVCore

• Sensitive detectors (SD) and scoring trickiest to adapt
o Necessary to test “full chain” (simulation → digitization → reconstruction)
o Significantly more complicated than Geant4 MT

• Duplicate SD objects per event per thread, then aggregate
→ 4 streams, 4 threads = 16 SD objects
o GeantV TaskData supports this approach

 Use template wrappers to unify interfaces and operations
o Ensure exact same SD code used for Geant4 & GeantV
o Minimize overhead (no branching or virtual table)

Geant4 vs. GeantV Scoring

Event Geant4 SDSDSDParticles Hits

Event Geant4 SDSDSDParticles Hits

Geant4 shares memory, but each
event processed in separate thread

Event
GeantV

SDSDSDHits

Event SDSDSD

Each event processed in multiple
threads, mixed in with other events

?

4

GeantV Data Aggregation

• Each ScoringClass object has instance of CaloSteppingAction
o Some additional memory overhead from duplicated class members
 Attempt to minimize this by storing volume maps in magic static struct

• Merged ScoringClass output copied to cache attached to Event object
o GeantV may consider event finished before CMSSW has written output

→ copy to cache, then immediately clear ScoringClass objects
(avoid possible race conditions)

RunManager

threads

TaskData
DataPerThread

TaskData
DataPerThread

events

ScoringClass ScoringClass ScoringClass ScoringClass

1 2 1 2

A B
UserApplication

TaskDataHandle

Event
ScoringCache

merge

5

• Settings:

o Geant4 10.4p2 w/ VecGeom v0.5 (scalar)

o GeantV pre-beta-7 w/ VecGeom v1.1

o All CMS-specific G4 optimizations disabled

o Same production cuts (default 1mm)

o Single thread (reproducible pRNG sequences)

o Generate 1000 events w/ single electron, E = 100 GeV, η = 1.0, φ = 1.1

• Tests: (same generated events used for G4 and GV)

1. No field (B = 0)

2. Constant field (B = 3.8 T)

(more in backup)

Physics Validation

6

• The number of entries differs by 0.3% (7.4%) in EB (EE)
• The means differ by 0.2% for EB and 2.5% for EE

1. Energy Deposits for 100 GeV e- (B=0)

7

• Means differ by 0.07% for EB and 0.13% for EE
• GeantV and Geant4 applications provide roughly the same distributions

1. Hit Time for 100 GeV e- (B=0)

8

• The number of entries differ by 0.4% (23.3%) in EB (HB)
• The means differ by 2.2% for EB and 8.8% for HB

2. Energy Deposits for 100 GeV e- (B=3.8)

9

• The means differ by 0.03% for EB and 1.15% for HB
• There is a small difference in the physics results of GeantV and Geant4

applications in the presence of B-field

2. Hit Time for 100 GeV e- (B=3.8)

10

• Settings:
o GeantV pre-beta-7+ (63468c9b)
 Enabled: vectorized multiple scattering, field (not physics)

o Generate 500 events, 2 electrons w/ E = 50 GeV, random directions
o Keep # events / thread constant (copy & concat 500 generated events)
o Use same generated events in G4 and GV
o Keep unused threads busy
o Disable output

• Machine: FermiCloud VM w/
o Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz, 4096 KB cache
o sse4.2 instructions

• Track wall clock time & memory with CMSSW TimeMemoryInfo tool
o Measures VSIZE, RSS per event
o Calculate speedup from wall time

(divided by # threads used, since # events / thread is constant)

Performance Tests

11

• VM CPU has relatively small cache

o Known that major component of GeantV speedup arises from smaller
library → fewer cache misses

 To characterize CMSSW performance results, first run built-in GeantV
FullCMS standalone test

o Single thread, settings as close to previous slide as possible
(see test script: testStandalone.sh)

o NB: different physics list used in standalone vs. CMSSW

• Results:

o GeantV: RealTime=756.002s CpuTime=753.09s

o Geant4: User=1617.36s Real=1618.52s

→ 2.14× speedup (standalone)

Characterization

12

• GV 2.6× faster than G4 single thread, still ~2.2× faster in MT
• GV single track mode similar to basketized
• G4 has better scaling w/ # threads than GV

Time Performance

speedup =
time(threads=1)/time(threads=N)

13

• Memory grows ~linearly w/ # threads (expected)

• GV uses more memory than G4 (expected)

• Single track mode uses similar memory to basketized

Memory Performance

14

• To complete the goals of CMS R&D studies for the paper:
o Full magnetic field map
o Test on machines w/ different cache sizes

• Stretch goals/notes for future similar projects:
o Random number generator
o Adapt scoring classes for other detectors (beyond calorimeters)
o Combine w/ other simulation improvements
 Notably Russian Roulette & HF shower library, which give largest gains

• If GeantV project were to continue:
o Better solution for geometry conversion than TGeo
o Sensitive volume/detector functionality
o Vectorized hadronic physics
o Improve threading, memory management, and ownership models
o Decouple event loading & task launching in ExternalLoop mode
o Event-wise scoring rather than current thread-wise scoring w/ TaskData

What Would Be Next?

15

 CMS studies met ~all goals laid out

o Co-development led to improvements and bug fixes in GeantV to facilitate
experiments’ use

o One of the first projects to exercise CMSSW ExternalWork feature

o Physics validation & CPU measurements show very positive results

o Path to adapt interfaces efficiently is laid out:
“Rosetta stone” mostly contained in StepWrapper and VolumeWrapper

 Demonstrator to test major elements of GeantV-CMSSW integration is ready

o Up to 2.6× speedup in CMSSW application

o Will finalize results for paper

Conclusions

Geant4 GeantV
StepWrapper StepWrapper
VolumeWrapper VolumeWrapper

16

https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloG4/interface/StepWrapper.h
https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloGV/interface/StepWrapper.h
https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloG4/interface/VolumeWrapper.h
https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloGV/interface/VolumeWrapper.h

Backup

 Goal: use exact same SD code for Geant4 and GeantV
• Problem: totally incompatible APIs
o Example: G4Step::GetTotalEnergyDeposit() vs. geant::Track::Edep()

• Solution: template wrapper with unified interface
e.g. StepWrapper<T>::getEnergyDeposit()
o SD code only calls the wrapper
o Wrapper stores pointer to T (minimize overhead)

• Current wrappers:
o BeginRun
o BeginEvent
o Step
o Volume
o EndEvent
o EndRun

Template Wrappers

18

• Collect Geant4/GeantV-specific types and wrappers into unified Traits class:
struct G4Traits {
typedef G4Step Step;
typedef sim::StepWrapper<Step> StepWrapper;

};
struct GVTraits {
typedef geant::Track Step;
typedef sim::StepWrapper<Step> StepWrapper;

};

• Provides standardized typenames to be used by SD class:
template <class Traits> class CaloSteppingActionT : …,
public Observer<const typename Traits::Step *>

{
public:
void update(const Step * step) override {

update(StepWrapper(step)); }
private:
// subordinate functions with unified interfaces
void update(const StepWrapper& step);

};

Traits

19

Organization
CaloG4

CaloSteppingAction (.h, .cc)

Old

Calo
CaloSteppingActionT (.h, .icc)

Wrappers (.h)

CaloG4
CaloSteppingAction (.h, .cc)
G4 Wrappers (.h), Traits (.h)

CaloGV
CaloSteppingAction (.h, .icc)
GV Wrappers (.h), Traits (.h)

New

• SD interface & implementation in Calo (.icc file), w/ unimplemented
wrapper interfaces

• G4/GV wrapper specializations in CaloG4/GV, w/ specific instances of
templated SD class → isolate dependencies

20

• Two approaches to scoring in CMSSW:

1. Inherit from G4VSensitiveDetector (Geant4 class)
→ automatically initialized for geometry volumes marked as sensitive

2. Inherit from SimWatcher (CMSSW standalone class)
→ need to specify names of watched geometry volumes

• CaloSteppingAction is a demonstrator class w/ approach 2

o Simplified version of ECAL and HCAL scoring

o Less dependent on Geant4 interfaces

• “Real” SD code uses approach 1

 More work to extract Geant4 dependencies will be necessary

o Some SD class methods directly from Geant4 (via inheritance)

o Need to mock up Geant4-esque interfaces w/ dummy classes for GeantV

Scoring Approaches

21

3. Generate 1000 events of single electrons at 2, 10 and 50 GeV at a fixed
direction and compare GeantV against Geant4 with magnetic field off and
on at 3.8 Tesla

4. Generate 100 events of 50 GeV double electrons at 50 GeV with -3 < η < 3
and 0 < φ < 2π, run in multi-threaded mode (4 threads), B = 0 Tesla

5. Repeat multi-threaded test with B = 3.8 Tesla

More Physics Validation

22

• Number of hits is the same for all 3 energies. The differences are at the level
of 0.1/0.3/0.2% for 2, 10 and 50 GeV

• The means differ by 0.8/0.6/0.4% at the three energies

3. Energy Deposit with B = 0
2 GeV Electrons 10 GeV Electrons 50 GeV Electrons

23

• Number of hits is the same for all 3 energies. The differences are at the level
of 27.7/6.7/1.3% for 2, 10 and 50 GeV

• The means differ by 0.5/1.6/1.7% at the three energies

3. Energy Deposit with B = 3.8
2 GeV Electrons 10 GeV Electrons 50 GeV Electrons

24

• Events are generated with 50 GeV electrons having random direction within
a limited range of η and φ

• The agreement is pretty good in the B=0 option for both # of hits as well as
in the shape of the distributions for EB and EE

4. Energy Deposit with B = 0, MT

25

• Hit time distributions are also in good agreement for the B=0 option in EB
as well as in EE

4. Hit Times with B = 0, MT

26

• Same events (50 GeV electrons, random direction within a limited range of
η and φ) are simulated in a uniform B-field option of 3.8 Tesla

• The agreement is still good for both # of hits as well as in the shape of the
distributions for EB and EE

5. Energy Deposit with B = 3.8, MT

27

• Hit time distributions are also in reasonable agreement for the B = 3.8 Tesla
option in EB as well as in EE

5. Hit Times with B = 3.8, MT

28

• HF shower library, Russian
Roulette have largest impacts

• VecGeom, mag. field
improvements entered
production in past ~year

o Enabled by validating and
using latest Geant4 versions

• Cumulative effects: overall,
simulation is 6.2× (4.1×) faster
for () vs. default
Geant4 settings

 CMS full simulation is at least
8× faster than ATLAS

CMS Simulation Optimizations
Relative CPU usage

Configuration MinBias ttbar
No optimizations 1.00 1.00
Static library 0.95 0.93
Production cuts 0.93 0.97
Tracking cut 0.69 0.88
Time cut 0.95 0.97
Shower library 0.60 0.74
Russian roulette 0.75 0.71
FTFP_BERT_EMM 0.87 0.83
VecGeom (scalar) 0.87 0.93
Mag. field step,track 0.92 0.90
All optimizations 0.16 0.24

29

	Status of GeantV Integration�in CMSSW
	Introduction
	GeantV Integration Tests in CMSSW
	Geant4 vs. GeantV Scoring
	GeantV Data Aggregation
	Physics Validation
	1. Energy Deposits for 100 GeV e- (B=0)
	1. Hit Time for 100 GeV e- (B=0)
	2. Energy Deposits for 100 GeV e- (B=3.8)
	2. Hit Time for 100 GeV e- (B=3.8)
	Performance Tests
	Characterization
	Time Performance
	Memory Performance
	What Would Be Next?
	Conclusions
	Backup
	Template Wrappers
	Traits
	Organization
	Scoring Approaches
	More Physics Validation
	3. Energy Deposit with B = 0
	3. Energy Deposit with B = 3.8
	4. Energy Deposit with B = 0, MT
	4. Hit Times with B = 0, MT
	5. Energy Deposit with B = 3.8, MT
	5. Hit Times with B = 3.8, MT
	CMS Simulation Optimizations

