

Recent results from gravitational-wave searches

Florent Robinet

Gravitational waves

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. EINSTEIN.

Bei der Behandlung der meisten speziellen (nicht prinzipiellen) Probleme auf dem Gebiete der Gravitationstheorie kann man sich damit begnügen, die g., in erster Näherung zu berechnen. Dabei bedient man sich mit Vorteil der imaginären Zeitvariable $x_i = it$ aus denselben Gründen wie in der speziellen Relativitätstheorie. Unter »erster Näherung« ist dabei verstanden, daß die durch die Gleichung

$$
g_{\mu\nu}=-\delta_{\mu\nu}+\gamma_{\mu\nu}
$$

 (1)

definierten Größen $\gamma_{\mu\nu}$, welche linearen orthogonalen Transformationen gegenüber Tensorcharakter besitzen, gegen 1 als kleine Größen behandelt werden können, deren Quadrate und Produkte gegen die ersten Potenzen vernachlässigt werden dürfen. Dabei ist $\delta_{\omega} = 1$ bzw. $\delta_{\omega} = 0$, je nachdem $\mu = \nu$ oder $\mu \pm \nu$.

Wir werden zeigen, daß diese y. in analoger Weise berechnet werden können wie die retardierten Potentiale der Elektrodynamik. Daraus folgt dann zunächst, daß sich die Gravitationsfelder mit Lichtgeschwindigkeit ausbreiten. Wir werden im Anschluß an diese allgemeine Lösung die Gravitationswellen und deren Entstehungsweise untersuchen. Es hat sich gezeigt, daß die von mir vorgeschlagene Wahl des Bezugssystems gemäß der Bedingung $g = |g_{\mu\nu}| = -1$ für die Berechnung der Felder in erster Näherung nicht vorteilhaft ist. Ich wurde hierauf aufmerksam durch eine briefliche Mitteilung des Astronomen DE SITTER, der fand, daß man durch eine andere Wahl des Bezugssystems zu einem einfacheren Ausdruck des Gravitationsfeldes eines ruhenden Massenpunktes gelangen kann, als ich ihn früher gegeben hatte'. Ich stütze mich daher im folgenden auf die allgemein invarianten Feldgleichungen.

Sitzungsber. XLVII, 1915, S. 833.

Minkowski metric + small perturbation

$$
\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}\bar{h}_{\alpha\beta}=-\frac{16\pi G}{c^4}T_{\alpha\beta}
$$

 \rightarrow gravitational waves speed of light $+2$ polarizations

 $\bar{h}_{\mu\nu}(x^{\alpha}) = A_{\mu\nu}e^{ik_{\sigma}x^{\sigma}}$

First detection: 2015

LIGO Livingston (USA)

Sensitivity to gravitational waves

Detector noise

Historical events

GW150914

- \rightarrow Gravitational-wave discovery
	- Direct observation
	- Existence of a black-hole binary
	- First evidence of high-mass stellar black holes (> 25 $\mathsf{M}_{_{\sf sun}}$)
- \rightarrow Parameter estimation
	- 36 M_{sun} + 29 M_{sun} → 63 Msun
	- Spin not well-constrained (short signal)
- \rightarrow First opportunity to test GR in a strong-field regime
- \rightarrow In-depth review of instrumental and environmental noise

GW170817

- \rightarrow First gravitational-wave signal from the merger of 2 neutron stars
- \rightarrow Birth of multi-messenger astronomy with gravitational waves
- \rightarrow Observed in coincidence with a short gamma-ray burst
- \rightarrow Kilonova followed-up over months in all wavelengths
- \rightarrow Tests of GR (PN coefficients, Lorentz invariance, massive gravitons...)
- \rightarrow Standard siren to measure the Hubble constant
- \rightarrow Star equation of state and tidal effects
- \rightarrow Source of heavy elements (via r-process nucleosynthesis)

LIGO-Virgo data sets

 \rightarrow O3 run = O3a (Apr-Oct 2019) + O3b (Nov. 2019 - Mar. 2020) \rightarrow Binary neutron star range improvement: x 1.5 (LIGO), x 1.75 (Virgo) / O2

 \rightarrow 04 will start in Dec. 2022 with more sensitive LIGO and Virgo detectors

 \rightarrow Event rate x 10 \rightarrow ~1 CBC event / day

 \rightarrow KAGRA (Japan) will join the network with a limited sensitivity (>1Mpc)

O3 results

Increased statistic of you detection set \rightarrow access "corners" of your parameter space: **"Exceptional" events**

GW190521: High-mass black holes

Phys.Rev.Lett. 125 (2020) 10, 101102 Astrophys.J.Lett. 900 (2020) 1, L13

- \rightarrow Shortest signal detected so far (\sim 100 ms) \rightarrow Only \sim 4 cycles between 30 Hz and 80 Hz
- \rightarrow Heaviest progenitor: 85 M $_{\sf sun}$ + 66 M $_{\sf sun}$ \rightarrow 142 M $_{\sf sun}$
- \rightarrow Cosmological distance: 5.3 Gpc
- \rightarrow Could match signals from other sources?

Alternative scenarios: orbital eccentricity, gravitational lensing, primordial black holes, cosmic strings, core-collapse supernova

GW190521: High-mass black holes

Phys.Rev.Lett. 125 (2020) 10, 101102 Astrophys.J.Lett. 900 (2020) 1, L13

Mass gap predicted by pair-instability (PI) supernova theory : 65 - 120 M $_{\text{sun}}$ → Low likelihood for the primary black holes to originate from stellar collapse

Final black hole = intermediate mass (100 – 10^5 M_{sun})

 \rightarrow First detection in this mass range

GW190521: High-mass black holes

Phys.Rev.Lett. 125 (2020) 10, 101102 Astrophys.J.Lett. 900 (2020) 1, L13

Evidence for large initial spins + large misalignment with the orbital angular momentum

 \rightarrow orbital precession

 \rightarrow indication of a capture formation mechanism

GW190412: asymmetric masses

Phys.Rev.D 102 (2020) 4, 043015

For the first time: $q = m_2/m_1 = 8.0/31.7 ~ < 1$

Detectable signal from higher-multipole (above the quadrupole)

GR tests in a new regime

GW190425: massive neutron stars (?)

- \rightarrow Probably the second merger of 2 neutron stars (?)
- → Single-detector event
- → Detected with low-latency but no EM counterpart was found (GRB signal in INTEGRAL data?)
- \rightarrow Total mass is higher than what is known from galactic binaries
- \rightarrow No evidence of tidal effects
- \rightarrow Light black holes ?

GW200115 & GW200105

Astrophys.J.Lett. 915 (2021) 1, L5

The "missing" gravitational-wave source: BBH (2015) \rightarrow BNS (2017) \rightarrow NSBH (2020)

O1: first discoveries

2015 (O1)

O2: first catalog GWTC1

2018 (O1+O2)

O3a: second catalog GWTC2

2020 (O1 – O3a)

O3b: third catalog GWTC3

2021 (O1 – O3)

O3b: third catalog GWTC3

e-Print: [2111.03606](https://arxiv.org/abs/2111.03606) [gr-qc]

- \rightarrow Events are listed in the catalog if $p_{\text{astro}} > 0.5$ (~10-15 % false alarm)
- \rightarrow 90 events (35 in O3b)
- \rightarrow + \sim 1000 sub-threshold events
- \rightarrow Final calibration + in-depth data quality studies and noise subtraction

 \rightarrow 3 CBC- template searches + 1 unmodeled search

- \rightarrow Parameter estimation studies
	- high spins ($χ > 0.8$)
	- extreme mass ratio $(q < 0.1)$

 \rightarrow Waveform models start to be limited

Population studies

E-Print: [2111.03634](https://arxiv.org/abs/2111.03634) [astro-ph.HE]

- \rightarrow Gravitational-wave events from the catalog are used to infer merger rates
- BNS: $13 \text{ Gpc}^3 \text{ yr}^1 1900 \text{ Gpc}^3 \text{ yr}^1 \text{ (95%)}$
- NSBH: 7.4 Gpc $^{-3}$ yr⁻¹ 320 Gpc $^{-3}$ yr⁻¹ (95%)
- $-$ BBH: 16 Gpc⁻³ yr⁻¹ 130 Gpc⁻³ yr⁻¹ (95%)

 \rightarrow Entering the high-statistical regime

 \rightarrow Parameters can be binned!

- \rightarrow Merger rates as a function of mass
- \rightarrow Merger rates as a function of redshift: \sim (1+z)^{2.7} for z < 1
- \rightarrow Correlation studies (spin magnitude vs. mass ratio)
- \rightarrow Formation scenarios

Unmodeled searches

Phys.Rev.D 104 (2021) 10, 102001

E-Print: [2107.03701](https://arxiv.org/abs/2107.03701) [gr-qc]

 \rightarrow Various sources of gravitational waves with poorly-modeled waveforms Core-collapse supernovae, isolated deformed neutron stars, BH accretion disk instabilities, eccentric binaries…

 \rightarrow Wide parameter space

 \rightarrow All-sky and all-time searches based on excess-power methods

Dec 15, 2021 Florent Robinet ²⁵

long-duration waveform models

Targeted searches

E-Print: [2111.03608](https://arxiv.org/abs/2111.03608) [astro-ph.HE]

 \rightarrow Use triggers from other channels to target gravitational-wave searches Gamma-ray bursts, neutrinos, Magnetar flares, fast-radio bursts

→ GRB triggers: Use both CBC-modeled and unmodeled searches

 \rightarrow No detections: exclusion distance, population studies

Conclusion

- \rightarrow Many O3 results have been released:
	- New discoveries (NSBH, intermediate-mass BH...)
	- "Exceptional" events used to derive important science
	- Major step in terms of number of detections \rightarrow population studies
	- Cosmology implications: ${\sf H}_{_{\sf 0}}$ estimate
- \rightarrow Disappointment: no new multi-messenger event :-(
- \rightarrow Upcoming science with O3 data
	- Testing GR with CBC events
	- Searches targeting FRB, Magnetar flares, high-energy neutrino...
- \rightarrow O3 dataset is publicly available
- \rightarrow 04 (2023), 05 (2025)
- → Post-O5 Virgo detector
- \rightarrow LISA and Einstein telescope (2035)

