A High Pressure TPC for the DUNE Near Detector

Dec 15 - 17, 2021

D. González-Díaz (IGFAE) 16-12-2021

for the DUNE collaboration

1

Long-baseline neutrino oscillations (DUNE's core idea)

The experimental challenge

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \frac{\Phi_{e}^{FD}(E_{\nu})}{\Phi_{\mu}^{ND}(E_{\nu})}$$

$$N_{e}^{FD}(E_{\nu}) = \Phi_{e}^{FD}(E_{\nu}) \times \sigma_{e}(E_{\nu}) \times \epsilon_{e}^{FD}(E_{\nu})$$

$$\frac{N_{e}^{FD}(E_{rec})}{N_{\mu}^{ND}(E_{rec})} = \frac{\int dE_{\nu} \mathbf{D}^{FD}(E_{\nu} \rightarrow E_{rec}) \Phi_{e}^{FD}(E_{\nu}) \times \sigma_{e}(E_{\nu}) \times \epsilon_{e}^{FD}(E_{\nu})}{\int dE_{\nu} \mathbf{D}^{ND}(E_{\nu} \rightarrow E_{rec})} \Phi_{\mu}^{ND}(E_{\nu}) \times \sigma_{\mu}(E_{\nu}) \times \epsilon_{\mu}^{ND}(E_{\nu})}$$
energy reconstruction bias
$$\begin{array}{c} \text{cross} & \text{reconstruction} \\ \text{section} & \text{efficiency} \end{array}$$

$$a) \text{Fermi motion}$$

$$b) \text{Final state interaction [FSI]} \\ (and related, re-interaction in dense media) \\ \nu_{\mu} & \mu & \mu \\ \nu_{\mu} & \mu & \mu \\ \psi_{\mu} & \mu & \mu \\ \psi_{\mu} & \mu & \mu \\ E_{\nu}(\theta, E_{\mu}) & E_{rec}(\theta, E_{\mu}) \end{array}$$

ν

3

some known biases

The experimental challenge

The experimental challenge

that's the reason why the complete near detector complex looks like this

and not like this!

ND-GAr as a 4π & low tracking-threshold device with n, π_0 reconstruction capability

ND-GAr building blocks

ND-GAr building blocks (magnet + vessel)

ND-GAr building blocks (magnet)

- \sim Operating current: 4665 A
- \checkmark Minimum field on TPC: 0.5034 T
- ightarrow Maximum field on TPC: 0.5161 T
- → Stored energy: 33.6 MJ
- → Inductance: 3.1 H
- \sim Force on SAND yoke: 6 kN
- \sim Force on coils: 160 kN (to SAND)
- \sim Force on ND-LAr structure: 60 kN
- \sim Residual field in SAND: < 0.0005 T

B deviation in the TPC with SAND on

ND-GAr building blocks (calorimeter)

E. Brianne

S. Ritter

~150 ton

- 12-side design (5modules per side, along TPC drift axis)
- 8 pad-based layers of lead/scintillator (0.7/5 mm) +34 strip-based layers of lead/scintillator (1.4/10 mm)

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

JGU

Space resolution ~ 2.5 cm x 2.5 cm // time resolution ~ 1 ns ٠

Fermilab ND-GAr (main performances as a magnetic spectrometer)

reconstruction with DUNE/Garsoft *(https://github.com/DUNE/garsoft)

- pad size based on ALICE layout: pads up to to 6x15 mm² (good a priory for a ~5 MeV/4 cm tracking threshold).
- Include pad-response function and diffusion (Ar/CH₄).
- Charge induction + Charge threshold + Hit-map formation in the pad plane.
- Track reconstruction.

GENIE v_{μ} sample over the entire chamber

^{*}tracking still under development

Fermilab ND-GAr (main performances at reconstructing vertex activity)

Reconstructed KE (MeV)

pion reconstruction matrix

such a PID performance in a beam-dump configuration is attractive for BSM searches!

• "Hunting for light dark matter with DUNE PRISM" https://inspirehep.net/literature/1792307

• "Probing source and detector nonstandard interaction parameters at the DUNE near detector" <u>https://inspirehep.net/literature/1797242</u>

- "Tau neutrinos at DUNE: New strategies, new opportunities" <u>https://inspirehep.net/literature/1804526</u>
- "Heavy axion opportunities at the DUNE near detector" <u>https://inspirehep.net/literature/1829748</u>
- "Searching for Physics Beyond the Standard Model in an Off-Axis DUNE Near Detector" <u>https://inspirehep.net/literature/1845342</u>
- "Light, long-lived B L gauge and Higgs bosons at the DUNE near detector" <u>https://inspirehep.net/literature/185888</u>

ongoing R&D towards a **1ton** gaseous TPC for ν physics

P. Hamacher-Baumann

Optimization of gas mixture and operating voltage

gas quality will be limited by outgassing (leak rates and gas poisoning small)

$$Q = Q_0 e^{-\eta z} \qquad \eta \cong C_{02}(E/P) \cdot \frac{1}{v_d} \left(1 + \frac{f_{H20}}{1000} \right) \stackrel{\text{P2}}{\longrightarrow} f_{02} \qquad \text{Huk et al., NIM A 267(1988)107-119}$$
$$\eta z < 10\% \qquad \text{for } z = 5 \text{ m} \qquad f_{02} < 0.3 \text{ ppm} \qquad (\text{much lower than any other gaseous TPC!}) \\f_{H20} < 100 \text{ ppm} \qquad *\text{ALICE spec is } f_{02} < 5 \text{ ppm}$$

taking values from outgassing tables, this is achievable in few hours at a flow of ~50 normal m³/h
 depending on gas flow distribution of course... (material selection/cleaning essential!)

Ash Ritchie-Yates

Gain measurements of multiwire-based readout at high pressure

- Electronics will have ~700 k channels and must work at high pressure in ~0.5 T field. ٠
- Imperial (Aggregators and TIPs), FNAL and Pittsburgh (ASIC hosts) are designing the system with ٠ all components currently in prototyping.
- Will interface with TCP/IP based DUNE DAQ via off the shelf networking. ٠
- Aiming to use this system for the OROC beam test in the 2022/23 beam time at FNAL test beam ٠ facility.

P. Dunne

Scintillating gases (concept)

Scintillating gases (proof of principle)

P. Amedo S. Leardini

other properties of Ar-CF₄ at 1%

- $\sigma_{\rm T} = 1.6 \text{ mm in } 1 \text{ m}$ (better than Ar/CH₄ mixtures)
- V_d~3.5 cm/us @ 40 V/cm/bar (*similar to Ar/CH₄ mixtures*)
- 2.2% fraction by mass (less than Ar/CH₄ at 90/10)

seems to fit the bill...

100

cathode distance [m]

Scintillating gases (optical response studies)

A. Saa

Another important R&D line: optimization of the readout plane (just starting)

I. If readout is based on ALICE chambers...

new chambers for central hole?

II. Is it possible to guarantee good avalanche gain and shadow secondary scintillation from the photosensor plane?

C. Bault et al. 'GEM-based readouts and mixtures for optical TPCs' (Vienna 2016)

III. Other ionization readouts that could improve on point-resolution and gain at high pressure down to the target goals?

K. Mavrokoridis*, et al 'ARIADNE: A novel photographic 1-ton dual-phase LAr-TPC'

Conclusions

- A solid concept for a 1ton gaseous argon TPC for precision neutrino physics has been put forward over the last years.
- Simulations confirm the possibility of reconstruction and identification of γ , π_0 , $\pi^{+/-}$, n, p, e, μ down to about 5 MeV in 4π .
- Good avalanche gain achieved at 4 bar for MWPC (on the way to 10 bar!).
- Ground-breaking results demonstrate a tracking threshold of 5 MeV and time resolution of 1 ns *in the primary scintillation signal* with *just* 1% CF_4 addition to argon. Instrumenting most of the cathode plane with SiPMs and operation at -25 deg needed!.
- Important R&D areas will need to be covered over the next years: field-cage design, HV feedthroughs, gas distribution, gas mixture optimization, optimization of the optical and charge readout.

appendix

particle distribution at ND-GAr HPTPC

ND-GAr as a forward spectrometer

field cage and PMTs

Experimental setup and recent measurements

PMT plane

Mini-MWPCs

- Commissioned in pure Xe.
- Achieved purity compatible with <100ppms N_2 , <1ppm O_2 , <1ppm H_2O .
- ≻ $W_{sc} = 40 \pm 10 eV.$
- > τ_3 (triplet) up to 98ns.

https://arxiv.org/pdf/1907.03292.pdf

Time dependence of primary scintillation in Ar/CF₄ at 10 bar

classical doping

Optical and charge gain in Ar/CF₄ at 10 bar (wire chamber stability)

Optical response of ND-GAr from Geant4 simulations

