

NEXT

NEXT-White Results and Roadmap towards a ton-scale detector

10th Symposium on Large TPCs for low-energy rare event detection

Pau Novella, IFIC (CSIC & U.V.) On behalf of the NEXT Collaboration

Overview: The NEXT Project

Search for the $\beta\beta0\nu$ decay with a HPXe-TPC

NEXT: HP Gas-Xe TPC

• Sensitivity to the $\beta\beta0\nu$ decay:

 $T_{1/2}^{-1} \propto a \cdot \epsilon \cdot \sqrt{\frac{Mt}{\Delta E \cdot B}}$

- → $\mathbf{Q}_{\beta\beta} = 2.48 \text{ MeV}$
- → Scint/Ionization

136Xe

→ Cheap/Easy to enrich

The NEXT TPC Concept

Gas TPC with 2 dedicated readout planes

EL: linear gain, no avalanche fluctuations: optimize ΔE

NEXT-White: Physics @ LSC

The NEXT-White @ LSC

•

- Infrastructures: seismic platform, lead castle, Rn abatement system
- Available xenon: 100 kg of ¹³⁶Xe and 100 kg of Xe depleted in ¹³⁶Xe (~5 kg used)
- Installation/commissioning in 2015, stable operation since October 2016 to Summer 2021

NEXT-White Operation

10.2 bar Drift: 0.4 kV/cm EL: 1.3 kV/(cm · bar)

- 2016-2018: Calibration campaigns with ⁸³Kr, ¹³⁷Cs, ²²⁸Th @ 7/10 bar (Run-I Run-III)
- 2018-2019: Background measurement with ¹³⁶Xe-depeleted xenon (Run-IV)
- 2019-2021: $\beta\beta2\nu$ combining ¹³⁶Xe-enriched (Run-V) and ¹³⁶Xe-depleted (Run-VI) data:

- Total run-times: 271.6 day (Run-V) and 208.9 day (Run-VI)
- DAQ dead time: $\sim 3\%$ @ Run-V and $\sim 2\%$ @ Run-VI
- Summer 2021: detector decommissioning

Run period	Start Date	Run time (day)	Triggers
Run-Va	25-02-2019	75.8	$617,\!896$
Run-Vb	13-09-2019	47.1	$412,\!902$
Run-Vc	08-01-2020	148.7	$1,\!117,\!101$
Run-V	25-02-2019	271.6	$2,\!147,\!899$
Run-VI	20-10-2020	208.9	$1,\!646,\!501$

Kr-based monitoring: e- lifetime ~ 13 ms, $v_d \sim 0.9 mm/\mu s$, ~300 p.e/keV

NEXT-White Calibration: ^{83m}Kr

- Point like source (41.5 keV) uniformly distributed in active volume (gas)
- Calibration XY maps:

- Detector *continuously* monitored and calibrated:
 - e- attachment and light yield
- JINST 13 (2018) no.10, P10014 (7bar)

• Monitoring of energy resolution evolution in time:

NEXT-White Calibration: ²⁰⁸Tl/¹³⁷Cs

²³²Th/¹³⁷Cs gamma-ray interactions from external sources

NEXT-White Topological Signature

- **Track** reconstruction:
 - **Classical analysis: corrected hits**
 - **RL-deconv. over corrected hits**
 - **Reduction** in image smearing (diffusion, light spread, ...)
 - **Track reconstruction**
 - $\beta\beta$ event candidate @ 2.0 MeV:

DNNs: JINST 12 (2017) no.01, T01004 CNNs: JHEP 01 (2021) 189 SiPM: JHEP 10 (2019) 052

NEXT @ LTPC Symposium

Selection

efficiency:

ββ2v: Event Selection & Analysis Approaches

• Selections applied for different approaches and checks:

• Background and $\beta\beta2\nu$ fit approaches:

• Efficiencies from Tl-208 calibration data

double-e vs single-e efficiencies from events @ 1.6 MeV:

- Unique capabilities of NEXT:
- Topology-based BG rejection
- Background subtraction
 - ~BG-model-independent result

Systematic Uncertainties

Type	Source	Run-V	Run-VI	Correlated?
Norm.	DAQ livetime	0.01%	0.01%	No
	Trigger efficiency	0.2%	0.2%	Yes
	Gas density	-	0.6%	No
	$\beta\beta$ selection (1e/2e)	2.1/2.8%	2.1/3.0%	No
	¹³⁶ Xe fraction	0.4%	0.2%	No
	Xe atoms	0.2%	0.2%	Yes
Energy	Energy scale	$\mathbf{0.25\%}$	0.25%	Yes

ββ2v: Radiogenic Background

BG model based on extensive radio-purity campaign

- JINST 8 (2013) T01002, JINST 10 (2015) 05, P05006)
- Four isotopes (²¹⁴Bi, ²⁰⁸Tl, ⁶⁰Co, ⁴⁰K) and 84 sources Fiducial radiogenic background fit:
 - R+S(E+Z), 4 isotopes from 3 effective volumes

• 12 BG sources measured to be stable in time

Update w.r.t. JHEP 10 (2019) 051

NEXT @ LTPC Symposium

Anode

Other

$\beta\beta2\nu$: BG-model-dependent Fit

- Joint fit of the ¹³⁶Xe-enriched and the ¹³⁶Xe-depleted samples
- Rate of $\beta\beta$ events extracted along with total radiogenic background rates

- The ¹³⁶Xe-depleted sample improves the precision by constraining the backgrounds
- 4.1 σ measurement (4 σ expected), but poor goodness of fit: $\chi^2/dof = 146.1/114$, p-value = 2.3%

$\beta\beta 2\nu$: **BG-Subtraction Fit**

• Backround-subtracted $\beta\beta$ spectra: ¹³⁶Xe-enriched - ¹³⁶Xe-depleted (unique in NEXT!):

- Fit to the $\beta\beta 2\nu$ expectation (BG-model independent!): $T_{1/2}$ measured @ 3.8 sigma (4.1 σ expected)
- Fully consistent with BG-model-dependent fit, but excellent goodness of fit: $\chi^2/dof=16.1/21$

$\beta\beta 2\nu$: BG-Subtraction Fit (II)

Alternative analysis considering the energy distribution of the less energetic blob instead of track energy, and without applying topological selection (cut on blob energy)

$$T_{1/2}^{2\nu} = 1.66^{+0.29}_{-0.21} (\text{stat})^{+0.25}_{-0.15} (\text{sys}) \times 10^{21} \text{ year.}$$

 $\chi^2/{
m dof} = 24.8/25, ~{
m p-value} = 47\%$

¹³⁶Xe $\beta\beta2\nu$ Measurements

The NEXT-100 Detector

• Infrastructures in place, installed at the LSC during first half of 2022.

Muon veto covering the lead castle:

JINST 7 (2012) T06001

JHEP 1605 (2016) 159

Goals of NEXT-100:

- Energy resolution <1% FWHM
- Improve radioactive budget
- Competitive Search of $\beta\beta0\nu$
- Prepare the ton-scale...

Physics Case of NEXT-100

NEXT @ Ton-Scale: R&D

- Goal: explore the IH region with a HPXe-TPC
- Incremental approach towards a ton-scale detector

NEXT-HD

- SiPM instead of PMTs (main background source)
- Operation at low temperatures (reduce dark noise)
- Low diffusion gas mixtures (topological signature)
- WLS fibers for S1+S2 measurement
- R&D: DEMO++, AXOLOTEL, HD-DEMO
- arXiv:1906.01743, JHEP 2021 (2021) 08, 164

NEXT-BOLD

- Ba++ tagging using SMFI
- PRL 120 (2018) 132504
- Nature 583, 48-54 (2020)

NEXT @ LTPC Symposium

NEXT-HD

- Symmetric TPC holding ~1 ton of Xe at 15 bar, inside instrumented water tank
- Possible multi-module approach: first module to be deployed at LSC

NEXT-HD detector:

Barrel Fiber Detector (S1 & S2):

JHEP 2021 (2021) 08, 164

• Energy resolution < 0.7% FWHM (more light collection and less geo. effects)

JHEP 2021 (2021) 08, 164

NEXT-HD Physics Case

- Improved energy resolution (<0.7% FWHM)
- Reduced background budget (no PMTs)
- Improved background rejection power

NEXT @ LTPC Symposium

Summary

• NEW-White physics program concluded: unique capabilities of the HP-Xe TPC technology in the $\beta\beta0\nu$ search

The NEXT Collaboration

Back Up

NEXT-White Trigger Efficiency

- Evaluated by processing random S2 signals with a trigger simulation
- Trigger configuration: 2 central PMT with valid S2 signals in time coincidence

- Trigger-related correction to exposure: ${\sim}5\%$
 - for events above 400 keV

Ī	Run period	DAQ livetime (%)	ϵ_{S2} (%)	ϵ_{2PMT} (%)
	Run-V	$97.04{\pm}0.01$	100	$97.6{\pm}0.2$
	Run-VI	$98.10 {\pm} 0.01$	100	$97.6{\pm}0.2$

Gas Density

• Density variations \rightarrow variations in BG absorption length \rightarrow Run-V vs Run-VI correction

Isotopic Composition of the Xe Gas

• Fraction of ¹³⁶Xe in gas measured with RGA scans:

Selection Eficiency vs Energy

• Although optimized for 1.6 MeV, RL @ JHEP performs well in ROI for $\beta\beta2\nu$ analysis

Background Stability Checks

Corrected rates for each data taking period

• Fiducial rates on a daily-basis:

• Intensity of ⁶⁰Co line

Background Model

