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e CYGNUS proposes a modular and multi site nuclear recoil observatory
e Time Projection Chambers (TPCs) filled with a low pressure negative ion gas like SF,
e Capable of directional sensitivity to dark matter and neutrinos.

[S. E. Vahsen, C. A. J. O'Hare, W. A. Lynch, et al., Cygnus: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos, 2020.]

CYGNUS detector with a 755:5 He:SF, mixture at atmospheric pressure with a 6 year exposure predicts:

_ CYGNUS-10N m? CYGNUS-10 m? module
1. 10-40 solar neutrinos

0.5 m 5 0.5m

2. unexplored sub-10 GeV/c?

Proposed sites for network:
e Boulby, UK

e Gran Sasso, Italy

e Kamioka, Japan

Drift direction ———

Vessel
Neutron+gamma shielding

e Stawell, Australia
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Detector Development for NID Gasses

e Sufficient positional resolution is required to achieve directional sensitivity.
e Electrons experience longitudinal and latitudinal diffusion during the drift stage.

Solution: Negative lon Drift (NID) gasses like SF, are much less sensitive to diffusion.

Side effect: Electronegativity makes it more difficult to achieve a sufficient gas gain.

To achieve a sufficient gas gain in a NID gas:

Gaseous Electron Multipliers (GEMs) used as amplification stages
Multiple GEMs/ThGEMSs can be used for additional amplification
Arranged in double or triple GEM configurations

Charge can be lost between GEM stages

No suppression of lon Back Flow (IBF)

[F. Sauli, “The gas electron multiplier (gem): Operating principles and
applications’]
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e Made by MPGD group (CERN)
e Mesh layers make the amplification fields uniform
e Potential to improve the avalanche characteristics

e Reduction in IBF
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MMThGEM device was placed inside a sealed vacuum vessel

Meshes were biased individually with HV supplies

M2 and M4 were instrumented with CREMAT preamps and shapers

The vacuum vessel was evacuated and then filled with the target gas
55Fe source inside the vessel with x-rays directed towards the drift volume
An energy spectrum was collected using an ADC

Gain and energy resolution calculated from the >°Fe photopeak
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Motivation:

e Does the collection field affect the gain and energy resolution of the device?

Procedure;

e The first amplification field was held constant at 26500 V/cm
e The cathode voltage was varied from -100 V to -500 V
e The M1 voltage was varied from 10 Vto 170 V

e Charge was collected on mesh 2 and the output was passed to the ADC

e CF,at40 Torr was used : — o |

ini — g T -—--- Mesh 1,

e Gain in SF; was too small from 1 il iz ek e -
amplification stage Transfer 1

=777 Mesh3
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Details of simulation:

e The drift and collection field were simulated

e Electron drift was simulated from a starting point 8 mm above the holes
e The position was randomised but confined to a single cell (black rectangle)
[ ]
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e Collection field significantly affects the gain and energy resolution of the device
e Simulated effective gain is in agreement with experimental results

e Simulation suggests that energy resolution is likely limited by the charge collection
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Single amplification stage is insufficient to observe the >Fe signal in SF,

Both amplification fields had to be utilised and signal was measured on mesh 4
Contributions of the two amplification fields to the total gain difficult to disentangle

Two approaches were employed to investigate the amplification fields:

Equal Amplification Field Strengths

Gain should be equal in both stages

For all runs:
e V _,was heldat 30V
e Cathode was held at -500 V
e Ampl=Amp?2

20 Torr:
e Transfer field was held at 500 V/cm

30 and 40 Torr:
e Transfer field was held at 600 V/cm

Constant Amplification Field 1

For all runs:
e Cathode was held at -500 V
e V, ,was held at 140 V
e Transfer field was held at 600 V/cm

Amplification Field 1 Strengths:
e 20 Torr =22000 V/cm
e 30 Torr =23500 V/cm
e 40 Torr =26000 V/cm
e 50 Torr = 28500 V/cm

10
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8 3000?— . 20 Torr . Townsend gas parameters:
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Some minima in energy resolution observed
Best energy resolution was obtained with 50 Torr at 60%

Locations of minima used for optimisation of the device

Minima occur when 2nd amplification field is lower than 1st

Could be a trade off between:

1.
2.

amount of charge reaching the detection element
degradation approaching the maximum operating voltage

westy | Constant Amplification Field 1 - Results

Gas Gain

Gain does not appear to be strictly exponential

Exponential exponential at lower pressure/field
Linear at higher pressure/field
Artifact of charge transport between regions
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Operation in Sk, - Conclusions

e Successful operation of the MMThGEM in low pressure SF4
e Highest gain (3000) achieved in 30 Torr SF4 with equal fields = 24500 V/cm

e Equal field strengths allowed the extraction of the Townsend parameters

e Optimisation of the device with distinct minima in the energy resolution

e Measurements did n

Future work:

ot account for charge transport between the regions

e Charge transport/mesh transparency

e Helium gas mixtures

13
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e Molecular sieves (MS) are structures with specific pore sizes.

e Pores allow molecules with the critical diameter equal or below to
be adsorbed on to the structure

e Molecules with diameters larger than the critical diameters pass
between the bead gaps

e A good sieve should: absorb radon without absorbing target gas

and not emanate radon itself y
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e Demonstration of radon removal from SF6

Radon removed from SF6 by 97+1 Bg/Kg

-~ fit: Ag(MS off)=23.62 Bq
-- fit: Ag(MS on)=13.95 Bg
MS engaged
—— Radon Concentration data

—— Relative Humidity

10 20 30 40
Time (Hours)

Can be further improved by cooling molecular sieve filter

[R.R. Marcelo Gregorio et al., Demonstration of radon removal from SF6 using molecular sieves]
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e Commercial MS intrinsically emanate radon at levels unsuitable for ultra-
sensitive rare-event physics experiments (525+37 mBqg/kg)

e Goal is to maximise amount of MS allowed by radioactive budget of an
experiment ~ 1 mBq

e We need to identify a low radioactive MS

[R.R. Marcelo Gregorio et al., Test of low radioactive molecular sieves for radon filtration in SF6 gas-based rare-event physics experiments, 2021]
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MS Geometry Rn emanated Rn Captured Emanated per
mBqg/kg Bqg/kg captured x10=
Sigma Aldrich 8-12 mm 525137 97+1 5.4+0.7
(Commercial) uniform
Beads
Nihon-Uni (V1) 1-2 cm 99123 352 2.8£0.4
Granules
Fine Powder 68030 33043 2.1+0.1
Nihon-Uni (V2)  Powder <32 25443 (ch 12>,

e The NU-developed (V2) 5A MS emanated radon at least 98% less per
radon captured, compared to the commercial Sigma-Aldrich MS

17
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TO VACUUM
REGENERATION

Gas Recovery

MS . . .
Gas  FILTER 1 Vacuum Regeneration Gas Buffer Filtration

— OUTPUT e - i _
FILTER 2 Gas Buffer Filtration Vacuum Regeneration

SR e /S
R INPUT BL?IQFI,ER Ready for Detector Gas Replacement Ready for Detector Gas Replacement
o)\ o

MS are regenerated using a vacuum to desorb the captured gas components
Dual MS design utilises Vacuum Swing Adsorption (VSA) Technique, allowing
the continued use of absorbent material by simultaneous regeneration and

filtration

TIME

18
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MMThGEM has been investigated as a new technology for use in a NID gas
TPC

Gain and energy resolution were shown to be strongly dependant on the
collection field

Maximum gain achieved in SF6 was 3000 but could be higher with more
comprehensive optimisation

Device shows promise to be optimised based on energy resolution

Molecular Sieves are a promising route for radon removal

19



The

-4 University
o Of

Sheffield.

Any guestions?

Thank you for listening

20
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D By | CYGNUS WIMP Limits

CYGNUS WIMP cross sections compared to other DM searches

Worst case threshold 8 keV, above which ERs rejected by factors greater than 103-104

Best case threshold 0.25 keV,, physical limit for the detection of 1 electron
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Most important neutrinos originating from originating from 8B decay
Best (0.25 keV,) and worst (8keV,) case scenario for the energy threshold

10 - 40 nuclear recoils induced by solar neutrinos over a Six year exposure

Number of Events in 1000 m? in 6 years
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Directionality facilitates WIMP search below Neutrino floor
Unique angular signatures
DM appears to originate from CYGNUS constellation

Minimum separation of 60° in March, maximum of 120° September

Fluorine recoils [8-50 keV/] September 6
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Arrows represent direction of electric field and the length indicates the strength

Lower strength drift field has dipole like shape
This shape is more likely to funnel electrons into the holes

Explains the improvement collection efficiency and ER at lower drift fields

(a) Vini = 20V, Vegn = 100'V. (b) Vi1 = 20V, Veaen, = 500 V.



University Collection Field in Sk,

o Of
Sheffield.

Keeping all the fields constant and varying the mesh 1 voltage
Does not significantly affect negative ion collection efficiency
Garfield “hack” using +ve ions and reversing fields

Suggest collection efficiency plateau above 70 V
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Ortec pulser used to calibrate electronics via a capacitor on the evaluation board
Pulse with V., can be used to determine how much charge reaches the preamp
Output of preamp can be used to calculate the electronic gain

V..., output for fast signal

max 14

>

Integrated output for slow signal

12

10

Gas gain determined from W-value

L]

o)

# electrons = X-ray Energy / W-value

6 A Integral voltage
® Maximum Voltage

Integrated peak height (V.pus)
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