Electron Identification with Deep Neural Networks

2019-12-17

Dominique Godin

Kazuya Mochizuki Emre Onur Kahya Arthur Boisvert Jean-François Arguin Alain Tapp Otilia Ducu Julien Maurer Ioan-Mihail Dinu

- MC sample: 9 million training and 1 million testing electrons
- Neural network: ≈ 400 000 training parameters

CLASS DISTRIBUTION AND ACCURACY:										
CLASS	TRAIN(%)	TEST(%)	ACC.(%)							
class 0	36.73	36.72	96.34							
class 1 +	63.27	63.28	98.39							

2-Class Preliminary Results with 1st EM Layer

 Trainings with only 1st EM layer show that more information can be learned from NN with a finer resolution (i.e. 56x11)

- MC sample: 5m electrons (4.5m for training, 0.5m for testing)
- Neural network: ≈ 400 000 training parameters

Classes definitions:

- truthIFF== 0: truthTypeMod=4 # Unknown truthIFF== 1: truthTypeMod=2 # KnownUnknown truthIFF== 2: truthTypeMod=0 # IsoElectron truthIFF== 3: truthTypeMod=1 # ChargeFlipIsoElectron truthIFF== 4: truthTypeMod=4 # PromptMuon truthIFF== 5: truthTypeMod=4 # PromptPhotonConversior truthIFF== 6: truthTypeMod=4 # ElectronFromMuon truthIFF== 7: truthTypeMod=3 # TauDecay truthIFF== 8: truthTypeMod=3 # BHadronDecay truthIFF== 9: truthTypeMod=3 # CHadronDecay truthIFF==10: truthTypeMod=2 # LightFlavorDecay
- MC sample: 10m electrons (9m for training, 1m for testing)
- Neural network: ≈ 400 000 training parameters
- Confusion matrix after training:

CLASS DISTRIBUTIONS (%) TEST PREDICTIONS (%)							
CLASS #	TRAIN	TEST	CLASS 0	CLASS 1	CLASS 2	CLASS 3	CLASS 4
CLASS 0 CLASS 1 CLASS 2 CLASS 3 CLASS 4	33.27 0.15 62.72 1.36 2.50	33.28 0.14 62.73 1.35 2.50	98.02 0.05 1.02 0.46 0.45	31.72 31.10 13.59 0.97 22.62	0.43 0.00 98.93 0.18 0.46	44.16 0.07 23.06 31.95 0.75	15.61 0.32 16.19 0.42 67.46

Separation of test sample distributions (class 0 vs class1)

Separation of test sample distributions (class 0 vs class 2)

Test sample ROC curve (class 0 vs class 3)

Separation of test sample distributions (class 0 vs class 3)

Separation of test sample distributions (class 0 vs class 4)

Backup Material

Preliminary NN Architecture

- Multichannel CNN with calorimeter images + tracks and scalars information
- The 7-image sets are concatenated in volume images (7-channel images)
- Tracks and scalars concatenated in the FC layer

Electron Data from ATLAS Detector

Available MC data for each electron

- 4 images from pre-sampler and EM calorimeter (56 x 11 in η x ϕ space)
- 3 images from hadronic calorimeter (7 x 11 in η x $\phi~$ space)
- Up to 15 track candidates with (e_frac, d_eta, d_phi, d_0) information
- Scalars information such as P_t , φ , d_0 , shower variables, LLH inputs, etc.

Probability Distributions / ROC Curves

Distributions for Signal Probability

Project Group Members

<u>U. Montreal</u>

- Jean-François Arguin
- Otilia Ducu
- Dominique Godin
- Kazuya Mochizuki

<u>Montreal</u> <u>Institute</u> for <u>Learning</u> <u>Algorithms</u>

- Emre Kahya
- Alain Tapp: Prof.

<u>IFIN-HH Romania</u>

- Ioan Dinu
- Julien Maurer

- This project is largely supported by IVADO
- Thank you to the Copenhagen group for providing us with training samples